You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_network.cpp 35 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995
  1. /**
  2. * \file test/test_network.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "lite_build_config.h"
  12. #if LITE_BUILD_WITH_MGE
  13. #include "./test_common.h"
  14. #include "megbrain/tensor.h"
  15. #include <chrono>
  16. #include <memory>
  17. #include <random>
  18. #include <unordered_map>
  19. using namespace lite;
  20. namespace {
  21. class CheckAllocator : public lite::Allocator {
  22. public:
  23. //! allocate memory of size in the given device with the given align
  24. void* allocate(LiteDeviceType device, int, size_t size, size_t align) override {
  25. LITE_ASSERT(device == LiteDeviceType::LITE_CPU);
  26. m_nr_left++;
  27. m_nr_allocated++;
  28. #ifdef WIN32
  29. return _aligned_malloc(size, align);
  30. #elif defined(__ANDROID__) || defined(ANDROID)
  31. return memalign(align, size);
  32. #else
  33. void* ptr = nullptr;
  34. auto err = posix_memalign(&ptr, align, size);
  35. mgb_assert(!err, "failed to malloc %zubytes with align %zu", size, align);
  36. return ptr;
  37. #endif
  38. };
  39. //! free the memory pointed by ptr in the given device
  40. void free(LiteDeviceType device, int, void* ptr) override {
  41. m_nr_left--;
  42. LITE_ASSERT(device == LiteDeviceType::LITE_CPU);
  43. #ifdef WIN32
  44. _aligned_free(ptr);
  45. #else
  46. ::free(ptr);
  47. #endif
  48. };
  49. std::atomic_size_t m_nr_left{0};
  50. std::atomic_size_t m_nr_allocated{0};
  51. };
  52. } // namespace
  53. TEST(TestNetWork, Basic) {
  54. Config config;
  55. auto lite_tensor = get_input_data("./input_data.npy");
  56. std::string model_path = "./shufflenet.mge";
  57. auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor);
  58. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  59. compare_lite_tensor<float>(result_lite, result_mgb);
  60. }
  61. TEST(TestNetWork, SetDeviceId) {
  62. Config config;
  63. auto lite_tensor = get_input_data("./input_data.npy");
  64. std::string model_path = "./shufflenet.mge";
  65. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  66. network->set_device_id(4);
  67. network->load_model(model_path);
  68. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  69. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  70. network->forward();
  71. network->wait();
  72. ASSERT_EQ(input_tensor->get_device_id(), 4);
  73. ASSERT_EQ(output_tensor->get_device_id(), 4);
  74. }
  75. TEST(TestNetWork, GetAllName) {
  76. Config config;
  77. auto lite_tensor = get_input_data("./input_data.npy");
  78. std::string model_path = "./shufflenet.mge";
  79. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  80. network->load_model(model_path);
  81. auto input_names = network->get_all_input_name();
  82. auto output_names = network->get_all_output_name();
  83. auto output_tensor = network->get_output_tensor(0);
  84. auto out_layout = output_tensor->get_layout();
  85. ASSERT_EQ(out_layout.ndim, 2);
  86. ASSERT_EQ(out_layout.shapes[0], 1);
  87. ASSERT_EQ(out_layout.shapes[1], 1000);
  88. ASSERT_EQ(input_names.size(), 1);
  89. ASSERT_EQ(output_names.size(), 1);
  90. ASSERT_TRUE(input_names[0] == "data");
  91. ASSERT_TRUE(output_names[0] == "TRUE_DIV(EXP[12065],reduce0[12067])[12077]");
  92. }
  93. TEST(TestNetWork, BasicInplaceAndSingleThreadAffinity) {
  94. Config config;
  95. auto lite_tensor = get_input_data("./input_data.npy");
  96. std::string model_path = "./shufflenet.mge";
  97. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  98. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  99. Runtime::set_cpu_inplace_mode(network);
  100. network->load_model(model_path);
  101. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  102. int affinity_set = false;
  103. Runtime::set_runtime_thread_affinity(network, [&affinity_set](int id) {
  104. ASSERT_EQ(id, 0);
  105. affinity_set = true;
  106. });
  107. auto src_ptr = lite_tensor->get_memory_ptr();
  108. auto src_layout = lite_tensor->get_layout();
  109. input_tensor->reset(src_ptr, src_layout);
  110. //! inplace mode not support async mode
  111. ASSERT_THROW(network->set_async_callback([]() {}), std::exception);
  112. network->forward();
  113. network->wait();
  114. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  115. ASSERT_EQ(affinity_set, true);
  116. compare_lite_tensor<float>(output_tensor, result_mgb);
  117. }
  118. TEST(TestNetWork, NetworkShareWeights) {
  119. Config config;
  120. auto lite_tensor = get_input_data("./input_data.npy");
  121. std::string model_path = "./shufflenet.mge";
  122. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  123. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  124. network->load_model(model_path);
  125. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  126. std::shared_ptr<Network> network2 = std::make_shared<Network>(config);
  127. Runtime::set_cpu_inplace_mode(network2);
  128. Runtime::shared_weight_with_network(network2, network);
  129. std::shared_ptr<Tensor> input_tensor2 = network2->get_input_tensor(0);
  130. auto src_ptr = lite_tensor->get_memory_ptr();
  131. auto src_layout = lite_tensor->get_layout();
  132. input_tensor->reset(src_ptr, src_layout);
  133. input_tensor2->reset(src_ptr, src_layout);
  134. ASSERT_NE(input_tensor, input_tensor2);
  135. network->forward();
  136. network->wait();
  137. network2->forward();
  138. network2->wait();
  139. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  140. std::shared_ptr<Tensor> output_tensor2 = network2->get_output_tensor(0);
  141. ASSERT_NE(output_tensor->get_memory_ptr(), output_tensor2->get_memory_ptr());
  142. compare_lite_tensor<float>(output_tensor, result_mgb);
  143. compare_lite_tensor<float>(output_tensor2, result_mgb);
  144. }
  145. TEST(TestNetWork, SharedRuntimeMem) {
  146. Config config;
  147. auto lite_tensor = get_input_data("./input_data.npy");
  148. std::string model_path = "./shufflenet.mge";
  149. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  150. std::shared_ptr<Network> network_src = std::make_shared<Network>(config);
  151. std::shared_ptr<Network> network_dst = std::make_shared<Network>(config);
  152. Runtime::share_runtime_memory_with(network_dst, network_src);
  153. network_src->load_model(model_path);
  154. network_dst->load_model(model_path);
  155. }
  156. TEST(TestNetWork, UserAllocator) {
  157. auto allocator = std::make_shared<CheckAllocator>();
  158. {
  159. Config config;
  160. auto lite_tensor = get_input_data("./input_data.npy");
  161. std::string model_path = "./shufflenet.mge";
  162. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  163. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  164. Runtime::set_memory_allocator(network, allocator);
  165. network->load_model(model_path);
  166. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  167. auto src_ptr = lite_tensor->get_memory_ptr();
  168. auto src_layout = lite_tensor->get_layout();
  169. input_tensor->reset(src_ptr, src_layout);
  170. network->forward();
  171. network->wait();
  172. ASSERT_GE(allocator->m_nr_allocated, 1);
  173. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  174. compare_lite_tensor<float>(output_tensor, result_mgb);
  175. }
  176. ASSERT_EQ(allocator->m_nr_left, 0);
  177. }
  178. TEST(TestNetWork, BasicMultiThread) {
  179. Config config;
  180. auto lite_tensor = get_input_data("./input_data.npy");
  181. std::string model_path = "./shufflenet.mge";
  182. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  183. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  184. Runtime::set_cpu_threads_number(network, 2);
  185. network->load_model(model_path);
  186. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  187. auto src_ptr = lite_tensor->get_memory_ptr();
  188. auto src_layout = lite_tensor->get_layout();
  189. input_tensor->reset(src_ptr, src_layout);
  190. network->forward();
  191. network->wait();
  192. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  193. compare_lite_tensor<float>(output_tensor, result_mgb);
  194. }
  195. TEST(TestNetWork, ThreadAffinity) {
  196. size_t nr_threads = 4;
  197. Config config;
  198. auto lite_tensor = get_input_data("./input_data.npy");
  199. std::string model_path = "./shufflenet.mge";
  200. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  201. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  202. Runtime::set_cpu_threads_number(network, nr_threads);
  203. ASSERT_THROW(
  204. Runtime::set_runtime_thread_affinity(network, [](int) {}), std::exception);
  205. network->load_model(model_path);
  206. std::vector<std::thread::id> thread_ids(nr_threads);
  207. auto affinity = [&](int id) { thread_ids[id] = std::this_thread::get_id(); };
  208. Runtime::set_runtime_thread_affinity(network, affinity);
  209. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  210. auto src_ptr = lite_tensor->get_memory_ptr();
  211. auto src_layout = lite_tensor->get_layout();
  212. input_tensor->reset(src_ptr, src_layout);
  213. network->forward();
  214. network->wait();
  215. for (size_t i = 0; i < nr_threads; i++) {
  216. for (size_t j = i + 1; j < nr_threads; j++) {
  217. ASSERT_NE(thread_ids[i], thread_ids[j]);
  218. }
  219. }
  220. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  221. compare_lite_tensor<float>(output_tensor, result_mgb);
  222. }
  223. TEST(TestNetWork, BasicCryptAes) {
  224. Config config;
  225. auto lite_tensor = get_input_data("./input_data.npy");
  226. std::string model_path = "./shufflenet.mge";
  227. std::string model_crypt_path = "./shufflenet_crypt_aes.mge";
  228. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  229. config.bare_model_cryption_name = "AES_default";
  230. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  231. compare_lite_tensor<float>(result_lite, result_mgb);
  232. }
  233. TEST(TestNetWork, BasicCryptRc4) {
  234. Config config;
  235. auto lite_tensor = get_input_data("./input_data.npy");
  236. std::string model_path = "./shufflenet.mge";
  237. std::string model_crypt_path = "./shufflenet_crypt_rc4.mge";
  238. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  239. config.bare_model_cryption_name = "RC4_default";
  240. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  241. compare_lite_tensor<float>(result_lite, result_mgb);
  242. }
  243. TEST(TestNetWork, PackedCryptRc4) {
  244. Config config;
  245. auto lite_tensor = get_input_data("./input_data.npy");
  246. std::string model_path = "./shufflenet.mge";
  247. std::string model_crypt_path = "./test_packed_model_rc4.lite";
  248. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  249. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  250. compare_lite_tensor<float>(result_lite, result_mgb);
  251. }
  252. TEST(TestNetWork, BasicCryptSfRc4) {
  253. Config config;
  254. auto lite_tensor = get_input_data("./input_data.npy");
  255. std::string model_path = "./shufflenet.mge";
  256. std::string model_crypt_path = "./shufflenet_crypt_sfrc4.mge";
  257. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  258. config.bare_model_cryption_name = "SIMPLE_FAST_RC4_default";
  259. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  260. compare_lite_tensor<float>(result_lite, result_mgb);
  261. }
  262. TEST(TestNetWork, ResetInput) {
  263. Config config;
  264. auto tensor = get_input_data("./input_data.npy");
  265. std::string model_path = "./shufflenet.mge";
  266. std::string input_name = "data";
  267. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  268. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  269. network->load_model(model_path);
  270. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  271. auto src_ptr = tensor->get_memory_ptr();
  272. auto src_layout = tensor->get_layout();
  273. input_tensor->reset(src_ptr, src_layout);
  274. network->forward();
  275. network->wait();
  276. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  277. compare_lite_tensor<float>(output_tensor, result_mgb);
  278. }
  279. TEST(TestNetWork, ChangeInputShape) {
  280. Config config;
  281. auto tensor = get_input_data("./input_data.npy");
  282. std::string model_path = "./shufflenet.mge";
  283. std::string input_name = "data";
  284. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  285. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  286. network->load_model(model_path);
  287. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  288. auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT};
  289. input_tensor->set_layout(src_layout);
  290. std::shared_ptr<Tensor> input_tensor2 = network->get_io_tensor(input_name);
  291. //! Check memory is equal
  292. ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr());
  293. network->forward();
  294. network->wait();
  295. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  296. auto output_layout = output_tensor->get_layout();
  297. ASSERT_EQ(output_layout.shapes[0], 2);
  298. ASSERT_EQ(output_layout.shapes[1], 1000);
  299. }
  300. TEST(TestNetWork, ResetOutput) {
  301. Config config;
  302. auto tensor = get_input_data("./input_data.npy");
  303. std::string model_path = "./shufflenet.mge";
  304. std::string input_name = "data";
  305. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  306. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  307. network->load_model(model_path);
  308. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  309. auto src_ptr = tensor->get_memory_ptr();
  310. auto src_layout = tensor->get_layout();
  311. input_tensor->reset(src_ptr, src_layout);
  312. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  313. auto result_tensor = std::make_shared<Tensor>(
  314. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  315. void* out_data = result_tensor->get_memory_ptr();
  316. output_tensor->reset(out_data, result_tensor->get_layout());
  317. network->forward();
  318. network->wait();
  319. compare_lite_tensor<float>(output_tensor, result_mgb);
  320. }
  321. TEST(TestNetWork, AsyncExec) {
  322. Config config;
  323. config.options.var_sanity_check_first_run = false;
  324. auto tensor = get_input_data("./input_data.npy");
  325. std::string model_path = "./shufflenet.mge";
  326. std::string input_name = "data";
  327. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  328. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  329. network->load_model(model_path);
  330. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  331. auto src_ptr = tensor->get_memory_ptr();
  332. auto src_layout = tensor->get_layout();
  333. input_tensor->reset(src_ptr, src_layout);
  334. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  335. auto result_tensor = std::make_shared<Tensor>(
  336. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  337. void* out_data = result_tensor->get_memory_ptr();
  338. output_tensor->reset(out_data, result_tensor->get_layout());
  339. //! set async mode and callback
  340. volatile bool finished = false;
  341. network->set_async_callback([&finished]() { finished = true; });
  342. network->forward();
  343. size_t count = 0;
  344. while (finished == false) {
  345. count++;
  346. }
  347. ASSERT_GT(count, 0);
  348. compare_lite_tensor<float>(output_tensor, result_mgb);
  349. }
  350. TEST(TestNetWork, CPUDeviceInput) {
  351. auto tensor = get_input_data("./input_data.npy");
  352. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  353. std::string model_path = "./shufflenet.mge";
  354. std::string input_name = "data";
  355. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  356. NetworkIO IO;
  357. bool is_host = false;
  358. IO.inputs.push_back({input_name, is_host});
  359. std::shared_ptr<Network> network = std::make_shared<Network>(IO);
  360. network->load_model(model_path);
  361. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  362. auto src_ptr = tensor->get_memory_ptr();
  363. input_tensor->reset(src_ptr, layout);
  364. network->forward();
  365. network->wait();
  366. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  367. compare_lite_tensor<float>(output_tensor, result_mgb);
  368. }
  369. TEST(TestNetWork, ShareTensorWith) {
  370. auto tensor = get_input_data("./input_data.npy");
  371. std::string model_path = "./shufflenet.mge";
  372. std::string input_name = "data";
  373. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  374. std::shared_ptr<Network> network = std::make_shared<Network>();
  375. network->load_model(model_path);
  376. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  377. input_tensor->share_memory_with(*tensor);
  378. network->forward();
  379. network->wait();
  380. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  381. compare_lite_tensor<float>(output_tensor, result_mgb);
  382. }
  383. TEST(TestNetWork, InputCallBack) {
  384. auto tensor = get_input_data("./input_data.npy");
  385. std::string model_path = "./shufflenet.mge";
  386. std::string input_name = "data";
  387. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  388. NetworkIO ios;
  389. bool is_host = false;
  390. ios.inputs.push_back({input_name, is_host});
  391. std::shared_ptr<Network> network = std::make_shared<Network>(ios);
  392. network->load_model(model_path);
  393. volatile bool finised_check_input = false;
  394. auto input_callback =
  395. [&tensor, &finised_check_input,
  396. input_name](const std::unordered_map<
  397. std::string, std::pair<IO, std::shared_ptr<Tensor>>>&
  398. input_map) {
  399. ASSERT_EQ(input_map.size(), 1);
  400. auto tensor_input = input_map.at(input_name).second;
  401. compare_lite_tensor<float>(tensor_input, tensor);
  402. finised_check_input = true;
  403. };
  404. network->set_start_callback(input_callback);
  405. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  406. input_tensor->share_memory_with(*tensor);
  407. network->forward();
  408. network->wait();
  409. ASSERT_TRUE(finised_check_input);
  410. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  411. compare_lite_tensor<float>(output_tensor, result_mgb);
  412. }
  413. TEST(TestNetWork, OutputCallBack) {
  414. auto tensor = get_input_data("./input_data.npy");
  415. std::string model_path = "./shufflenet.mge";
  416. std::string input_name = "data";
  417. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  418. std::shared_ptr<Network> network = std::make_shared<Network>();
  419. network->load_model(model_path);
  420. auto output_name = network->get_output_name(0);
  421. volatile bool finised_check_output = false;
  422. auto output_callback =
  423. [&result_mgb, &finised_check_output,
  424. output_name](const std::unordered_map<
  425. std::string, std::pair<IO, std::shared_ptr<Tensor>>>&
  426. output_map) {
  427. ASSERT_EQ(output_map.size(), 1);
  428. auto tensor_output = output_map.at(output_name).second;
  429. compare_lite_tensor<float>(tensor_output, result_mgb);
  430. finised_check_output = true;
  431. };
  432. network->set_finish_callback(output_callback);
  433. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  434. input_tensor->share_memory_with(*tensor);
  435. network->forward();
  436. network->wait();
  437. ASSERT_TRUE(finised_check_output);
  438. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  439. compare_lite_tensor<float>(output_tensor, result_mgb);
  440. }
  441. TEST(TestNetWork, OutputShapeOnly) {
  442. auto tensor = get_input_data("./input_data.npy");
  443. std::string model_path = "./shufflenet.mge";
  444. std::string input_name = "data";
  445. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  446. NetworkIO IO;
  447. bool is_host = true;
  448. IO.outputs.push_back({output_name, is_host, LiteIOType::LITE_IO_SHAPE});
  449. Config config;
  450. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  451. network->load_model(model_path);
  452. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  453. std::shared_ptr<Tensor> output_tensor = network->get_io_tensor(output_name);
  454. auto src_ptr = tensor->get_memory_ptr();
  455. auto src_layout = tensor->get_layout();
  456. input_tensor->reset(src_ptr, src_layout);
  457. network->forward();
  458. network->wait();
  459. ASSERT_EQ(output_tensor->get_tensor_total_size_in_byte() / sizeof(float), 1000);
  460. }
  461. TEST(TestNetWork, ProfileIOdump) {
  462. auto tensor = get_input_data("./input_data.npy");
  463. std::string model_path = "./shufflenet.mge";
  464. std::string input_name = "data";
  465. NetworkIO IO;
  466. Config config;
  467. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  468. network->enable_profile_performance("./profile.json");
  469. network->load_model(model_path);
  470. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  471. auto src_ptr = tensor->get_memory_ptr();
  472. auto src_layout = tensor->get_layout();
  473. input_tensor->reset(src_ptr, src_layout);
  474. network->forward();
  475. network->wait();
  476. ASSERT_TRUE(fopen("./profile.json", "r"));
  477. Runtime::enable_io_txt_dump(network, "./io_txt_dump.txt");
  478. network->forward();
  479. network->wait();
  480. ASSERT_TRUE(fopen("./io_txt_dump.txt", "r"));
  481. }
  482. TEST(TestNetWork, LoadPackedModel) {
  483. auto tensor = get_input_data("./input_data.npy");
  484. std::string model_path = "./test_packed_model.lite";
  485. std::string input_name = "data";
  486. NetworkIO IO;
  487. Config config;
  488. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  489. network->load_model(model_path);
  490. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  491. auto src_ptr = tensor->get_memory_ptr();
  492. auto src_layout = tensor->get_layout();
  493. input_tensor->reset(src_ptr, src_layout);
  494. network->forward();
  495. network->wait();
  496. }
  497. TEST(TestNetWork, GetDeviceType) {
  498. auto tensor = get_input_data("./input_data.npy");
  499. std::string model_path = "./shufflenet.mge";
  500. Config config;
  501. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  502. network->load_model(model_path);
  503. ASSERT_TRUE(network->get_device_type() == LiteDeviceType::LITE_CPU);
  504. }
  505. TEST(TestNetWork, GetModelExtraInfo) {
  506. std::string model_path = "./track_640_320_pack_model_rc4_with_info.lite";
  507. Config config;
  508. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  509. network->load_model(model_path);
  510. auto& extra_info = network->get_model_extra_info();
  511. ASSERT_TRUE(extra_info.size() > 0);
  512. printf("extra_info %s \n", extra_info.c_str());
  513. }
  514. #if LITE_WITH_CUDA
  515. TEST(TestNetWork, BasicDevice) {
  516. auto lite_tensor = get_input_data("./input_data.npy");
  517. Config config;
  518. config.device_type = LiteDeviceType::LITE_CUDA;
  519. std::string model_path = "./shufflenet.mge";
  520. auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor);
  521. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  522. compare_lite_tensor<float>(result_lite, result_mgb);
  523. }
  524. TEST(TestNetWork, DeviceInput) {
  525. auto tensor = get_input_data("./input_data.npy");
  526. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  527. std::string model_path = "./shufflenet.mge";
  528. std::string input_name = "data";
  529. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  530. NetworkIO IO;
  531. bool is_host = false;
  532. IO.inputs.push_back({input_name, is_host});
  533. Config config;
  534. config.device_type = LiteDeviceType::LITE_CUDA;
  535. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  536. network->load_model(model_path);
  537. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  538. auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout);
  539. tensor_cuda.copy_from(*tensor);
  540. auto src_ptr = tensor_cuda.get_memory_ptr();
  541. input_tensor->reset(src_ptr, layout);
  542. network->forward();
  543. network->wait();
  544. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  545. compare_lite_tensor<float>(output_tensor, result_mgb);
  546. }
  547. TEST(TestNetWork, ChangeInputShapeDevice) {
  548. Config config;
  549. auto tensor = get_input_data("./input_data.npy");
  550. std::string model_path = "./shufflenet.mge";
  551. std::string input_name = "data";
  552. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  553. config.device_type = LiteDeviceType::LITE_CUDA;
  554. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  555. network->load_model(model_path);
  556. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  557. auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT};
  558. input_tensor->set_layout(src_layout);
  559. std::shared_ptr<Tensor> input_tensor2 = network->get_io_tensor(input_name);
  560. //! Check memory is equal
  561. ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr());
  562. network->forward();
  563. network->wait();
  564. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  565. auto output_layout = output_tensor->get_layout();
  566. ASSERT_EQ(output_layout.shapes[0], 2);
  567. ASSERT_EQ(output_layout.shapes[1], 1000);
  568. }
  569. TEST(TestNetWork, DeviceOutput) {
  570. auto tensor = get_input_data("./input_data.npy");
  571. std::string model_path = "./shufflenet.mge";
  572. std::string input_name = "data";
  573. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  574. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  575. NetworkIO IO;
  576. bool is_host = false;
  577. IO.outputs.push_back({output_name, is_host});
  578. Config config;
  579. config.device_type = LiteDeviceType::LITE_CUDA;
  580. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  581. network->load_model(model_path);
  582. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  583. std::shared_ptr<Tensor> output_tensor_cuda = network->get_io_tensor(output_name);
  584. auto src_ptr = tensor->get_memory_ptr();
  585. auto src_layout = tensor->get_layout();
  586. input_tensor->reset(src_ptr, src_layout);
  587. network->forward();
  588. network->wait();
  589. auto output_tensor = std::make_shared<Tensor>();
  590. output_tensor->copy_from(*output_tensor_cuda);
  591. compare_lite_tensor<float>(output_tensor, result_mgb);
  592. }
  593. TEST(TestNetWork, WrongIONameDevice) {
  594. auto tensor = get_input_data("./input_data.npy");
  595. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  596. std::string model_path = "./shufflenet.mge";
  597. std::string input_name = "data";
  598. std::string input_name_wrong = "data0";
  599. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  600. std::string output_name_wrong = "w_TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  601. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  602. NetworkIO IO;
  603. bool is_host = false;
  604. IO.inputs.push_back({input_name, is_host});
  605. IO.outputs.push_back({output_name, is_host});
  606. IO.outputs.push_back({output_name_wrong, is_host});
  607. Config config;
  608. config.device_type = LiteDeviceType::LITE_CUDA;
  609. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  610. network->load_model(model_path);
  611. auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout);
  612. tensor_cuda.copy_from(*tensor);
  613. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  614. auto src_ptr = tensor_cuda.get_memory_ptr();
  615. auto src_layout = tensor_cuda.get_layout();
  616. input_tensor->reset(src_ptr, src_layout);
  617. std::shared_ptr<Tensor> output_tensor_cuda = network->get_io_tensor(output_name);
  618. network->forward();
  619. network->wait();
  620. auto output_tensor = std::make_shared<Tensor>();
  621. output_tensor->copy_from(*output_tensor_cuda);
  622. compare_lite_tensor<float>(output_tensor, result_mgb);
  623. }
  624. TEST(TestNetWork, ConfigIONameDevice) {
  625. std::string model_path = "./model.mgb";
  626. NetworkIO IO;
  627. bool is_host = false;
  628. IO.outputs.push_back({"clsfy", is_host});
  629. Config config;
  630. config.device_type = LiteDeviceType::LITE_CUDA;
  631. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  632. network->compute_only_configured_output();
  633. network->load_model(model_path);
  634. ASSERT_EQ(network->get_all_output_name().size(), 1);
  635. ASSERT_EQ(network->get_all_output_name()[0], "clsfy");
  636. std::shared_ptr<Network> network2 = std::make_shared<Network>(config, IO);
  637. network2->load_model(model_path);
  638. ASSERT_EQ(network2->get_all_output_name().size(), 2);
  639. }
  640. TEST(TestNetWork, SetDeviceIdDeviceTest) {
  641. #if LITE_WITH_CUDA
  642. if (get_device_count(LITE_CUDA) <= 1)
  643. return;
  644. #endif
  645. std::string model_path = "./model.mgb";
  646. NetworkIO IO;
  647. bool is_host = false;
  648. IO.inputs.push_back({"data", is_host});
  649. IO.outputs.push_back({"clsfy", is_host});
  650. Config config;
  651. config.device_type = LiteDeviceType::LITE_CUDA;
  652. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  653. network->set_device_id(1);
  654. network->load_model(model_path);
  655. auto inputs_names = network->get_all_input_name();
  656. for (auto name : inputs_names) {
  657. auto tensor = network->get_io_tensor(name);
  658. ASSERT_EQ(tensor->get_device_id(), 1);
  659. if (name == "idx") {
  660. int* index_ptr = static_cast<int*>(tensor->get_memory_ptr());
  661. for (int i = 0; i < 23; i++) {
  662. index_ptr[i] = i % 3;
  663. }
  664. }
  665. if (name == "landmark") {
  666. float* landmakrk_ptr = static_cast<float*>(tensor->get_memory_ptr());
  667. for (int i = 0; i < 23 * 18 * 2; i++) {
  668. landmakrk_ptr[i] = 0.1f;
  669. }
  670. }
  671. }
  672. auto outputs_names = network->get_all_output_name();
  673. for (auto name : outputs_names) {
  674. auto tensor = network->get_io_tensor(name);
  675. ASSERT_EQ(tensor->get_device_id(), 1);
  676. }
  677. network->forward();
  678. network->wait();
  679. }
  680. TEST(TestNetWork, SetStreamIdDeviceTest) {
  681. std::string model_path = "./model.mgb";
  682. NetworkIO IO;
  683. bool is_host = false;
  684. IO.inputs.push_back({"data", is_host});
  685. IO.outputs.push_back({"clsfy", is_host});
  686. Config config;
  687. config.device_type = LiteDeviceType::LITE_CUDA;
  688. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  689. network->set_stream_id(1);
  690. network->load_model(model_path);
  691. auto inputs_names = network->get_all_input_name();
  692. for (auto name : inputs_names) {
  693. auto tensor = network->get_io_tensor(name);
  694. if (name == "idx") {
  695. int* index_ptr = static_cast<int*>(tensor->get_memory_ptr());
  696. for (int i = 0; i < 23; i++) {
  697. index_ptr[i] = i % 3;
  698. }
  699. }
  700. if (name == "landmark") {
  701. float* landmakrk_ptr = static_cast<float*>(tensor->get_memory_ptr());
  702. for (int i = 0; i < 23 * 18 * 2; i++) {
  703. landmakrk_ptr[i] = 0.1f;
  704. }
  705. }
  706. }
  707. network->forward();
  708. network->wait();
  709. }
  710. #if CUDART_VERSION >= 10000
  711. TEST(TestNetWork, DeviceAsyncExec) {
  712. auto tensor = get_input_data("./input_data.npy");
  713. Config config;
  714. config.device_type = LiteDeviceType::LITE_CUDA;
  715. config.options.var_sanity_check_first_run = false;
  716. std::string model_path = "./shufflenet.mge";
  717. std::string input_name = "data";
  718. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  719. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  720. network->load_model(model_path);
  721. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  722. auto src_ptr = tensor->get_memory_ptr();
  723. auto src_layout = tensor->get_layout();
  724. input_tensor->reset(src_ptr, src_layout);
  725. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  726. auto result_tensor = std::make_shared<Tensor>(
  727. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  728. void* out_data = result_tensor->get_memory_ptr();
  729. output_tensor->reset(out_data, result_tensor->get_layout());
  730. //! set async mode and callback
  731. volatile bool finished = false;
  732. network->set_async_callback([&finished]() { finished = true; });
  733. network->forward();
  734. size_t count = 0;
  735. while (finished == false) {
  736. count++;
  737. }
  738. ASSERT_GT(count, 0);
  739. compare_lite_tensor<float>(output_tensor, result_mgb);
  740. }
  741. #endif
  742. #endif
  743. #if MGB_ATLAS
  744. TEST(TestNetWork, AtlasLoadNoDevice) {
  745. lite::Config config;
  746. config.device_type = LiteDeviceType::LITE_DEVICE_DEFAULT;
  747. auto network = std::make_shared<lite::Network>(config);
  748. network->load_model("./model_atlas.mgb");
  749. network->forward();
  750. network->wait();
  751. }
  752. TEST(TestNetWork, AtlasLoadDeviceInput) {
  753. lite::NetworkIO networkio;
  754. lite::IO input_data_io = {};
  755. input_data_io.name = "data";
  756. input_data_io.is_host = false;
  757. networkio.inputs.emplace_back(input_data_io);
  758. lite::IO input_input0_io = {};
  759. input_input0_io.name = "input0";
  760. input_input0_io.is_host = false;
  761. networkio.inputs.emplace_back(input_input0_io);
  762. lite::Config config;
  763. config.device_type = LiteDeviceType::LITE_DEVICE_DEFAULT;
  764. auto network = std::make_shared<lite::Network>(config, networkio);
  765. network->load_model("./model_atlas.mgb");
  766. network->forward();
  767. network->wait();
  768. }
  769. TEST(TestNetWork, AtlasLoadAtlas) {
  770. lite::Config config;
  771. config.device_type = LiteDeviceType::LITE_ATLAS;
  772. auto network = std::make_shared<lite::Network>(config);
  773. network->load_model("./model_atlas.mgb");
  774. network->forward();
  775. network->wait();
  776. }
  777. TEST(TestNetWork, AtlasLoadAtlasDeviceInput) {
  778. lite::NetworkIO networkio;
  779. lite::IO input_data_io = {};
  780. input_data_io.name = "data";
  781. input_data_io.is_host = false;
  782. networkio.inputs.emplace_back(input_data_io);
  783. lite::IO input_input0_io = {};
  784. input_input0_io.name = "input0";
  785. input_input0_io.is_host = false;
  786. networkio.inputs.emplace_back(input_input0_io);
  787. lite::Config config;
  788. config.device_type = LiteDeviceType::LITE_ATLAS;
  789. auto network = std::make_shared<lite::Network>(config, networkio);
  790. network->load_model("./model_atlas.mgb");
  791. network->forward();
  792. network->wait();
  793. }
  794. TEST(TestNetWork, AtlasDeviceID) {
  795. lite::Config config;
  796. config.device_type = LiteDeviceType::LITE_ATLAS;
  797. auto network = std::make_shared<lite::Network>(config);
  798. network->set_device_id(1);
  799. network->load_model("./model_atlas.mgb");
  800. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  801. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  802. network->forward();
  803. network->wait();
  804. ASSERT_EQ(output_tensor->get_device_id(), 1);
  805. }
  806. #endif
  807. #endif
  808. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台