- #include "megbrain/graph/cg.h"
- #include "megbrain/opr/dnn/local.h"
- #include "megbrain/test/helper.h"
-
- #include "megbrain/gopt/basic_arith.h"
- #include "megbrain/gopt/gtrans.h"
- #include "megbrain/gopt/inference.h"
-
- #include "megbrain/opr/basic_arith_wrapper.h"
- #include "megbrain/opr/blas.h"
- #include "megbrain/opr/dnn/adaptive_pooling.h"
- #include "megbrain/opr/dnn/batch_norm.h"
- #include "megbrain/opr/dnn/convolution.h"
- #include "megbrain/opr/dnn/pooling.h"
- #include "megbrain/opr/imgproc.h"
- #include "megbrain/opr/io.h"
- #include "megbrain/opr/nn_int.h"
- #include "megbrain/opr/tensor_gen.h"
- #include "megbrain/opr/tensor_manip.h"
- #include "megbrain/opr/utility.h"
-
- #include "./helper.h"
- #include "megbrain/comp_node_env.h"
-
- #include "megdnn/tensor_format.h"
-
- #include <random>
- #include <vector>
-
- #if MGB_CUDA
- #include <cudnn.h>
- #endif
-
- using namespace mgb;
-
- namespace {
- //! find first the operator of specific type; raise exception if not found
- template <typename T>
- T& find_opr(SymbolVar endpoint) {
- T* found = nullptr;
- auto cb = [&found](cg::OperatorNodeBase* opr) {
- if (!found && opr->same_type<T>()) {
- found = &opr->cast_final_safe<T>();
- }
- };
- cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
- mgb_assert(found, "not found opr from %s", endpoint.node()->name().c_str());
- return *found;
- }
-
- template <typename T>
- T& find_opr(SymbolVar endpoint, const std::string& node_name) {
- T* found = nullptr;
- auto cb = [&found, &node_name](cg::OperatorNodeBase* opr) {
- if (!found && opr->same_type<T>() && opr->name() == node_name) {
- found = &opr->cast_final_safe<T>();
- }
- };
- cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
- mgb_assert(
- found, "not found opr %s from %s", node_name.c_str(),
- endpoint.node()->name().c_str());
- return *found;
- }
-
- template <typename T>
- size_t find_opr_num(SymbolVar endpoint) {
- size_t opr_num = 0;
- auto cb = [&opr_num](cg::OperatorNodeBase* opr) {
- if (opr->same_type<T>()) {
- opr_num++;
- }
- };
- cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
- return opr_num;
- }
-
- class NaiveMegDNNHandleScope {
- int m_orig_level;
-
- public:
- NaiveMegDNNHandleScope()
- : m_orig_level{MegDNNHandle::exchange_default_dbg_level(2)} {
- CompNode::finalize();
- }
- ~NaiveMegDNNHandleScope() {
- auto set = MegDNNHandle::exchange_default_dbg_level(m_orig_level);
- mgb_assert(set == 2);
- CompNode::finalize();
- }
- };
-
- #if MGB_CUDA
- //! this function is only used in TestGoptInference.EnableCHWN4...
- void warp_perspective_mat_gen(HostTensorND& mat, size_t N, size_t INP_H, size_t INP_W) {
- static std::mt19937 rng(next_rand_seed());
- auto rand_real = [&](double lo, double hi) {
- return rng() / (std::mt19937::max() + 1.0) * (hi - lo) + lo;
- };
- auto rand_real2 = [&](double range) { return rand_real(-range, range); };
- auto ptr = mat.ptr<float>();
- for (size_t i = 0; i < N; ++i) {
- auto rot = rand_real(0, M_PI * 2), scale = rand_real(0.8, 1.2),
- sheer = rand_real(0.9, 1.1), dy = rand_real2(INP_H * 0.5),
- dx = rand_real2(INP_W * 0.5), ky = rand_real2(0.1 / INP_H),
- kx = rand_real2(0.1 / INP_W), kb = rand_real2(0.1) + 1;
- ptr[0] = ptr[4] = cos(rot) * scale;
- ptr[1] = -(ptr[3] = sin(rot) * scale);
- ptr[3] *= sheer;
- ptr[4] *= sheer;
- ptr[2] = dx;
- ptr[5] = dy;
- ptr[6] = kx;
- ptr[7] = ky;
- ptr[8] = kb;
- ptr += 9;
- }
- mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
- }
- #endif
- } // namespace
-
- TEST(TestGoptInference, ParamFuseConstEndPoint) {
- constexpr size_t SIZE = 23;
- HostTensorGenerator<> gen;
- auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
-
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
- y = opr::SharedDeviceTensor::make(*graph, *host_y),
- p = opr::Host2DeviceCopy::make(*graph, host_p), q = p + x, a = y + 3,
- z0 = a + q, z1 = a + 4;
-
- HostTensorND host_z0, host_z1;
-
- SymbolVar z0_1, z1_1;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::ParamFusePass>()
- .apply({{z1, z0}})
- .endpoint_vars(),
- z1_1, z0_1);
-
- auto func = graph->compile(
- {make_callback_copy(z0_1, host_z0), make_callback_copy(z1_1, host_z1)});
- func->to_json()->writeto_fpath(
- output_file("TestGoptInference.ParamFuseEndPoint.json"));
- func->execute();
-
- int nr_opr = 0;
- func->iter_opr_seq([&](cg::OperatorNodeBase*) {
- ++nr_opr;
- return true;
- });
- ASSERT_EQ(8, nr_opr);
-
- auto px = host_x->ptr<float>(), pz0 = host_z0.ptr<float>();
-
- auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0],
- pz1 = host_z1.ptr<float>()[0];
-
- for (size_t i = 0; i < SIZE; ++i) {
- MGB_ASSERT_FLOAT_EQ(px[i] + yv + 3 + pv, pz0[i]);
- }
- MGB_ASSERT_FLOAT_EQ(yv + 7, pz1);
- }
-
- TEST(TestGoptInference, ParamFuse) {
- constexpr size_t SIZE = 23;
- HostTensorGenerator<> gen;
- auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
-
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
- y = opr::SharedDeviceTensor::make(*graph, *host_y),
- p = opr::Host2DeviceCopy::make(*graph, host_p),
- z = x + y, // endpoint
- q = x * y + p; // middle point
-
- SymbolVar z1, q1;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::ParamFusePass>()
- .apply({{z, q}})
- .endpoint_vars(),
- z1, q1);
-
- ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
- ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
- ASSERT_EQ(
- q1.node()->owner_opr()->dyn_typeinfo(),
- q.node()->owner_opr()->dyn_typeinfo());
-
- HostTensorND host_z, host_q;
- auto func = graph->compile(
- {make_callback_copy(z1, host_z), make_callback_copy(q1, host_q)});
- func->execute();
-
- int nr_opr = 0;
- func->iter_opr_seq([&](cg::OperatorNodeBase*) {
- ++nr_opr;
- return true;
- });
- ASSERT_EQ(6, nr_opr);
-
- auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(), pq = host_q.ptr<float>();
- auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
- for (size_t i = 0; i < SIZE; ++i) {
- MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
- MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
- }
- }
-
- TEST(TestGoptInference, ParamFuseMultiDeviceTensorHolder) {
- constexpr size_t SIZE = 23;
- HostTensorGenerator<> gen;
- auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
-
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
- y = opr::SharedDeviceTensor::make(*graph, *host_y),
- p = opr::Host2DeviceCopy::make(*graph, host_p),
- z = x + y, //! endpoint
- q = x * y + p; //! middle point
-
- SymbolVar z1, q1;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::ParamMergePass>()
- .apply({{z}})
- .endpoint_vars(),
- z1);
-
- ASSERT_TRUE(z1.node()
- ->owner_opr()
- ->input(0)
- ->owner_opr()
- ->same_type<opr::MultipleDeviceTensorHolder>());
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::ParamMergePass>()
- .add_pass<gopt::ParamFusePass>()
- .apply({{z, q}})
- .endpoint_vars(),
- z1, q1);
-
- ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
- ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
- ASSERT_EQ(
- q1.node()->owner_opr()->dyn_typeinfo(),
- q.node()->owner_opr()->dyn_typeinfo());
-
- HostTensorND host_z, host_q;
- auto func = graph->compile(
- {make_callback_copy(z1, host_z), make_callback_copy(q1, host_q)});
- func->execute();
-
- int nr_opr = 0;
- func->iter_opr_seq([&](cg::OperatorNodeBase* op) {
- ++nr_opr;
- return true;
- });
- ASSERT_EQ(6, nr_opr);
-
- auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(), pq = host_q.ptr<float>();
- auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
- for (size_t i = 0; i < SIZE; ++i) {
- MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
- MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
- }
- }
-
- TEST(TestGoptInference, ParamFuseMultiRead) {
- HostTensorGenerator<> gen;
-
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
-
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
- };
-
- auto x = mkvar("x", {23}), p0 = mkcvar("p0", {1}), p1 = mkcvar("p1", {1}),
- z0 = x * (p0 + p1) + x / (p0 + p1);
-
- SymbolVar z1;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::ParamFusePass>()
- .apply({{z0}})
- .endpoint_vars(),
- z1);
-
- ASSERT_NE(z0.node(), z1.node());
- ASSERT_TRUE(z1.node()
- ->owner_opr()
- ->input(0)
- ->owner_opr()
- ->input(1)
- ->owner_opr()
- ->same_type<opr::SharedDeviceTensor>());
- ASSERT_TRUE(z1.node()
- ->owner_opr()
- ->input(1)
- ->owner_opr()
- ->input(1)
- ->owner_opr()
- ->same_type<opr::SharedDeviceTensor>());
- HostTensorND host_z0, host_z1;
- graph->compile({make_callback_copy(z0, host_z0), make_callback_copy(z1, host_z1)})
- ->execute();
- MGB_ASSERT_TENSOR_EQ(host_z0, host_z1);
- }
-
- TEST(TestGoptInference, ParamFuseStaticInfer) {
- HostTensorGenerator<> gen;
-
- auto graph = ComputingGraph::make();
-
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
- };
-
- auto a = mkvar("x", {4}),
- b = a.reshape(opr::GetVarShape::make(mkcvar("tshp", {2, 2})));
-
- SymbolVar b1;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::ParamFusePass>()
- .apply({{b}})
- .endpoint_vars(),
- b1);
-
- ASSERT_EQ(b1, a.reshape({2, 2}));
- }
-
- TEST(TestGoptInference, ParamRedistributeConvMul) {
- constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
-
- HostTensorGenerator<> gen;
- auto host_x = gen({N, IC, IH, IW}), host_k = gen({IC}),
- host_w = gen({OC, IC, KH, KW});
-
- auto graph = ComputingGraph::make();
- auto x = opr::Host2DeviceCopy::make(*graph, host_x),
- k = opr::Dimshuffle::make(
- opr::SharedDeviceTensor::make(*graph, *host_k), {-1, 0, -1, -1}),
- w = opr::SharedDeviceTensor::make(*graph, *host_w),
- y0 = opr::Convolution::make(x * k, w);
-
- SymbolVar y1;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::ParamRedistributePass>()
- .apply({{y0}})
- .endpoint_vars(),
- y1);
-
- ASSERT_NE(y0.node(), y1.node());
-
- HostTensorND host_y0, host_y1;
- auto func = graph->compile(
- {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
- func->execute();
-
- MGB_ASSERT_TENSOR_EQ(host_y0, host_y1);
- }
-
- TEST(TestGoptInference, ParamRedistributeConvMulUniqReader) {
- constexpr size_t N = 4, C = 3, IH = 5, IW = 4, KH = 1, KW = 1;
-
- HostTensorGenerator<> gen;
- auto host_x = gen({N, C, IH, IW}), host_k = gen({C}), host_w = gen({C, C, KH, KW});
-
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto x = opr::Host2DeviceCopy::make(*graph, host_x),
- k = opr::Dimshuffle::make(
- opr::SharedDeviceTensor::make(*graph, *host_k) + 2, {-1, 0, -1, -1}),
- w = opr::SharedDeviceTensor::make(*graph, *host_w),
- // y0 should be replaced
- y0 = opr::powf(opr::Convolution::make(x * k, w).rename("y0") + 2, 2),
- y0k = (y0 * k).rename("y0k"),
- // y0k is accessed twice, so it should not be replaced
- y1 = opr::Convolution::make(y0k, w).rename("y1"), z0 = y1 / y0k;
-
- SymbolVar z1;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::ParamRedistributePass>()
- .apply({{z0}})
- .endpoint_vars(),
- z1);
-
- ASSERT_NE(z0.node(), z1.node());
- auto y1_repl = z1.node()->owner_opr()->input(0)->owner_opr();
- ASSERT_TRUE(y1_repl->same_type<opr::Convolution>());
- ASSERT_EQ(y1_repl->input(0), z1.node()->owner_opr()->input(1));
-
- HostTensorND host_z0, host_z1;
- auto func = graph->compile(
- {make_callback_copy(z0, host_z0), make_callback_copy(z1, host_z1)});
- func->execute();
-
- MGB_ASSERT_TENSOR_NEAR(host_z0, host_z1, 5e-5);
- }
-
- TEST(TestGoptInference, ParamRedistributeMulConvMul) {
- constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
-
- HostTensorGenerator<> gen;
- auto host_x = gen({N, IC, IH, IW}), host_k1 = gen({IC}),
- host_k2 = gen({1, OC, 1, 1}), host_w = gen({OC, IC, KH, KW});
-
- auto graph = ComputingGraph::make();
- auto x = opr::Host2DeviceCopy::make(*graph, host_x),
- k1 = opr::Dimshuffle::make(
- opr::SharedDeviceTensor::make(*graph, *host_k1), {-1, 0, -1, -1}),
- k2 = opr::SharedDeviceTensor::make(*graph, *host_k2),
- w = opr::SharedDeviceTensor::make(*graph, *host_w),
- y0 = opr::Convolution::make(x * k1, w) * k2;
-
- SymbolVar y1;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::ParamRedistributePass>()
- .add_pass<gopt::ParamFusePass>()
- .apply({{y0}})
- .endpoint_vars(),
- y1);
-
- auto y1opr = y1.node()->owner_opr();
- ASSERT_TRUE(y1opr->same_type<opr::Convolution>());
- ASSERT_EQ(y1opr->input(0), x.node());
-
- HostTensorND host_y0, host_y1;
- auto func = graph->compile(
- {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
- func->execute();
-
- MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 5e-6);
- }
-
- TEST(TestGoptInference, ParamRedistributeConvAdd) {
- constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
-
- HostTensorGenerator<> gen;
- auto host_x = gen({N, IC, IH, IW}), host_b = gen({IC}),
- host_w = gen({OC, IC, KH, KW});
-
- auto graph = ComputingGraph::make();
- auto x = opr::Host2DeviceCopy::make(*graph, host_x),
- b = opr::Dimshuffle::make(
- opr::SharedDeviceTensor::make(*graph, *host_b), {-1, 0, -1, -1}),
- w = opr::SharedDeviceTensor::make(*graph, *host_w),
- y0 = opr::Convolution::make(x + b, w);
-
- SymbolVar y1;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::ParamRedistributePass>()
- .add_pass<gopt::ParamFusePass>()
- .apply({{y0}})
- .endpoint_vars(),
- y1);
-
- ASSERT_NE(y0.node(), y1.node());
-
- HostTensorND host_y0, host_y1;
- auto func = graph->compile(
- {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
- func->execute();
-
- MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
- }
-
- TEST(TestGoptInference, ParamRedistributeDistThenReasso) {
- constexpr size_t N = 4, IC0 = 3, IC1 = 6, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
-
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
- };
- auto x0 = mkvar("x0", {N, IC0, IH, IW}), x1 = mkvar("x1", {N, IC1, IH, IW}),
- k0 = opr::Dimshuffle::make(mkcvar("x1_", {IC0}), {-1, 0, -1, -1}).rename("x1"),
- w0 = mkcvar("w0", {OC, IC0, KH, KW}), k1 = mkcvar("k1", {1, IC1, 1, 1}),
- w1 = mkcvar("w1", {OC, IC1, KH, KW}), b0 = mkvar("b0", {1, OC, 1, 1}),
- b1 = mkcvar("b1", {1}), k2 = mkcvar("k2", {1}),
- y0 = (opr::Convolution::make(x0 * k0, w0) +
- opr::Convolution::make(x1 + k1, w1) + b0 + b1) *
- k2;
-
- SymbolVar y1;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::ParamRedistributePass>()
- .add_pass<gopt::ReorderArithChainPass>(
- gopt::ConstVarType::IMMUTABLE_AND_PARAM)
- .add_pass<gopt::ParamFusePass>()
- .apply({{y0}})
- .endpoint_vars(),
- y1);
-
- ASSERT_NE(y0.node(), y1.node());
- HostTensorND host_y0, host_y1;
- auto func = graph->compile(
- {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
- func->execute();
-
- MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
-
- auto chain = gopt::extract_opr_leaves(y1.node(), [](cg::OperatorNodeBase* opr) {
- return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
- });
- size_t nr_conv = 0;
- for (auto i : chain) {
- auto opr = i->owner_opr();
- if (opr->same_type<opr::Convolution>()) {
- ++nr_conv;
- ASSERT_TRUE(opr->input(0)->owner_opr()->same_type<opr::Host2DeviceCopy>());
- ASSERT_TRUE(
- opr->input(1)->owner_opr()->same_type<opr::SharedDeviceTensor>());
- }
- }
- ASSERT_EQ(2u, nr_conv);
- ASSERT_EQ(4u, chain.size());
- }
-
- TEST(TestGoptInference, ParamRedistributeMultiChange) {
- constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
-
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
- };
- auto x = mkvar("x", {N, IC, IH, IW}), k0 = mkcvar("k0", {1, IC, 1, 1}),
- b0 = mkcvar("b0", {1, IC, 1, 1}), k1 = mkcvar("k0", {1}),
- b1 = mkcvar("b0", {1}), w = mkcvar("w", {OC, IC, KH, KW}),
- y0 = (opr::Convolution::make(x * k0 + b0, w) + b1) * k1;
-
- SymbolVar y1;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::ParamRedistributePass>()
- .add_pass<gopt::ParamFusePass>()
- .apply({{y0}})
- .endpoint_vars(),
- y1);
-
- ASSERT_NE(y0.node(), y1.node());
- HostTensorND host_y0, host_y1;
- auto func = graph->compile(
- {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
- func->execute();
-
- MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
-
- auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
- ASSERT_TRUE(y1elem);
- auto yconv = y1elem->input(0)->owner_opr();
- if (!yconv->same_type<opr::Convolution>())
- yconv = y1elem->input(1)->owner_opr();
- ASSERT_TRUE(yconv->same_type<opr::Convolution>());
- ASSERT_EQ(x.node(), yconv->input(0));
- }
-
- TEST(TestGoptInference, ParamRedistributeMultiReader) {
- constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
-
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
-
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
- };
-
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
- };
-
- auto x = mkvar("x", {N, IC, IH, IW}), k = mkcvar("k", {1, OC, 1, 1}),
- w = mkcvar("w", {OC, IC, KH, KW});
-
- auto conv = opr::Convolution::make(x, w);
- auto t = conv * k;
- auto y0 = t * 4.2f + t * 2.4f;
-
- SymbolVar y1;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::ParamRedistributePass>()
- .add_pass<gopt::ParamFusePass>()
- .apply({{y0}})
- .endpoint_vars(),
- y1);
-
- ASSERT_NE(y0.node(), y1.node());
- HostTensorND host_y0, host_y1;
- auto func = graph->compile(
- {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
- func->execute();
-
- MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
-
- auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
- ASSERT_TRUE(y1elem);
- auto ymul0 = gopt::as_elem_opr(y1elem->input(0), opr::Elemwise::Mode::MUL),
- ymul1 = gopt::as_elem_opr(y1elem->input(1), opr::Elemwise::Mode::MUL);
- ASSERT_TRUE(ymul0);
- ASSERT_TRUE(ymul1);
- auto yconv = ymul0->input(0)->owner_opr();
- if (!yconv->same_type<opr::Convolution>()) {
- yconv = ymul0->input(1)->owner_opr();
- }
- ASSERT_TRUE(yconv->same_type<opr::Convolution>());
- if (ymul1->input(0) != yconv->output(0)) {
- ASSERT_EQ(yconv->output(0), ymul1->input(1));
- }
- ASSERT_EQ(x.node(), yconv->input(0));
- }
-
- TEST(TestGoptInference, ParamFuseBiasMerge) {
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
- };
- auto x = mkvar("x", {6, 3, 8, 8}), w1 = mkcvar("w1", {4, 3, 3, 3}),
- w2 = mkcvar("w2", {4, 3, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
- b2 = mkcvar("b2", {1, 4, 1, 1}), y1 = opr::Convolution::make(x, w1) + b1,
- y2 = opr::Convolution::make(x, w2) + b2, y = y1 + y2;
-
- SymbolVar y_opt;
- unpack_vector(gopt::optimize_for_inference({y}), y_opt);
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file("TestGoptInference.ParamFuseConvMerge.json"));
-
- auto chain = gopt::extract_opr_leaves(y_opt.node(), [](cg::OperatorNodeBase* opr) {
- return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
- });
- ASSERT_EQ(3u, chain.size());
- }
-
- TEST(TestGoptInference, Float16IOFloat32Compute) {
- constexpr size_t INP_H = 10, INP_W = 10;
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
- };
- graph->options().graph_opt_level = 0;
- auto a = mkvar("a", {1, 4, INP_H, INP_W}), s0 = mkvar("s0", {20, 3, INP_H, INP_W}),
- s1 = mkvar("s1", {4, 3, 1, 1});
- auto b = opr::Convolution::make(s0, s1, {}, {});
- auto y = a + b;
- y = opr::Concat::make({y, -y}, 0);
- y = opr::Reduce::make(y, {}, y.make_scalar(1));
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_f16_io_f32_comp();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- ASSERT_EQ(y_opt.dtype(), dtype::Float32());
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, Float16IOFloat32ComputeDeConv) {
- constexpr size_t INP_H = 10, INP_W = 10;
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
- };
- graph->options().graph_opt_level = 0;
-
- auto s0 = mkvar("s0", {5, 5, 3, 3}), s1 = mkvar("s1", {1, 5, INP_H, INP_W});
- auto y = opr::ConvolutionBackwardData::make(s0, s1, {}, {});
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_f16_io_f32_comp();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- ASSERT_EQ(
- find_opr<opr::ConvolutionBackwardData>(y_opt).param().compute_mode,
- opr::ConvBias::Param::ConvBias::ComputeMode::FLOAT32);
- ASSERT_EQ(y_opt.dtype(), dtype::Float32());
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-2);
- }
-
- TEST(TestGoptInference, Float16IOFloat32ComputeWarpPerspective) {
- constexpr size_t INP_H = 10, INP_W = 10, N = 2;
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
- };
- graph->options().graph_opt_level = 0;
- auto a = mkvar("a", {N, 4, INP_H, INP_W});
- float value1 = M_PI, value2 = 0.6;
- auto gen_mat = [&](HostTensorND& mat) {
- auto ptr = mat.ptr<float>();
- for (size_t i = 0; i < N; ++i) {
- auto rot = value1, scale = value2, sheer = value1, dy = value2, dx = value2,
- ky = value2, kx = value2, kb = value2;
- ptr[0] = ptr[4] = cos(rot) * scale;
- ptr[1] = -(ptr[3] = sin(rot) * scale);
- ptr[3] *= sheer;
- ptr[4] *= sheer;
- ptr[2] = dx;
- ptr[5] = dy;
- ptr[6] = kx;
- ptr[7] = ky;
- ptr[8] = kb;
- ptr += 9;
- }
- mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
- };
- auto mat_host = std::make_shared<HostTensorND>(
- a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
- gen_mat(*mat_host);
- auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
- TensorShape out_shp{20, 20};
- auto y = opr::WarpPerspective::make(a, mat, out_shp);
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_f16_io_f32_comp();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- ASSERT_EQ(y_opt.dtype(), dtype::Float32());
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, Float16IOFloat32ComputeRemap) {
- auto cn = CompNode::load("cpu1");
- constexpr size_t INP_H = 10, INP_W = 10, N = 2;
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- graph->options().graph_opt_level = 0;
- auto a = mkvar("a", {N, 4, INP_H, INP_W});
- auto gen_map = [&](HostTensorND& mat) {
- auto ptr = mat.ptr<float>();
- for (size_t n = 0; n < N; ++n) {
- for (int h = 0; h < 5; ++h) {
- for (int w = 0; w < 5; ++w) {
- *ptr++ = (h * 5 * 2) + 5 * 2 + 0;
- *ptr++ = (h * 5 * 2) + 5 * 2 + 1;
- }
- }
- }
- mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
- };
- auto map_host = std::make_shared<HostTensorND>(
- a.node()->comp_node(), TensorShape{N, 5, 5, 2}, dtype::Float32());
- gen_map(*map_host);
- auto map = opr::Host2DeviceCopy::make(*graph, map_host).rename("map");
- auto y = opr::Remap::make(a, map);
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_f16_io_f32_comp();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- ASSERT_EQ(y_opt.dtype(), dtype::Float32());
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, Uint8IOFloat16ComputeWarpPerspective) {
- constexpr size_t INP_H = 10, INP_W = 10, N = 2;
- HostTensorGenerator<dtype::Uint8> gen_uint8;
- auto graph = ComputingGraph::make();
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen_uint8(shp)).rename(name);
- };
- graph->options().graph_opt_level = 0;
- auto a = mkvar("a", {N, 4, INP_H, INP_W});
- float value1 = M_PI, value2 = 0.6;
- auto gen_mat = [&](HostTensorND& mat) {
- auto ptr = mat.ptr<float>();
- for (size_t i = 0; i < N; ++i) {
- auto rot = value1, scale = value2, sheer = value1, dy = value2, dx = value2,
- ky = value2, kx = value2, kb = value2;
- ptr[0] = ptr[4] = cos(rot) * scale;
- ptr[1] = -(ptr[3] = sin(rot) * scale);
- ptr[3] *= sheer;
- ptr[4] *= sheer;
- ptr[2] = dx;
- ptr[5] = dy;
- ptr[6] = kx;
- ptr[7] = ky;
- ptr[8] = kb;
- ptr += 9;
- }
- mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
- };
- auto mat_host = std::make_shared<HostTensorND>(
- a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
- gen_mat(*mat_host);
- auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
- TensorShape out_shp{20, 20};
- auto y = opr::WarpPerspective::make(a, mat, out_shp);
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_f16_io_comp();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- ASSERT_EQ(y_opt.dtype(), dtype::Uint8());
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, Float32TOFloat16) {
- CompNode cn = CompNode::load("cpu0");
- HostTensorGenerator<> gen(0, 1, 0);
- auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
- host_x2 = gen({4, 3, 1, 1}, cn);
- auto graph = ComputingGraph::make();
-
- auto make_f32_to_f16_graph = [&]() {
- graph->options().graph_opt_level = 0;
-
- auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
- d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
- d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
-
- auto b = opr::Convolution::make(d1, d2, {}, {});
- auto y = d0 + b;
- y = opr::Reduce::make(y, {}, y.make_scalar(1));
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_f16_io_comp();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- return y_opt;
- };
-
- auto make_f16_graph = [&]() {
- auto d0 = opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, host_x0), dtype::Float16{}),
- d1 = opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, host_x1), dtype::Float16{}),
- d2 = opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *host_x2), dtype::Float16{});
-
- auto b = opr::Convolution::make(d1, d2, {}, {});
- SymbolVar y = d0 + b;
- y = opr::Reduce::make(y, {}, y.make_scalar(1));
- y = opr::TypeCvt::make(y, dtype::Float32{});
-
- return y;
- };
-
- auto y_opt = make_f32_to_f16_graph();
- auto y = make_f16_graph();
- ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
- ASSERT_EQ(y.dtype(), dtype::Float32{});
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, Float32TOFloat16C32) {
- CompNode cn = CompNode::load("cpu0");
- HostTensorGenerator<> gen(0, 1, 0);
- auto host_x0 = gen({1, 4, 1, 1}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
- host_x2 = gen({4, 3, 1, 1}, cn);
- auto graph = ComputingGraph::make();
-
- auto make_f32_to_f16_graph = [&]() {
- graph->options().graph_opt_level = 0;
-
- auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
- d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
- d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
-
- auto y = opr::ConvBias::make(d1, d2, d0);
- y = opr::Reduce::make(y, {}, y.make_scalar(1));
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_f16_io_f32_comp();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- return y_opt;
- };
-
- auto make_f16_graph = [&]() {
- auto d0 = opr::TypeCvt::make(
- opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, host_x0),
- dtype::Float16{}),
- dtype::Float32{}),
- d1 = opr::TypeCvt::make(
- opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, host_x1),
- dtype::Float16{}),
- dtype::Float32{}),
- d2 = opr::TypeCvt::make(
- opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *host_x2),
- dtype::Float16{}),
- dtype::Float32{});
-
- auto y = opr::ConvBias::make(d1, d2, d0);
- y = opr::Reduce::make(y, {}, y.make_scalar(1));
- y = opr::TypeCvt::make(
- opr::TypeCvt::make(y, dtype::Float16{}), dtype::Float32{});
-
- return y;
- };
-
- auto y_opt = make_f32_to_f16_graph();
- auto y = make_f16_graph();
- ASSERT_EQ(
- find_opr<opr::ConvBias>(y_opt).param().compute_mode,
- opr::ConvBias::Param::ConvBias::ComputeMode::FLOAT32);
- ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
- ASSERT_EQ(y.dtype(), dtype::Float32{});
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, Float32TOFloat16EndpointElemwise) {
- CompNode cn = CompNode::load("cpu0");
- HostTensorGenerator<> gen(0, 1, 0);
- auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
- host_x2 = gen({4, 3, 1, 1}, cn);
- auto graph = ComputingGraph::make();
-
- auto make_f32_to_f16_graph = [&]() {
- graph->options().graph_opt_level = 0;
-
- auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
- d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
- d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
-
- auto b = opr::Convolution::make(d1, d2, {}, {});
- auto y = d0 + b;
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_f16_io_comp();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- return y_opt;
- };
-
- auto make_f16_graph = [&]() {
- auto d0 = opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, host_x0), dtype::Float16{}),
- d1 = opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, host_x1), dtype::Float16{}),
- d2 = opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *host_x2), dtype::Float16{});
-
- auto b = opr::Convolution::make(d1, d2, {}, {});
- SymbolVar y = d0 + b;
- y = opr::TypeCvt::make(y, dtype::Float32{});
-
- return y;
- };
-
- auto y_opt = make_f32_to_f16_graph();
- auto y = make_f16_graph();
- ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
- ASSERT_EQ(y.dtype(), dtype::Float32{});
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, Float32TOFloat16Linspace) {
- CompNode cn = CompNode::load("cpu0");
- HostTensorGenerator<> gen(0, 1, 0);
- auto host_x = gen({3, 1}, cn);
- auto graph = ComputingGraph::make();
-
- auto make_f32_to_f16_graph = [&]() {
- graph->options().graph_opt_level = 0;
-
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
- auto xshp = opr::GetVarShape::make(x);
-
- auto cv = [&x](int v) { return x.make_scalar(v); };
- auto sub = [&xshp, &cv](int idx) {
- return opr::IndexAt::make(xshp, {{0, cv(idx)}});
- };
- auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
- auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
- auto y = opr::Reshape::make(lin, shp);
- auto mm = opr::MatrixMul::make(x, y);
-
- SymbolVar mm_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_f16_io_comp();
- unpack_vector(gopt::optimize_for_inference({mm}, options), mm_opt);
- return mm_opt;
- };
-
- auto make_f16_graph = [&]() {
- auto x = opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, host_x), dtype::Float16());
- auto xshp = opr::GetVarShape::make(x);
-
- auto cv = [&x](int v) { return x.make_scalar(v); };
- auto sub = [&xshp, &cv](int idx) {
- return opr::IndexAt::make(xshp, {{0, cv(idx)}});
- };
- auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
- lin = opr::TypeCvt::make(lin, dtype::Float16());
- auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
- auto y = opr::Reshape::make(lin, shp);
- auto mm = opr::MatrixMul::make(x, y);
-
- mm = opr::TypeCvt::make(mm, dtype::Float32{});
-
- return mm;
- };
-
- auto y_opt = make_f32_to_f16_graph();
- auto y = make_f16_graph();
- ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
- ASSERT_EQ(y.dtype(), dtype::Float32{});
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, Float32TOFloat16Endpoints) {
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
-
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
- };
-
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
- };
-
- graph->options().graph_opt_level = 0;
- opr::Convolution::Param param;
- param.pad_h = param.pad_w = 0;
-
- auto x = mkvar("x", {8, 8, 8, 8}), y = mkvar("y", {8, 8, 8, 8}),
- w = mkcvar("w", {4, 8, 3, 3}), z = opr::Convolution::make(x + y, w, param);
-
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_f16_io_f32_comp();
- SymbolVarArray out = gopt::optimize_for_inference({x + y, z}, options);
-
- ASSERT_EQ(out[0].dtype(), dtype::Float32());
- ASSERT_EQ(out[1].dtype(), dtype::Float32());
- ASSERT_EQ(out[0].node()->owner_opr()->input(0)->dtype(), dtype::Float16());
- ASSERT_EQ(out[1].node()->owner_opr()->input(0)->dtype(), dtype::Float16());
- }
-
- TEST(TestGoptInference, ConvertFormatNHWCD4) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
-
- auto host_x = gen({8, 8, 8, 8}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
-
- opr::Convolution::Param param;
- param.pad_h = param.pad_w = 0;
- auto w1 = mkcvar("w1", {4, 8, 3, 3}), conv = opr::Convolution::make(x, w1, param);
- auto shape_of = opr::GetVarShape::make(conv);
- auto subtensor = opr::Subtensor::make(
- shape_of, {opr::Subtensor::AxisIndexer::make_interval(
- 0, x.make_scalar(2), None, x.make_scalar(1))});
-
- opr::Resize::Param param_resize;
- param_resize.format = opr::Resize::Param::Format::NCHW;
- auto resize = opr::ResizeForward::make(conv, subtensor * 2, param_resize);
- auto mat = mkcvar("mat", {8, 3, 3}),
- warp = opr::WarpPerspectiveForward::make(
- resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
-
- auto b = mkvar("b", {1, 4, 1, 1}),
- elem = opr::Elemwise::make({warp + b}, opr::Elemwise::Param::Mode::RELU);
- param.pad_h = param.pad_w = 1;
- auto w2 = mkcvar("w2", {4, 4, 3, 3}), y = opr::Convolution::make(elem, w2, param),
- z = opr::AxisAddRemove::make(y, {opr::AxisAddRemove::AxisDesc::make_add(0)});
-
- SymbolVar y_opt, z_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- unpack_vector(gopt::optimize_for_inference({z}, options), z_opt);
-
- ASSERT_EQ(
- opr::Convolution::Param::Format::NHWCD4,
- find_opr<opr::Convolution>(y_opt).param().format);
-
- ASSERT_EQ(
- TensorFormat::Type::DEFAULT,
- find_opr<opr::AxisAddRemove>(z_opt).input(0)->format().type());
- ASSERT_EQ(4, find_opr<opr::AxisAddRemove>(z_opt).input(0)->shape().ndim);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file("TestGoptInference.ConvertFormatNHWCD4.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
-
- *host_x = *gen({8, 8, 16, 16}, cn);
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- #if MGB_OPENCL
- #include "megcore_opencl.h"
-
- #define REQUIRE_OPENCL() \
- do { \
- if (!CompNode::get_device_count(CompNode::DeviceType::OPENCL)) { \
- return; \
- } \
- } while (0)
-
- TEST(TestGoptInference, ConvertFormatNHWCD4OpenCL) {
- REQUIRE_OPENCL();
-
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("openclx");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
-
- auto host_x = gen({8, 8, 8, 8}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
-
- opr::Convolution::Param param;
- param.pad_h = param.pad_w = 0;
- auto w1 = mkcvar("w1", {4, 8, 3, 3}), conv = opr::Convolution::make(x, w1, param);
- auto shape_of = opr::GetVarShape::make(conv);
- auto subtensor = opr::Subtensor::make(
- shape_of, {opr::Subtensor::AxisIndexer::make_interval(
- 0, x.make_scalar(2), None, x.make_scalar(1))});
-
- opr::Resize::Param param_resize;
- param_resize.format = opr::Resize::Param::Format::NCHW;
- auto resize = opr::ResizeForward::make(conv, subtensor * 2, param_resize);
- auto mat = mkcvar("mat", {8, 3, 3}),
- warp = opr::WarpPerspectiveForward::make(
- resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
-
- auto b = mkvar("b", {1, 4, 1, 1}),
- elem = opr::Elemwise::make({warp + b}, opr::Elemwise::Param::Mode::RELU);
- param.pad_h = param.pad_w = 1;
- auto w2 = mkcvar("w2", {4, 4, 3, 3}), y = opr::Convolution::make(elem, w2, param),
- z = opr::AxisAddRemove::make(y, {opr::AxisAddRemove::AxisDesc::make_add(0)});
-
- SymbolVar y_opt, z_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- unpack_vector(gopt::optimize_for_inference({z}, options), z_opt);
-
- ASSERT_EQ(
- opr::Convolution::Param::Format::NHWCD4,
- find_opr<opr::Convolution>(y_opt).param().format);
-
- ASSERT_EQ(
- TensorFormat::Type::DEFAULT,
- find_opr<opr::AxisAddRemove>(z_opt).input(0)->format().type());
- ASSERT_EQ(4, find_opr<opr::AxisAddRemove>(z_opt).input(0)->shape().ndim);
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
-
- *host_x = *gen({8, 8, 16, 16}, cn);
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
- #undef REQUIRE_OPENCL
- #endif
-
- //! this is to test elemwise to cd4 only
- TEST(TestGoptInference, ConvertFormatNHWCD4Elemwise0) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
-
- auto host_x = gen({8, 8, 8, 8}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
-
- auto a = mkvar("a", {1});
- auto b = mkvar("b", {1});
- auto y = x * a + b;
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(
- opr::Elemwise::Mode::FUSE_MUL_ADD3,
- find_opr<opr::Elemwise>(y_opt).param().mode);
- ASSERT_EQ(
- TensorFormat::Type::IMAGE2D_PACK4,
- find_opr<opr::Elemwise>(y_opt).input(1)->format().type());
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.ConvertFormatNHWCD4Elemwise0.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
-
- *host_x = *gen({8, 8, 16, 16}, cn);
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, MergeDimShuffleAndRelayoutFormat) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
-
- auto host_x = gen({8, 8, 8, 8}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
- auto d0 = opr::Dimshuffle::make(x, {0, 3, 1, 2});
-
- auto a = mkvar("a", {1});
- auto b = mkvar("b", {1});
- auto y = d0 * a + b;
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(
- megdnn::param::RelayoutFormat::Mode::NHWC_NHWCD4I,
- find_opr<opr::RelayoutFormat>(y_opt).param().mode);
-
- ASSERT_EQ(0, find_opr_num<opr::Dimshuffle>(y_opt));
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.MergeDimShuffleAndRelayoutFormat.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
-
- *host_x = *gen({8, 8, 16, 16}, cn);
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, MergeRelayoutFormatAndDimShuffle) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
-
- auto host_x = gen({2, 8, 16, 32}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
-
- auto a = mkvar("a", {1});
- auto b = mkvar("b", {1});
- auto z = x * a + b;
-
- //! to NHWC
- auto y = opr::Dimshuffle::make(z, {0, 2, 3, 1});
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(0, find_opr_num<opr::Dimshuffle>(y_opt));
- auto check = [](SymbolVar endpoint) -> bool {
- bool valid = true;
- auto cb = [&](cg::OperatorNodeBase* opr) {
- if (opr->same_type<opr::RelayoutFormat>()) {
- auto mode = opr->try_cast_final<opr::RelayoutFormat>()->param().mode;
- //! The first relayout_format opr's mode is NCHW_NHWCD4I. The second is
- //! NHWCD4I_NHWC
- if (mode == megdnn::param::RelayoutFormat::Mode::NCHW_NHWCD4I ||
- mode == megdnn::param::RelayoutFormat::Mode::NHWCD4I_NHWC) {
- valid &= true;
- } else {
- valid &= false;
- }
- }
- };
- cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
- return valid;
- };
- ASSERT_EQ(true, check(y_opt));
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.MergeRelayoutFormatAndDimShuffle.json"));
-
- HostTensorND host_y;
- HostTensorND host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
-
- *host_x = *gen({8, 8, 16, 16}, cn);
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, ConvertFormatNHWCD4Elemwise) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
-
- auto host_x = gen({8, 8, 8, 8}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
-
- opr::Convolution::Param param;
- param.pad_h = param.pad_w = 0;
- auto w1 = mkcvar("w1", {8, 8, 3, 3}), conv = opr::Convolution::make(x, w1, param);
-
- auto b = mkvar("b", {1, 1, 1, 1}),
- elem = opr::Elemwise::make({conv + b}, opr::Elemwise::Param::Mode::RELU);
- param.pad_h = param.pad_w = 1;
- auto w2 = mkcvar("w2", {8, 8, 3, 3}),
- conv2 = opr::Convolution::make(elem, w2, param);
-
- auto b_scaler = mkvar("b", {1}), elem2 = conv2 + b_scaler;
-
- param.pad_h = param.pad_w = 1;
- auto w3 = mkcvar("w2", {8, 8, 3, 3}), y = opr::Convolution::make(elem2, w3, param);
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(
- opr::Convolution::Param::Format::NHWCD4,
- find_opr<opr::Convolution>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.ConvertFormatNHWCD4Elemwise.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
-
- *host_x = *gen({8, 8, 16, 16}, cn);
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, ConvertFormatNHWCD4TypeCvt) {
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
- auto host_x = gen({8, 8, 8, 8}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
-
- opr::Convolution::Param param;
-
- param.pad_h = param.pad_w = 0;
- auto w1 = mkcvar("w1", {8, 8, 3, 3}), conv1 = opr::Convolution::make(x, w1, param),
- tcvt1 = opr::TypeCvt::make(conv1, dtype::Float16());
- auto w2 = mkcvar("w2", {8, 8, 3, 3}), conv2 = opr::Convolution::make(x, w2, param),
- tcvt2 = opr::TypeCvt::make(conv2, dtype::Float16());
- auto y = opr::Elemwise::make({tcvt1, tcvt2}, opr::Elemwise::Param::Mode::ADD);
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(
- opr::Convolution::Param::Format::NHWCD4,
- find_opr<opr::Convolution>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.ConvertFormatNHWCD4TypeCvt.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
-
- *host_x = *gen({8, 8, 16, 16}, cn);
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
-
- TEST(TestGoptInference, ConvertFormatNHWCD4LOCAL) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
-
- auto host_x = gen({2, 8, 8, 16}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
-
- opr::Convolution::Param param;
- param.pad_h = param.pad_w = 1;
- auto w1 = mkcvar("w1", {4, 8, 3, 3}), conv1 = opr::Convolution::make(x, w1, param);
-
- auto w2 = mkcvar("w2", {8, 16, 4, 3, 3, 4}),
- local = opr::Local::make(conv1, w2, param);
-
- auto w3 = mkcvar("w3", {4, 4, 3, 3}),
- conv2 = opr::Convolution::make(local, w3, param);
-
- opr::GroupLocal::Param param_group_local;
- param_group_local.pad_h = param_group_local.pad_w = 1;
- auto w4 = mkcvar("w4", {2, 8, 16, 2, 3, 3, 2}),
- group_local = opr::GroupLocal::make(conv2, w4, param_group_local);
-
- auto w5 = mkcvar("w5", {4, 4, 3, 3}),
- y = opr::Convolution::make(group_local, w5, param);
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(
- opr::Convolution::Param::Format::NHWCD4,
- find_opr<opr::Convolution>(y_opt).param().format);
-
- ASSERT_EQ(
- opr::Local::Param::Format::NCHW,
- find_opr<opr::Local>(y_opt).param().format);
-
- ASSERT_EQ(
- opr::GroupLocal::Param::Format::NCHW,
- find_opr<opr::GroupLocal>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.ConvertFormatNHWCD4LOCAL.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, ConvertFormatNHWCD4Deconv) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
-
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
-
- auto host_x = gen({8, 8, 8, 8}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
-
- opr::Convolution::Param param;
- param.pad_h = param.pad_w = 0;
- auto w0 = mkcvar("w1", {4, 8, 2, 2}), conv = opr::Convolution::make(x, w0, param);
-
- auto w1 = mkcvar("w1", {4, 1, 2, 2}),
- y = opr::ConvolutionBackwardData::make(w1, conv, param, {}, {});
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(
- opr::Convolution::Param::Format::NCHW,
- find_opr<opr::ConvolutionBackwardData>(y_opt).param().format);
- ASSERT_EQ(
- opr::Convolution::Param::Format::NHWCD4,
- find_opr<opr::Convolution>(y_opt).param().format);
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
- TEST(TestGoptInference, ConvertFormatNHWCD4Qint8) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
-
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto host_x = gen({8, 8, 8, 8}, cn);
- auto _x = opr::Host2DeviceCopy::make(*graph, host_x),
- x = opr::TypeCvt::make(_x, dtype::QuantizedS8(0.2f));
-
- opr::ConvBias::Param param;
- param.pad_h = param.pad_w = 0;
- auto w = mkcvar("w", {4, 8, 3, 3}, dtype::QuantizedS8(0.1f)),
- b = mkcvar("b", {1, 4, 1, 1}, dtype::QuantizedS32(0.02f)),
- y = opr::ConvBias::make(
- x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(0.2f)});
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(
- opr::ConvBias::Param::Format::NHWCD4,
- find_opr<opr::ConvBias>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.ConvertFormatNHWCD4Qint8.json"));
- auto float_y = opr::TypeCvt::make(y, dtype::Float32()),
- float_y_opt = opr::TypeCvt::make(y_opt, dtype::Float32());
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(float_y, host_y),
- make_callback_copy(float_y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
- TEST(TestGoptInference, ConvertFormatPadIC) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
-
- auto host_inp1 = gen({1, 6, 128, 128}, cn), host_inp2 = gen({1, 6, 256, 256}, cn);
- auto inp1 = opr::Host2DeviceCopy::make(*graph, host_inp1),
- inp2 = opr::Host2DeviceCopy::make(*graph, host_inp2);
-
- auto shape_tmp = mkcvar("tmp", {256, 256});
- auto shape_of = opr::GetVarShape::make(shape_tmp);
- opr::Resize::Param param_resize;
- param_resize.format = opr::Resize::Param::Format::NCHW;
- auto resize = opr::ResizeForward::make(inp1, shape_of, param_resize);
-
- auto concat = opr::Concat::make({inp2, resize}, 1);
-
- opr::Convolution::Param param;
- param.pad_h = param.pad_w = 1;
- param.sparse = opr::Convolution::Param::Sparse::DENSE;
- auto w1 = mkcvar("w1", {12, 12, 3, 3});
- auto y = opr::Convolution::make(concat, w1, param);
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, concatbypass) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
-
- auto host_inp1 = gen({1, 6, 16, 16}, cn), host_inp2 = gen({1, 6, 32, 32}, cn);
- auto inp1 = opr::Host2DeviceCopy::make(*graph, host_inp1),
- inp2 = opr::Host2DeviceCopy::make(*graph, host_inp2);
-
- auto shape_tmp = mkcvar("tmp", {32, 32});
- auto shape_of = opr::GetVarShape::make(shape_tmp);
- opr::Resize::Param param_resize;
- param_resize.format = opr::Resize::Param::Format::NCHW;
- auto resize = opr::ResizeForward::make(inp1, shape_of, param_resize);
-
- //! this concat should forward to chw
- auto concat = opr::Concat::make({inp2, resize}, 1);
-
- opr::Convolution::Param param;
- param.pad_h = param.pad_w = 1;
- param.sparse = opr::Convolution::Param::Sparse::DENSE;
- auto w1 = mkcvar("w1", {12, 12, 3, 3});
- auto w2 = mkcvar("w1", {12, 24, 3, 3});
- auto y = opr::Convolution::make(concat, w1, param);
- //! this concat should bypass CD4
- y = opr::Concat::make({y, y}, 0);
- y = opr::Convolution::make(y, w1, param);
- //! this concat should bypass CD4
- y = opr::Concat::make({y, y}, 1);
- y = opr::Convolution::make(y, w2, param);
- //! this concat should bypass CD4
- y = opr::Concat::make({y, y}, 2);
- y = opr::Convolution::make(y, w1, param);
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- size_t relayout_format_nr = 0;
- auto cb = [&](cg::OperatorNodeBase* opr) {
- if (opr->try_cast_final<opr::Convolution>()) {
- auto conv_inputs = opr->input();
- for (auto& input : conv_inputs) {
- if (std::string::npos !=
- std::string(input->cname()).find("relayout_format")) {
- relayout_format_nr++;
- }
- }
- }
- return true;
- };
- func->iter_opr_seq(cb);
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- ASSERT_EQ(
- opr::Convolution::Param::Format::NHWCD4,
- find_opr<opr::Convolution>(y_opt).param().format);
- ASSERT_EQ(1, relayout_format_nr);
- }
-
- TEST(TestGoptInference, ConvertBatchNormPass) {
- auto cn = CompNode::load("cpu0");
-
- std::vector<TensorShape> shps = {{1, 3, 1, 1}, {1, 1, 1, 3}},
- xshps = {{2, 3, 16, 24}, {2, 16, 24, 3}};
- for (int t = 0; t < 2; t++) {
- HostTensorGenerator<> gen(0, 1, 0);
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
- using Param = opr::BatchNorm::Param;
- Param::ParamDim param_dim =
- t == 0 ? Param::ParamDim::DIM_1C11 : Param::ParamDim::DIM_111C;
- Param param(param_dim, Param::FwdMode::INFERENCE);
- TensorShape shp = shps[t], xshp = xshps[t];
- auto x = mkvar("x", xshp), scale = mkcvar("scale", shp),
- bias = mkcvar("bias", shp), mean = mkcvar("mean", shp);
- auto host_variance = gen(shp, cn);
- for (size_t i = 0; i < shp.total_nr_elems(); ++i) {
- host_variance->ptr<float>()[i] = std::abs(host_variance->ptr<float>()[i]);
- }
- auto variance = opr::SharedDeviceTensor::make(*graph, *host_variance)
- .rename("variance");
- auto y = opr::BatchNorm::make(x, scale, bias, mean, variance, param)[5];
- SymbolVar y_opt;
- unpack_vector(
- gopt::optimize_for_inference({y}, gopt::OptimizeForInferenceOptions{}),
- y_opt);
- ASSERT_EQ(0u, find_opr_num<opr::BatchNorm>(y_opt));
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.ConvertBatchNormPass.json"));
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
- }
- }
-
- TEST(TestGoptInference, ConvBiasNonlinearityFusePass) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- auto cn = CompNode::load("cpu0");
-
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
- opr::Convolution::Param param;
- auto x = mkvar("x", {5, 8, 16, 24}), w1 = mkcvar("w1", {4, 8, 1, 1}),
- w2 = mkcvar("w2", {4, 4, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
- b2 = mkcvar("b2", {1, 4, 1, 1}), w3 = mkcvar("w3", {8, 4, 1, 1}),
- y_cut = opr::Convolution::make(x, w1, param),
- y1 = opr::Elemwise::make({y_cut + b1}, opr::Elemwise::Param::Mode::RELU);
- param.pad_w = param.pad_h = 1;
- auto y2 = opr::Elemwise::make(
- {opr::Convolution::make(y1, w2, param) + b2},
- opr::Elemwise::Param::Mode::SIGMOID);
- param.pad_w = param.pad_h = 0;
- auto y3 = opr::Convolution::make(y2, w3, param), y_tmp = y3 + x,
- y_expand = opr::Elemwise::make({y_cut}, opr::Elemwise::Param::Mode::RELU),
- y_y = opr::Convolution::make(y_expand, w3, param), y = y_y + y_tmp;
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4().enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- ASSERT_EQ(3u, find_opr<opr::ConvBias>(y_opt).input().size());
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.FuseConvBiasNonlinPass.json"));
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
- }
-
- TEST(TestGoptInference, ConvBiasNonlinearityFusePass2) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- auto cn = CompNode::load("cpu0");
-
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
- opr::Convolution::Param param;
- auto x = mkvar("x", {5, 8, 16, 24}), w1 = mkcvar("w1", {4, 8, 1, 1}),
- w2 = mkcvar("w2", {4, 8, 1, 1});
-
- auto b1 = mkcvar("b1", {1, 4, 1, 1});
- auto y_cut = opr::Convolution::make(x, w1, param);
- auto y = opr::Elemwise::make({y_cut + b1}, opr::Elemwise::Param::Mode::SIGMOID);
- y = opr::Elemwise::make({y}, opr::Elemwise::Param::Mode::RELU);
- auto y_cut2 = opr::Convolution::make(x, w2, param);
- y_cut2 = opr::Elemwise::make({y_cut2}, opr::Elemwise::Param::Mode::SIGMOID);
- y_cut2 = opr::Elemwise::make({y_cut2}, opr::Elemwise::Param::Mode::RELU);
- y = y + y_cut2;
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4().enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- ASSERT_EQ(
- opr::ConvBias::Param::NonlineMode::SIGMOID,
- find_opr<opr::ConvBias>(y_opt).param().nonlineMode);
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.FuseConvBiasNonlinPass2.json"));
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
- }
-
- TEST(TestGoptInference, ConvBiasNonlinearityFusePassHswish) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- auto cn = CompNode::load("cpu0");
-
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
- opr::Convolution::Param param;
- auto x = mkvar("x", {5, 8, 16, 24}), w1 = mkcvar("w1", {4, 8, 1, 1}),
- w2 = mkcvar("w2", {4, 8, 1, 1});
-
- auto b1 = mkcvar("b1", {1, 4, 1, 1});
- auto y_cut = opr::Convolution::make(x, w1, param);
- auto y = opr::Elemwise::make({y_cut + b1}, opr::Elemwise::Param::Mode::H_SWISH);
- y = opr::Elemwise::make({y}, opr::Elemwise::Param::Mode::RELU);
- auto y_cut2 = opr::Convolution::make(x, w2, param);
- y_cut2 = opr::Elemwise::make({y_cut2}, opr::Elemwise::Param::Mode::H_SWISH);
- y_cut2 = opr::Elemwise::make({y_cut2}, opr::Elemwise::Param::Mode::RELU);
- y = y + y_cut2;
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4().enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- ASSERT_EQ(
- opr::ConvBias::Param::NonlineMode::H_SWISH,
- find_opr<opr::ConvBias>(y_opt).param().nonlineMode);
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.FuseConvBiasNonlinPassHswish.json"));
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
- }
-
- TEST(TestGoptInference, ConvBiasNonlinearityFusePass_FullBias) {
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- for (int i = 0; i < 2; i++) {
- auto graph = ComputingGraph::make();
- auto cn = CompNode::load("cpu0");
- HostTensorGenerator<> gen;
- auto mkImvar = [&](const char* name, const TensorShape& shp) {
- return opr::ImmutableTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
-
- graph->options().graph_opt_level = 0;
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
- opr::Convolution::Param param;
- auto host_x = gen({1, 8, 16, 24}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x),
- w1 = mkcvar("w1", {4, 8, 1, 1}), w2 = mkcvar("w2", {4, 8, 3, 3}),
- w3 = mkcvar("w3", {4, 4, 1, 1}),
- b = i == 0 ? mkcvar("b", {1, 4, 16, 24}) : mkImvar("bias", {1, 4, 16, 24}),
- y_cut0 = opr::Convolution::make(x, w1, param);
- param.pad_w = param.pad_h = 1;
- auto y_cut1 = opr::Convolution::make(x, w2, param);
- auto y1 = opr::Elemwise::make(
- {y_cut0 + y_cut1}, opr::Elemwise::Param::Mode::RELU);
- param.pad_w = param.pad_h = 0;
- auto y2 = opr::Convolution::make(y1, w3, param);
- auto y = opr::Elemwise::make({y2 + b}, opr::Elemwise::Param::Mode::RELU);
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- ASSERT_EQ(3u, find_opr<opr::ConvBias>(y_opt).input().size());
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file("TestGoptInference.FuseConvBiasNonlinPass_"
- "FulBias.json"));
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
- *host_x = *gen({4, 8, 16, 24}, cn);
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
- }
- }
-
- #if (MEGDNN_AARCH64 || MEGDNN_ARMV7) && !MGB_OPENCL && !MGB_CUDA
- TEST(TestGoptInference, FuseTypeCvtAndElemwiseCase0) {
- HostTensorGenerator<dtype::Int16, RandomDistribution::UNIFORM> gen(0, 255);
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
-
- size_t n = 1;
- size_t c = 128;
- size_t h = 16;
- size_t w = 16;
- auto host_x1 = gen({n, h, w, c}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
-
- auto x_nchw = opr::Dimshuffle::make(x, {0, 3, 1, 2}, 4, cn);
- auto x_f32 = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
- auto s = mkcvar("s", {1, c, 1, 1});
- auto b = mkcvar("b", {1, c, 1, 1});
-
- auto result = opr::Elemwise::make(
- {x_f32, s, b}, opr::Elemwise::Param::Mode::FUSE_MUL_ADD3);
-
- auto y = result;
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::ElemwiseMultiType>());
-
- ASSERT_EQ(
- opr::ElemwiseMultiType::Param::Mode::FUSE_MUL_ADD3_INT16xF32xF32xF32,
- find_opr<opr::ElemwiseMultiType>(y_opt).param().mode);
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y)});
- func->execute();
- graph->options().graph_opt_level = 2;
- auto func_opt = graph->compile({make_callback_copy(y, host_y_opt)});
- func_opt->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
- }
-
- TEST(TestGoptInference, FuseTypeCvtAndElemwiseCase1) {
- HostTensorGenerator<dtype::Int16, RandomDistribution::UNIFORM> gen(0, 255);
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
-
- size_t n = 1;
- size_t c = 128;
- size_t h = 16;
- size_t w = 16;
- auto host_x1 = gen({n, h, w, c}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
-
- auto x_nchw = opr::Dimshuffle::make(x, {0, 3, 1, 2}, 4, cn);
- auto x_f32 = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
- auto s = mkcvar("s", {1, c, 1, 1});
-
- auto result = opr::Elemwise::make({x_f32, s}, opr::Elemwise::Param::Mode::MUL);
-
- auto y = result;
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::ElemwiseMultiType>());
-
- ASSERT_EQ(
- opr::ElemwiseMultiType::Param::Mode::MUL_INT16xF32xF32,
- find_opr<opr::ElemwiseMultiType>(y_opt).param().mode);
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y)});
- func->execute();
- graph->options().graph_opt_level = 2;
- auto func_opt = graph->compile({make_callback_copy(y, host_y_opt)});
- func_opt->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
- }
-
- TEST(TestGoptInference, FuseTypeCvtAndElemwiseCase2) {
- HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
-
- size_t n = 1;
- size_t c = 128;
- size_t h = 16;
- size_t w = 16;
- auto host_x1 = gen({n, h, w, c}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
-
- auto x_nchw = opr::Dimshuffle::make(x, {0, 3, 1, 2}, 4, cn);
- auto x_f32 = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
- auto s = mkcvar("s", {1, c, 1, 1});
- auto b = mkcvar("b", {1, c, 1, 1});
-
- auto result = opr::Elemwise::make(
- {x_f32, s, b}, opr::Elemwise::Param::Mode::FUSE_MUL_ADD3);
-
- auto y = result;
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::ElemwiseMultiType>());
-
- ASSERT_EQ(
- opr::ElemwiseMultiType::Param::Mode::FUSE_MUL_ADD3_UINT8xF32xF32xF32,
- find_opr<opr::ElemwiseMultiType>(y_opt).param().mode);
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y)});
- func->execute();
- graph->options().graph_opt_level = 2;
- auto func_opt = graph->compile({make_callback_copy(y, host_y_opt)});
- func_opt->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
- }
- #endif
-
- TEST(TestGoptInference, ParamMerge) {
- auto cns = load_multiple_xpus(2);
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto var0 = opr::SharedDeviceTensor::make(*graph, *gen({2, 3}, cns[0])),
- var1 = opr::SharedDeviceTensor::make(*graph, *gen({1, 3}, cns[1])),
- y = var0 + opr::Copy::make(var1, {cns[0]});
- HostTensorND y_expected_val;
- graph->compile({make_callback_copy(y, y_expected_val)})->execute();
-
- SymbolVar y_opt;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::ParamMergePass>()
- .apply({{y}})
- .endpoint_vars(),
- y_opt);
- auto opr = y_opt.node()->owner_opr();
- ASSERT_EQ(2u, opr->input().size());
- ASSERT_EQ(2u, find_opr<opr::MultipleDeviceTensorHolder>(y_opt).output().size());
- HostTensorND y_got_val;
- graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
- MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
- }
-
- TEST(TestGoptInference, ParamMergeFormat) {
- auto cns = load_multiple_xpus(2);
-
- auto make_dv = [](const HostTensorND& hv) {
- TensorLayout layout{
- hv.layout(), hv.layout().dtype,
- megdnn::Image2DPack4TensorFormat::make_raw(1, 64)};
- auto ret = std::make_shared<DeviceTensorND>(hv.comp_node(), layout);
- ret->copy_from_fixlayout(hv).sync();
- return ret;
- };
-
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto var0 = opr::SharedDeviceTensorWithFormat::make(
- *graph, make_dv(*gen({2, 32}, cns[0]))),
- var1 = opr::SharedDeviceTensorWithFormat::make(
- *graph, make_dv(*gen({1, 32}, cns[1]))),
- y = var0 + opr::Copy::make(var1, {cns[0]});
- HostTensorND y_expected_val;
- graph->compile({make_callback_copy(y, y_expected_val)})->execute();
-
- SymbolVar y_opt;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::ParamMergePass>()
- .apply({{y}})
- .endpoint_vars(),
- y_opt);
- auto opr = y_opt.node()->owner_opr();
- ASSERT_EQ(2u, opr->input().size());
- ASSERT_EQ(
- 2u,
- find_opr<opr::MultipleDeviceTensorWithFormatHolder>(y_opt).output().size());
- HostTensorND y_got_val;
- graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
- MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
- }
-
- #if MGB_ENABLE_FASTRUN
- TEST(TestGoptInference, AlgoProfile) {
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
- auto x = opr::Host2DeviceCopy::make(*graph, host_x),
- y = opr::Host2DeviceCopy::make(*graph, host_y),
- z = opr::Convolution::make(x, y);
- auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
- using S = opr::Convolution::ExecutionPolicy::Strategy;
- ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
- gopt::enable_opr_algo_profiling_inplace({z + 2.3f});
- ASSERT_EQ(S::PROFILE, conv.execution_policy().strategy);
- }
- #endif
-
- TEST(TestGoptInference, ProfileCache) {
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
- auto x = opr::Host2DeviceCopy::make(*graph, host_x),
- y = opr::Host2DeviceCopy::make(*graph, host_y),
- z = opr::Convolution::make(x, y);
- auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
- using S = opr::Convolution::ExecutionPolicy::Strategy;
- ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
- gopt::enable_opr_use_profiling_cache_inplace({z + 2.3f});
- ASSERT_EQ(S::PROFILE | S::HEURISTIC, conv.execution_policy().strategy);
- }
-
- TEST(TestGoptInference, FastProfileCache) {
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
- auto x = opr::Host2DeviceCopy::make(*graph, host_x),
- y = opr::Host2DeviceCopy::make(*graph, host_y),
- z = opr::Convolution::make(x, y);
- auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
- using S = opr::Convolution::ExecutionPolicy::Strategy;
- ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
- gopt::modify_opr_algo_strategy_inplace({z + 2.3f}, S::PROFILE | S::OPTIMIZED);
- ASSERT_EQ(S::PROFILE | S::OPTIMIZED, conv.execution_policy().strategy);
- }
-
- TEST(TestGoptInference, AlgoWorkspaceLimit) {
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
- auto x = opr::Host2DeviceCopy::make(*graph, host_x),
- y = opr::Host2DeviceCopy::make(*graph, host_y),
- z = opr::Convolution::make(x, y);
- auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
- ASSERT_EQ(
- std::numeric_limits<uint64_t>::max(),
- conv.execution_policy_transient().workspace_limit);
- gopt::set_opr_algo_workspace_limit_inplace({z + 2.3f}, 10000u);
- ASSERT_EQ(10000u, conv.execution_policy().workspace_limit);
- }
-
- TEST_PASS(FuseConvBiasNonlinPass, Basic) {
- auto cn = CompNode::load("xpux");
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- for (auto format :
- {opr::Convolution::Param::Format::NCHW, opr::Convolution::Param::Format::NHWC,
- opr::Convolution::Param::Format::NCHW4}) {
- opr::Convolution::Param param;
- param.format = format;
- SymbolVar x, w, b;
- if (format == opr::Convolution::Param::Format::NHWC) {
- x = mkvar("x", {20, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {24, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 1, 1, 24}, dtype::QuantizedS32(6.25f));
- } else if (format == opr::Convolution::Param::Format::NCHW) {
- x = mkvar("x", {20, 4, 20, 20}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {24, 4, 1, 1}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
- } else {
- mgb_assert(format == opr::Convolution::Param::Format::NCHW4);
- x = mkvar("x", {20, 1, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {24, 1, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 6, 1, 1, 4}, dtype::QuantizedS32(6.25f));
- }
- auto y = opr::Convolution::make(x, w, param);
- y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
- y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
-
- opr::ConvBias::Param conv_bias_param;
- conv_bias_param.format = format;
- conv_bias_param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- auto concret_y = opr::ConvBias::make(
- x, w, b, conv_bias_param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
-
- check(concret_y, y);
- }
- }
-
- #if MGB_CUDA
-
- TEST(TestEnableTensorCore, SmallInputShape) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 75) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 75);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
- z = mkcvar("b1", {32, 16, 2, 4, 4}, dtype::QuantizedS8(2.5f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW4;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(
- x, w, b, z, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- y = opr::ConvBias::make(
- y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- y = opr::TypeCvt::make(y, dtype::Float32());
-
- SymbolVar y_opt;
- SymbolVar y_no_tc;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
- }
- auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
- ASSERT_EQ(2u, nr_dimshuffle);
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y_no_tc, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
-
- TEST(TestEnableTensorCore, Nchw4Nchw) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 75) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 75);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto mkshape = [](opr::ConvBias::Param::Format format, size_t N, size_t C, size_t H,
- size_t W) -> TensorShape {
- mgb_assert(C % 4 == 0);
- if (format == opr::ConvBias::Param::Format::NCHW4) {
- return {N, C / 4, H, W, 4};
- } else {
- mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
- return {N, C, H, W};
- }
- };
-
- for (auto format :
- {opr::ConvBias::Param::Format::NCHW, opr::ConvBias::Param::Format::NCHW4}) {
- auto x = mkvar("x", mkshape(format, 32, 64, 16, 16), dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", mkshape(format, 64, 64, 3, 3), dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", mkshape(format, 1, 64, 1, 1), dtype::QuantizedS32(6.25f)),
- z = mkcvar("b1", mkshape(format, 32, 64, 8, 8), dtype::QuantizedS8(2.5f));
- opr::ConvBias::Param param;
- param.format = format;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(
- x, w, b, z, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- y = opr::ConvBias::make(
- y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- y = opr::TypeCvt::make(y, dtype::Float32());
-
- SymbolVar y_opt;
- SymbolVar y_no_tc;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
- }
- auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
- if (format == opr::ConvBias::Param::Format::NCHW4) {
- #if CUDA_VERSION >= 10020
- //! try_conv_reformat_nchw322nchw4 used when cuda_version >= 10020
- ASSERT_EQ(1u, nr_dimshuffle);
- #else
- ASSERT_EQ(2u, nr_dimshuffle);
- #endif
- } else {
- ASSERT_EQ(2u, nr_dimshuffle);
- }
- std::string json_name;
- if (format == opr::ConvBias::Param::Format::NCHW4) {
- json_name = "TestGoptInference.Nchw4Nchw.NCHW4.json";
- } else {
- mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
- json_name = "TestGoptInference.Nchw4Nchw.NCHW.json";
- }
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file(json_name.c_str()));
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y_no_tc, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
- }
-
- TEST(TestEnableTensorCore, ConvBiasWithZ) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 75) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 75);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
- z = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW4;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(
- x, w, b, z, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- y = opr::TypeCvt::make(y, dtype::Float32());
-
- SymbolVar y_opt;
- SymbolVar y_no_tc;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
- }
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y_no_tc, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
-
- TEST(TestEnableTensorCore, Pooling) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 75) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 75);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
- z = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW4;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(
- x, w, b, z, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- opr::Pooling::Param pool_param;
- pool_param.format = opr::Pooling::Param::Format::NCHW4;
- y = opr::Pooling::make(y, pool_param);
- y = opr::TypeCvt::make(y, dtype::Float32());
-
- SymbolVar y_opt;
- SymbolVar y_no_tc;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
- ASSERT_EQ(
- opr::Pooling::Param::Format::NCHW32,
- find_opr<opr::Pooling>(y_opt).param().format);
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
- }
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y_no_tc, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
-
- TEST(TestEnableTensorCore, BatchConvBias) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 75) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 75);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto inp = mkvar("inp", {32, 24, 24, 24, 4}, dtype::QuantizedS8(1.1f)),
- flt = mkcvar("flt", {32, 96, 24, 1, 1, 4}, dtype::QuantizedS8(1.2f)),
- bias = mkcvar("bias", {1, 24, 1, 1, 4}, dtype::QuantizedS32{1.1f * 1.2f});
- opr::BatchConvBias::Param param;
- param.format = opr::BatchConvBias::Param::Format::NCHW4;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 0;
-
- auto y = opr::BatchConvBias::make(
- inp, flt, bias, param, {}, OperatorNodeConfig{dtype::QuantizedS8{1.3f}});
- y = opr::TypeCvt::make(y, dtype::Float32());
-
- SymbolVar y_opt;
- SymbolVar y_no_tc;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
- ASSERT_EQ(
- opr::BatchConvBias::Param::Format::NCHW4,
- find_opr<opr::BatchConvBias>(y_opt).param().format);
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
- }
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y_no_tc, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
-
- TEST(TestGoptInference, EnableTensorCore) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 75) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 75);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
- b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
- opr::Convolution::Param param;
- param.format = opr::Convolution::Param::Format::NCHW4;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::Convolution::make(x, w, param);
- y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
- y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
-
- auto y1 = y + b1, y2 = opr::Convolution::make(y, w, param),
- y3 = opr::Elemwise::make({y - b1}, opr::Elemwise::Param::Mode::RELU);
- y2 = opr::Elemwise::make({y2 + b}, opr::Elemwise::Param::Mode::RELU),
- y2 = opr::TypeCvt::make(y2, dtype::QuantizedS8(2.5f));
- auto y4 = y1 + y2 + y3;
- y4 = opr::TypeCvt::make(y4, dtype::Float32());
- SymbolVar y_opt;
- SymbolVar y_no_tc;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
- unpack_vector(gopt::optimize_for_inference({y4}, options), y_opt);
- }
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
- unpack_vector(gopt::optimize_for_inference({y4}, options), y_no_tc);
- }
- auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
- ASSERT_EQ(3u, nr_dimshuffle);
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file("TestGoptInference.EnableTensorCorePass.json"));
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y_no_tc, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
-
- TEST(FuseConvBiasZPass, BlockFuse) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 61) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 61);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- using ElemMultiMode = opr::ElemwiseMultiType::Param::Mode;
- using NonlineMode = opr::ConvBias::Param::NonlineMode;
- for (auto mode :
- {ElemMultiMode::QFUSE_ADD_RELU, ElemMultiMode::QFUSE_ADD_H_SWISH}) {
- auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
- w1 = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b1 = mkcvar("b1", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
- w2 = mkcvar("w2", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b2 = mkcvar("b2", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
- w3 = mkcvar("w3", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b3 = mkcvar("b3", {1, 16, 1, 1, 4}, dtype::QuantizedS32(3.0f));
- NonlineMode nonline_mode = NonlineMode::RELU;
- if (mode == ElemMultiMode::QFUSE_ADD_H_SWISH) {
- nonline_mode = NonlineMode::H_SWISH;
- }
-
- opr::ConvBias::Param param;
- param.format = opr::Convolution::Param::Format::NCHW4;
- param.nonlineMode = nonline_mode;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
-
- auto y1 = opr::ConvBias::make(
- x, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY;
- auto y2 = opr::ConvBias::make(
- y1, w2, b2, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
- y3 = opr::ElemwiseMultiType::make(
- {y1, y2}, {mode}, OperatorNodeConfig{dtype::QuantizedS8(1.2f)});
- param.nonlineMode = nonline_mode;
- auto y4 = opr::ConvBias::make(
- y3, w3, b3, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
- z = opr::ElemwiseMultiType::make(
- {y3, y4}, {opr::ElemwiseMultiType::Param::Mode::QADD},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- z = opr::TypeCvt::make(z, dtype::Float32());
-
- SymbolVar z_fuse;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity().enable_fuse_conv_bias_with_z();
- unpack_vector(gopt::optimize_for_inference({z}, options), z_fuse);
- }
- graph->compile({{z_fuse, {}}})
- ->to_json()
- ->writeto_fpath(output_file("FuseConvBiasZPass.BlockFuse_fuse.json"));
-
- auto nr_elem_multi_type = find_opr_num<mgb::opr::ElemwiseMultiType>(z_fuse);
- MGB_MARK_USED_VAR(nr_elem_multi_type);
- #if MGB_CUDA && (CUDNN_MAJOR == 8)
- ASSERT_EQ(2u, nr_elem_multi_type);
- #else
- ASSERT_EQ(1u, nr_elem_multi_type);
- //! fuse z mannually
- auto z0 = opr::ConvBias::make(
- x, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- auto z1 = opr::ConvBias::make(
- z0, w2, b2, z0, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(1.2f)}),
- z2 = opr::ConvBias::make(
- z1, w3, b3, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
- z4 = opr::ElemwiseMultiType::make(
- {z1, z2}, {opr::ElemwiseMultiType::Mode::QADD},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- z4 = opr::TypeCvt::make(z4, dtype::Float32());
-
- SymbolVar z_nonfuse;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({z4}, options), z_nonfuse);
- }
- graph->compile({{z_nonfuse, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("FuseConvBiasZPass.BlockFuse_nonfuse.json"));
- HostTensorND host_z_fuse, host_z_nonfuse;
- auto func = graph->compile(
- {make_callback_copy(z_nonfuse, host_z_nonfuse),
- make_callback_copy(z_fuse, host_z_fuse)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_z_fuse, host_z_nonfuse);
- #endif
- }
- }
-
- TEST(TestEnableTensorCore, ShuffleMerge) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 75) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 75);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto nchw2nchw4 = [](SymbolVar x) {
- auto xshp = opr::GetVarShape::make(x);
-
- auto cv = [&x](int v) { return x.make_scalar(v); };
- auto sub = [&xshp, &cv](int idx) {
- return opr::IndexAt::make(xshp, {{0, cv(idx)}});
- };
- auto tshp = opr::Concat::make({sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
- auto y0 = opr::Reshape::make(x, tshp);
- auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
- return y1;
- };
-
- auto nchw42nchw = [](SymbolVar x) {
- auto xshp = opr::GetVarShape::make(x);
-
- auto cv = [&x](int v) { return x.make_scalar(v); };
- auto sub = [&xshp, &cv](int idx) {
- return opr::IndexAt::make(xshp, {{0, cv(idx)}});
- };
- auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
- auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
- auto y1 = opr::Reshape::make(y0, tshp);
- return y1;
- };
-
- auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {64, 64, 3, 3}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 64, 1, 1}, dtype::QuantizedS32(6.25f)),
- z = mkvar("b1", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f));
- x = nchw2nchw4(x), w = nchw2nchw4(w), b = nchw2nchw4(b), z = nchw2nchw4(z);
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW4;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(
- x, w, b, z, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- y = nchw42nchw(y);
- y = opr::TypeCvt::make(y, dtype::Float32());
-
- SymbolVar y_opt;
- SymbolVar y_no_tc;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
- }
- auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
- ASSERT_EQ(3u, nr_dimshuffle);
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y_no_tc, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
-
- #endif
-
- TEST(FuseConvBiasZPass, Basic) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto format = opr::Convolution::Param::Format::NCHW4;
-
- auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
- b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
- b2 = mkvar("b2", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
-
- opr::ConvBias::Param conv_bias_param;
- conv_bias_param.format = format;
- conv_bias_param.stride_h = conv_bias_param.stride_w = 1;
- conv_bias_param.pad_h = conv_bias_param.pad_w = 1;
-
- auto y = opr::ConvBias::make(
- x, w, b, conv_bias_param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
-
- SymbolVar y_opt;
-
- // check fuse mode
- for (auto mode :
- {opr::ElemwiseMultiType::Param::Mode::QADD,
- opr::ElemwiseMultiType::Param::Mode::QMUL,
- opr::ElemwiseMultiType::Param::Mode::QFUSE_ADD_RELU}) {
- auto y1 = opr::ElemwiseMultiType::make(
- {y, b1}, {mode}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity()
- .enable_fuse_conv_bias_with_z()
- .enable_nchw32();
- unpack_vector(gopt::optimize_for_inference({y1}, options), y_opt);
- }
- auto nr_elemwisemultitype = find_opr_num<opr::ElemwiseMultiType>(y_opt);
- if (mode == opr::ElemwiseMultiType::Param::Mode::QMUL) {
- ASSERT_NE(0u, nr_elemwisemultitype);
- } else
- ASSERT_EQ(0u, nr_elemwisemultitype);
- // fuse convbiasz and z
- if (mode == opr::ElemwiseMultiType::Param::Mode::QADD) {
- auto y2 = opr::ElemwiseMultiType::make(
- {y1, b2}, {mode}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity()
- .enable_fuse_conv_bias_with_z()
- .enable_nchw32();
- unpack_vector(gopt::optimize_for_inference({y2}, options), y_opt);
- }
- auto nr_elemwisemultitype = find_opr_num<opr::ElemwiseMultiType>(y_opt);
- ASSERT_NE(0u, nr_elemwisemultitype);
- }
- }
- }
-
- #if MGB_CUDA
- //! close for cu111 ci, reopen it when bug fixed
- #if CUDA_VERSION < 11000
- TEST(TestGoptInference, EnableCHWN4) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 61) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 61);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
- auto mkshape = [](opr::ConvBias::Param::Format format, size_t N, size_t C, size_t H,
- size_t W) -> TensorShape {
- mgb_assert(C % 4 == 0);
- if (format == opr::ConvBias::Param::Format::NCHW4) {
- return {N, C / 4, H, W, 4};
- } else {
- mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
- return {N, C, H, W};
- }
- };
-
- for (auto format :
- {opr::ConvBias::Param::Format::NCHW, opr::ConvBias::Param::Format::NCHW4}) {
- auto x = mkvar("x", mkshape(format, 32, 64, 16, 16), dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", mkshape(format, 64, 64, 3, 3), dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", mkshape(format, 1, 64, 1, 1), dtype::QuantizedS32(6.25f)),
- b1 = mkvar(
- "b1", mkshape(format, 32, 64, 16, 16), dtype::QuantizedS8(2.5f));
- opr::ConvBias::Param param;
- param.format = format;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
-
- auto y = opr::ConvBiasForward::make(
- x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- auto y1 = opr::ElemwiseMultiType::make(
- {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- auto y2 = opr::ConvBiasForward::make(
- y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- auto y3 = opr::ElemwiseMultiType::make(
- {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- auto y4 = opr::ElemwiseMultiType::make(
- {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- y4 = opr::ElemwiseMultiType::make(
- {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- y4 = opr::TypeCvt::make(y4, dtype::Float32());
- SymbolVar y_opt;
- SymbolVar y_cudnn;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_chwn4();
- unpack_vector(gopt::optimize_for_inference({y4}, options), y_opt);
- }
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::FuseConvBiasNonlinPass>()
- .add_pass<gopt::FuseConvBiasZPass>()
- .apply({{y4}})
- .endpoint_vars(),
- y_cudnn);
-
- ASSERT_EQ(
- opr::ConvBias::Param::Format::CHWN4,
- find_opr<opr::ConvBias>(y_opt).param().format);
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y_cudnn, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
- }
- #endif
-
- TEST(TestGoptInference, EnableCHWN4WarpPespective) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 61) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 61);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
- std::shared_ptr<HostTensorND> mat =
- std::make_shared<HostTensorND>(cn, TensorShape{32, 3, 3}, dtype::Float32());
- warp_perspective_mat_gen(*mat, 32, 16, 16);
- auto mat_var = opr::Host2DeviceCopy::make(*graph, mat).rename("mat");
-
- auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW4;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
-
- auto y = opr::ConvBiasForward::make(
- x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
-
- opr::WarpPerspective::Param warp_param;
- warp_param.format = opr::WarpPerspective::Param::Format::NCHW4;
- auto y1 = opr::WarpPerspective::make(y, mat_var, TensorShape{16, 16}, warp_param);
- y1 = opr::TypeCvt::make(y1, dtype::Float32());
- auto nchw42nchw = [](SymbolVar x) {
- auto xshp = opr::GetVarShape::make(x);
-
- auto cv = [&x](int v) { return x.make_scalar(v); };
- auto sub = [&xshp, &cv](int idx) {
- return opr::IndexAt::make(xshp, {{0, cv(idx)}});
- };
- auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
- auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
- auto y1 = opr::Reshape::make(y0, tshp);
- return y1;
- };
- y1 = nchw42nchw(y1);
- warp_param.format = opr::WarpPerspective::Param::Format::NCHW;
- auto y2 = opr::WarpPerspective::make(y1, mat_var, TensorShape{16, 16}, warp_param);
- SymbolVar y_opt;
- SymbolVar y_cudnn;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_chwn4();
- unpack_vector(gopt::optimize_for_inference({y2}, options), y_opt);
- }
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::FuseConvBiasNonlinPass>()
- .add_pass<gopt::FuseConvBiasZPass>()
- .apply({{y2}})
- .endpoint_vars(),
- y_cudnn);
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y_cudnn, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
-
- TEST(TestGoptInference, EnableCHWN4Pooling) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 61) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 61);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
-
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW4;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
-
- auto y = opr::ConvBiasForward::make(
- x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
-
- opr::Pooling::Param pool_param;
- pool_param.format = opr::Pooling::Param::Format::NCHW4;
- y = opr::Pooling::make(y, pool_param);
- y = opr::TypeCvt::make(y, dtype::Float32());
-
- auto nchw42nchw = [](SymbolVar x) {
- auto xshp = opr::GetVarShape::make(x);
-
- auto cv = [&x](int v) { return x.make_scalar(v); };
- auto sub = [&xshp, &cv](int idx) {
- return opr::IndexAt::make(xshp, {{0, cv(idx)}});
- };
- auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
- auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
- auto y1 = opr::Reshape::make(y0, tshp);
- return y1;
- };
- y = nchw42nchw(y);
- pool_param.format = opr::Pooling::Param::Format::NCHW;
- auto y1 = opr::Pooling::make(y, pool_param);
-
- SymbolVar y_opt;
- SymbolVar y_cudnn;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::FuseConvBiasNonlinPass>()
- .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
- .add_pass<gopt::FuseConvBiasZPass>()
- .apply({{y1}})
- .endpoint_vars(),
- y_opt);
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::FuseConvBiasNonlinPass>()
- .add_pass<gopt::FuseConvBiasZPass>()
- .apply({{y1}})
- .endpoint_vars(),
- y_cudnn);
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y_cudnn, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
-
- TEST(TestGoptInference, EnableCHWN4ShuffleRemove) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 61) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 61);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto nchw2nchw4 = [](SymbolVar x) {
- auto xshp = opr::GetVarShape::make(x);
-
- auto cv = [&x](int v) { return x.make_scalar(v); };
- auto sub = [&xshp, &cv](int idx) {
- return opr::IndexAt::make(xshp, {{0, cv(idx)}});
- };
- auto tshp = opr::Concat::make({sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
- auto y0 = opr::Reshape::make(x, tshp);
- auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
- return y1;
- };
-
- auto nchw42nchw = [](SymbolVar x) {
- auto xshp = opr::GetVarShape::make(x);
-
- auto cv = [&x](int v) { return x.make_scalar(v); };
- auto sub = [&xshp, &cv](int idx) {
- return opr::IndexAt::make(xshp, {{0, cv(idx)}});
- };
- auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
- auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
- auto y1 = opr::Reshape::make(y0, tshp);
- return y1;
- };
-
- auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
- b1 = mkcvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8{2.5f});
- x = nchw2nchw4(x);
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW4;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
-
- auto y = opr::ConvBiasForward::make(
- x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- auto y1 = opr::ElemwiseMultiType::make(
- {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- auto y2 = opr::ConvBiasForward::make(
- y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- auto y3 = opr::ElemwiseMultiType::make(
- {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- auto y4 = opr::ElemwiseMultiType::make(
- {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- y4 = opr::ElemwiseMultiType::make(
- {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- y4 = opr::TypeCvt::make(y4, dtype::Float32());
- y4 = nchw42nchw(y4);
-
- SymbolVar y_opt;
- SymbolVar y_cudnn;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::ParamRedistributePass>()
- .add_pass<gopt::ParamFusePass>()
- .add_pass<gopt::FuseConvBiasNonlinPass>()
- .add_pass<gopt::FuseConvBiasZPass>()
- .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
- .add_pass<gopt::ShuffleShuffleRemovePass>()
- .add_pass<gopt::ParamFusePass>()
- .apply({{y4}})
- .endpoint_vars(),
- y_opt);
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.EnableCHWN4ShuffleRemove.json"));
- auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
- ASSERT_EQ(2u, nr_dimshuffle);
- auto nr_reformat = find_opr_num<mgb::opr::RelayoutFormat>(y_opt);
- ASSERT_EQ(0u, nr_reformat);
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::FuseConvBiasNonlinPass>()
- .add_pass<gopt::FuseConvBiasZPass>()
- .apply({{y4}})
- .endpoint_vars(),
- y_cudnn);
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y_cudnn, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
-
- TEST(TestGoptInference, ConvertFormatNCHW4GPU) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 61) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 61);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(2.5f));
- opr::ConvBias::Param param_conv_bias;
- param_conv_bias.format = opr::ConvBias::Param::Format::NCHW;
- param_conv_bias.stride_h = param_conv_bias.stride_w = 1;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- // dense
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
- auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
- b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
- auto conv1 = opr::ConvBiasForward::make(
- x, w1, b1, param_conv_bias, {},
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
-
- // group
- // icpg != 1 && ocpg != 1
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
- b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
- auto conv2 = opr::ConvBiasForward::make(
- conv1, w2, b2, param_conv_bias, {},
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
-
- opr::Convolution::Param param_deconv;
- param_deconv.format = opr::Convolution::Param::Format::NCHW;
- param_deconv.stride_h = param_deconv.stride_w = 2;
- param_deconv.pad_h = param_deconv.pad_w = 2;
- // dense
- param_deconv.sparse = opr::Convolution::Param::Sparse::DENSE;
- auto w3 = mkcvar("w3", {8, 8, 4, 4}, dtype::QuantizedS8(2.5f));
- auto deconv1 = opr::ConvolutionBackwardData::make_deconv(
- conv2, w3, param_deconv, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
-
- auto deconv1_fp32 = opr::TypeCvt::make(deconv1, dtype::Float32());
- auto y = deconv1_fp32 + opr::TypeCvt::make(b2, dtype::Float32());
-
- SymbolVar y_opt;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
-
- ASSERT_EQ(
- opr::ConvBias::Param::Format::NCHW4,
- find_opr<opr::ConvBias>(y_opt).param().format);
- ASSERT_EQ(
- opr::ConvolutionBackwardData::Param::Format::NCHW4,
- find_opr<opr::ConvolutionBackwardData>(y_opt).param().format);
- auto nr_reshape = find_opr_num<mgb::opr::Reshape>(y_opt);
- ASSERT_EQ(2u, nr_reshape);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.ConvertFormatNCHW4GPU.json"));
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
-
- TEST(TestGoptInference, ConvertFormatNCHW4FloatGPU) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- REQUIRE_CUDA_COMPUTE_CAPABILITY_EQ(6, 1);
-
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
-
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
-
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(1.2f));
- opr::ConvBias::Param param_conv_bias;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
-
- // conv1, with bias
- auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(1.3f)),
- b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::Float32());
- auto conv1 = opr::ConvBias::make(
- x, w1, b1, param_conv_bias, {}, OperatorNodeConfig{dtype::Float32()});
-
- // conv2, with bias and z
- auto w2 = mkcvar("w2", {8, 4, 3, 3}, dtype::QuantizedS8(1.3f)),
- b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::Float32()),
- z2 = mkcvar("z2", {2, 8, 16, 16}, dtype::Float32());
- auto conv2 = opr::ConvBias::make(
- x, w2, b2, z2, param_conv_bias, {}, OperatorNodeConfig{dtype::Float32()});
-
- // conv3, relu
- param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- auto w3 = mkcvar("w3", {8, 4, 3, 3}, dtype::QuantizedS8(1.3f)),
- b3 = mkcvar("b3", {1, 8, 1, 1}, dtype::Float32()),
- z3 = mkcvar("z3", {2, 8, 16, 16}, dtype::Float32());
- auto conv3 = opr::ConvBias::make(
- x, w3, b3, z3, param_conv_bias, {}, OperatorNodeConfig{dtype::Float32()});
-
- auto y = conv1 + conv2 + conv3;
-
- SymbolVar y_opt;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
-
- bool succ = true;
- auto cb = [&succ](cg::OperatorNodeBase* opr) {
- if (opr->same_type<opr::ConvBias>()) {
- auto& conv_bias = opr->cast_final_safe<opr::ConvBias>();
- if (conv_bias.param().format != opr::ConvBias::Param::Format::NCHW4_NCHW) {
- succ = false;
- }
- }
- };
-
- cg::DepOprIter{cb}.add(y_opt);
- ASSERT_TRUE(succ);
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
-
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
- }
-
- #endif
-
- TEST(TestGoptInference, ConvertFormatNCHW4NonConvOpr) {
- auto cn = CompNode::load("xpu0");
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
- auto mkcvarf32 = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
-
- auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(2.5f));
- opr::ConvBias::Param param_conv_bias;
- param_conv_bias.format = opr::ConvBias::Param::Format::NCHW;
- param_conv_bias.stride_h = param_conv_bias.stride_w = 1;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- // dense
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
- auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
- b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
- auto conv1 = opr::ConvBiasForward::make(
- x, w1, b1, param_conv_bias, {},
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- // test Resize
- auto shape_of = opr::GetVarShape::make(x);
- auto subtensor = opr::Subtensor::make(
- shape_of, {opr::Subtensor::AxisIndexer::make_interval(
- 0, x.make_scalar(2), None, x.make_scalar(1))});
- opr::Resize::Param param_resize;
- param_resize.format = opr::Resize::Param::Format::NCHW;
- auto resize = opr::ResizeForward::make(conv1, subtensor * 2, param_resize);
- // test WarpPerspective
- auto mat = mkcvarf32("mat", {2, 3, 3}),
- warp = opr::WarpPerspectiveForward::make(
- resize, mat, nullptr, cg::var_from_tensor_shape(x, {32, 32}));
- opr::Pooling::Param pool_param;
- pool_param.format = opr::Pooling::Param::Format::NCHW;
- // test Pooling
- auto pool = opr::Pooling::make(warp, pool_param);
- // group
- // icpg != 1 && ocpg != 1
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
- b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
- auto conv2 = opr::ConvBiasForward::make(
- pool, w2, b2, param_conv_bias, {},
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
-
- auto add = opr::ElemwiseMultiType::make(
- {conv1, conv2}, {opr::ElemwiseMultiType::Param::Mode::QADD},
- OperatorNodeConfig{dtype::QuantizedS8{1.2f}});
- auto y = opr::TypeCvt::make(add, dtype::Float32());
-
- SymbolVar y_opt;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
- auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
- ASSERT_EQ(2u, nr_dimshuffle);
- ASSERT_EQ(
- opr::ConvBias::Param::Format::NCHW4,
- find_opr<opr::ConvBias>(y_opt).param().format);
- ASSERT_EQ(
- opr::ResizeForward::Param::Format::NCHW4,
- find_opr<opr::ResizeForward>(y_opt).param().format);
- ASSERT_EQ(
- opr::WarpPerspectiveForward::Param::Format::NCHW4,
- find_opr<opr::WarpPerspectiveForward>(y_opt).param().format);
- ASSERT_EQ(
- opr::PoolingForward::Param::Format::NCHW4,
- find_opr<opr::PoolingForward>(y_opt).param().format);
- }
-
- TEST(TestGoptInference, ConvertFormatNCHW4) {
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
-
- auto x = mkvar("x", {2, 4, 16, 16});
- // ConvBias test dense
- opr::ConvBias::Param param_conv_bias;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
- auto w1 = mkcvar("w1", {8, 4, 3, 3}), b1 = mkcvar("b1", {1, 8, 1, 1});
- auto conv1 = opr::ConvBias::make(x, w1, b1, param_conv_bias);
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1});
- auto conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
- // Convolution
- opr::Convolution::Param param_conv;
- param_conv.pad_h = param_conv.pad_w = 1;
- param_conv.sparse = opr::Convolution::Param::Sparse::DENSE;
- auto w3 = mkcvar("w3", {8, 8, 3, 3});
- auto y = opr::Convolution::make(conv2, w3, param_conv);
-
- SymbolVar y_opt;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
-
- ASSERT_EQ(
- opr::ConvBias::Param::Format::NCHW,
- find_opr<opr::ConvBias>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file("TestGoptInference.ConvertFormatNCHW4.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, ConvertFormatNCHW4Ic3) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
- HostTensorGenerator<dtype::Float32, RandomDistribution::UNIFORM> gen{
- 1.2f, 127 * 127};
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name), dtype);
- };
-
- auto x = mkvar("x", {2, 3, 16, 16}, dtype::QuantizedS8(2.5f));
- // ConvBias test dense
- opr::ConvBias::Param param_conv_bias;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
- auto w1 = mkcvar("w1", {8, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
- b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
- auto conv1 = opr::ConvBias::make(
- x, w1, b1, param_conv_bias, {},
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
- b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
- auto conv2 = opr::ConvBias::make(
- conv1, w2, b2, param_conv_bias, {},
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- auto y = opr::TypeCvt::make(conv2, dtype::Float32());
-
- SymbolVar y_opt;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
-
- ASSERT_EQ(
- opr::ConvBias::Param::Format::NCHW4,
- find_opr<opr::ConvBias>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.ConvertFormatNCHW4Ic3.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, ConvertFormatNCHW88) {
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
-
- auto host_x = gen({2, 3, 16, 16}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
- //! Hybrid nchw88 mode
- opr::Convolution::Param param_conv;
- param_conv.pad_h = param_conv.pad_w = 1;
- auto w1 = mkcvar("w1", {8, 3, 3, 3}),
- conv1 = opr::Convolution::make(
- x, w1, param_conv, {}, OperatorNodeConfig("conv1"));
- //! channel wise
- opr::ConvBias::Param param_conv_bias;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
- conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
- //! group
- auto w3 = mkcvar("w3", {1, 8, 8, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
- conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
- //! reduce
- opr::Reduce::Param param_reduce1;
- param_reduce1.axis = 2;
- param_reduce1.mode = opr::Reduce::Mode::SUM;
- opr::Reduce::Param param_reduce2;
- param_reduce2.axis = 0;
- param_reduce2.mode = opr::Reduce::Mode::MAX;
- auto reduce1 = conv3 + opr::Reduce::make(conv3, param_reduce1) +
- opr::Reduce::make(conv3, param_reduce2);
-
- auto shape_of = opr::GetVarShape::make(reduce1);
- auto subtensor = opr::Subtensor::make(
- shape_of, {opr::Subtensor::AxisIndexer::make_interval(
- 0, x.make_scalar(2), None, x.make_scalar(1))});
- opr::Resize::Param param_resize;
- param_resize.format = opr::Resize::Param::Format::NCHW;
- auto resize = opr::ResizeForward::make(reduce1, subtensor * 2, param_resize);
- auto mat = mkcvar("mat", {2, 3, 3}),
- warp = opr::WarpPerspectiveForward::make(
- resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
-
- auto b = mkvar("b", {1, 8, 1, 1}),
- elem = opr::Elemwise::make({warp + b}, opr::Elemwise::Param::Mode::RELU);
- //! Dense
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- auto w4 = mkcvar("w4", {2, 6, 4, 3, 3}), b4 = mkcvar("b4", {1, 12, 1, 1}),
- conv4 = opr::ConvBias::make(elem, w4, b4, param_conv_bias);
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
- auto w5 = mkcvar("w5", {8, 12, 3, 3}), b5 = mkcvar("b5", {1, 8, 1, 1}),
- conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias);
- auto w6 = mkcvar("w6", {8, 8, 3, 3}), b6 = mkcvar("b6", {1, 8, 1, 1}),
- y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias);
-
- SymbolVar y_opt;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw88();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
- ASSERT_EQ(
- opr::ConvBias::Param::Format::NCHW88,
- find_opr<opr::Convolution>(y_opt, "conv1").param().format);
- ASSERT_EQ(
- opr::ConvBias::Param::Format::NCHW88,
- find_opr<opr::ConvBias>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file("TestGoptInference.ConvertFormatNCHW88.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- //! meybe go to winograd in x86-32, so set error 1e-1
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
-
- *host_x = *gen({2, 3, 32, 32}, cn);
- func->execute();
- //! meybe go to winograd in x86-32, so set error 1e-1
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
- }
-
- TEST(TestGoptInference, ConvertFormatNCHW44) {
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
- auto mkcvar_dtype = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto host_x = gen({2, 3, 16, 16}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
- //! Hybrid nchw44 mode
- opr::Convolution::Param param_conv;
- param_conv.pad_h = param_conv.pad_w = 1;
- auto w1 = mkcvar("w1", {8, 3, 3, 3}),
- conv1 = opr::Convolution::make(
- x, w1, param_conv, {}, OperatorNodeConfig("conv1"));
-
- //! no supported hybrid nchw44
- opr::ConvBias::Param param_conv_bias_pad0;
- param_conv_bias_pad0.pad_h = param_conv_bias_pad0.pad_w = 0;
- auto w1_f1 = mkcvar("w1_1", {8, 3, 1, 1});
- auto conv1_f1 = opr::ConvBias::make(
- x, w1_f1, param_conv_bias_pad0, {}, OperatorNodeConfig("conv1_f1"));
-
- auto conv1_add = conv1_f1 * conv1;
- auto conv_1_q8 = opr::TypeCvt::make(conv1_add, dtype::QuantizedS8(2.5f));
-
- //! s8 dense conv
- opr::ConvBias::Param param_conv_bias;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- auto w1_2 = mkcvar_dtype("w1_2", {8, 8, 3, 3}, dtype::QuantizedS8(2.5f));
- auto b1_2 = mkcvar_dtype("b1_2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
- auto conv_1_2 = opr::ConvBias::make(
- conv_1_q8, w1_2, b1_2, param_conv_bias, {},
- OperatorNodeConfig{"conv_1_2", cn, dtype::QuantizedS8{6.25f}});
- auto conv_1_2_fp32 = opr::TypeCvt::make(conv_1_2, dtype::Float32());
-
- //! channel wise
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
- conv2 = opr::ConvBias::make(conv_1_2_fp32, w2, b2, param_conv_bias);
- //! group
- auto w3 = mkcvar("w3", {2, 4, 4, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
- conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
- //! reduce
- opr::Reduce::Param param_reduce1;
- param_reduce1.axis = 1;
- param_reduce1.mode = opr::Reduce::Mode::MIN;
- opr::Reduce::Param param_reduce2;
- param_reduce2.axis = 3;
- param_reduce2.mode = opr::Reduce::Mode::SUM_SQR;
- auto reduce1 = conv3 + opr::Reduce::make(conv3, param_reduce1) +
- opr::Reduce::make(conv3, param_reduce2);
-
- auto shape_of = opr::GetVarShape::make(reduce1);
- auto subtensor = opr::Subtensor::make(
- shape_of, {opr::Subtensor::AxisIndexer::make_interval(
- 0, x.make_scalar(2), None, x.make_scalar(1))});
- opr::Resize::Param param_resize;
- param_resize.format = opr::Resize::Param::Format::NCHW;
- auto resize = opr::ResizeForward::make(reduce1, subtensor * 2, param_resize);
- auto mat = mkcvar("mat", {2, 3, 3}),
- warp = opr::WarpPerspectiveForward::make(
- resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
-
- auto b = mkvar("b", {1, 8, 1, 1}),
- elem = opr::Elemwise::make({warp + b}, opr::Elemwise::Param::Mode::RELU);
- //! Dense
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- auto w3_2 = mkcvar("w3_2", {16, 8, 3, 3}), b3_2 = mkcvar("b3_2", {1, 16, 1, 1}),
- conv3_2 = opr::ConvBias::make(
- elem, w3_2, b3_2, param_conv_bias, {}, OperatorNodeConfig("conv3_2"));
- //! s8 group conv
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- auto conv3_2_q8 = opr::TypeCvt::make(conv3_2, dtype::QuantizedS8(2.5f));
- auto w3_3 = mkcvar_dtype("w3_3", {4, 8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
- b3_3 = mkcvar_dtype("b3_3", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f)),
- conv3_3_q = opr::ConvBias::make(
- conv3_2_q8, w3_3, b3_3, param_conv_bias, {},
- OperatorNodeConfig{"conv_3_3_q", cn, dtype::QuantizedS8{6.25f}});
- auto conv3_3 = opr::TypeCvt::make(conv3_3_q, dtype::Float32());
-
- //! Dense
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
- auto w4 = mkcvar("w4", {16, 32, 3, 3}), b4 = mkcvar("b4", {1, 16, 1, 1}),
- conv4 = opr::ConvBias::make(
- conv3_3, w4, b4, param_conv_bias, {}, OperatorNodeConfig("conv4"));
- auto w4_1 = mkcvar("w4_1", {16, 32, 1, 1}), b4_1 = mkcvar("b4_1", {2, 16, 4, 4}),
- conv4_1 = opr::ConvBias::make(
- conv3_3, w4_1, b4_1, param_conv_bias_pad0, {},
- OperatorNodeConfig("conv4_1"));
- auto conv4_add = conv4 + conv4_1;
-
- auto w5 = mkcvar("w5", {6, 16, 3, 3}), b5 = mkcvar("b5", {1, 6, 1, 1}),
- conv5 = opr::ConvBias::make(
- conv4_add, w5, b5, param_conv_bias, {}, OperatorNodeConfig("conv5"));
- auto w6 = mkcvar("w6", {4, 6, 3, 3}), b6 = mkcvar("b6", {1, 4, 1, 1}),
- y = opr::ConvBias::make(
- conv5, w6, b6, param_conv_bias, {}, OperatorNodeConfig("conv6"));
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity();
- options.enable_nchw44();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(
- opr::Convolution::Param::Format::NCHW44,
- find_opr<opr::Convolution>(y_opt, "conv1").param().format);
- ASSERT_EQ(
- opr::Convolution::Param::Format::NCHW,
- find_opr<opr::ConvBias>(y_opt, "conv1_f1").param().format);
- ASSERT_EQ(
- opr::Convolution::Param::Format::NCHW44,
- find_opr<opr::ConvBias>(y_opt, "conv_1_2").param().format);
- ASSERT_EQ(
- opr::Convolution::Param::Format::NCHW44,
- find_opr<opr::ConvBias>(y_opt, "conv3_2").param().format);
- ASSERT_EQ(
- opr::Convolution::Param::Format::NCHW44,
- find_opr<opr::ConvBias>(y_opt, "conv_3_3_q").param().format);
- ASSERT_EQ(
- opr::Convolution::Param::Format::NCHW44,
- find_opr<opr::ConvBias>(y_opt, "conv4").param().format);
- ASSERT_EQ(
- opr::Convolution::Param::Format::NCHW,
- find_opr<opr::ConvBias>(y_opt, "conv5").param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file("TestGoptInference.ConvertFormatNCHW44.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- //! meybe go to winograd in x86-32, so set error 1e-1
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
-
- *host_x = *gen({2, 3, 32, 32}, cn);
- func->execute();
- //! meybe go to winograd in x86-32, so set error 1e-1
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
- }
-
- TEST(TestGoptInference, ConvertFormatNCHW44MultiInput) {
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
-
- auto host_x1 = gen({1, 8, 16, 16}, cn);
- auto host_x2 = gen({1, 1, 16, 16}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
- opr::Convolution::Param param_conv;
- param_conv.pad_h = param_conv.pad_w = 1;
- auto w1 = mkcvar("w1", {8, 8, 3, 3}),
- conv1 = opr::Convolution::make(x, w1, param_conv);
-
- auto b = mkvar("b", {1, 1, 16, 16}),
- elem0 = opr::Elemwise::make({conv1 + b + b}, opr::Elemwise::Param::Mode::RELU);
-
- auto w2 = mkcvar("w2", {8, 8, 3, 3}),
- conv2 = opr::Convolution::make(elem0, w2, param_conv);
-
- auto b1 = mkvar("b1", {1}),
- y = opr::Elemwise::make({conv2 + b1 + b}, opr::Elemwise::Param::Mode::RELU);
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw44();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(
- opr::Convolution::Param::Format::NCHW44,
- find_opr<opr::Convolution>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.ConvertFormatNCHW44MultiInput.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- //! meybe go to winograd in x86-32, so set error 1e-1
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
- }
-
- TEST(TestGoptInference, ConvertFormatNCHW44Reshape) {
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
-
- auto host_x1 = gen({1, 8, 16, 16}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
- opr::Convolution::Param param_conv;
- param_conv.pad_h = param_conv.pad_w = 1;
- auto w1 = mkcvar("w1", {8, 8, 3, 3}),
- conv1 = opr::Convolution::make(x, w1, param_conv);
- auto y = opr::Reshape::make(conv1, {8, 16 * 16});
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw44();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(
- opr::Convolution::Param::Format::NCHW44,
- find_opr<opr::Convolution>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.ConvertFormatNCHW44Reshape.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- //! meybe go to winograd in x86-32, so set error 1e-1
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
- }
-
- TEST(TestGoptInference, ConvertFormatNCHW44GlobalPooling) {
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
-
- auto host_x1 = gen({1, 4, 16, 16}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
- opr::Convolution::Param param_conv;
- param_conv.stride_h = param_conv.stride_w = 1;
- param_conv.pad_h = param_conv.pad_w = 1;
- auto w1 = mkcvar("w1", {8, 4, 3, 3});
- auto conv1 =
- opr::Convolution::make(x, w1, param_conv, {}, OperatorNodeConfig("conv1"));
- auto conv_n = opr::GetVarShape::make(conv1, 0);
- auto conv_c = opr::GetVarShape::make(conv1, 1);
- auto conv_h = opr::GetVarShape::make(conv1, 2);
- auto conv_w = opr::GetVarShape::make(conv1, 3);
- auto hxw = conv_h * conv_w;
- auto reshape_shape = opr::Concat::make({conv_n, conv_c, hxw}, 0);
- auto reshape1 = opr::Reshape::make(conv1, reshape_shape);
-
- opr::Reduce::Param param_reduce;
- param_reduce.axis = 2;
- param_reduce.mode = opr::Reduce::Mode::SUM;
- auto reduce = opr::Reduce::make(reshape1, param_reduce);
- auto reduce_remove_axis = opr::AxisAddRemove::make(
- reduce, {opr::AxisAddRemove::AxisDesc::make_remove(2)});
- auto hw_count = opr::GetVarShape::make(reshape1, 2);
-
- auto fp32_hw_count = opr::TypeCvt::make(hw_count, dtype::Float32());
- auto reduce_mean = reduce_remove_axis / fp32_hw_count;
- auto global_pool = opr::AxisAddRemove::make(
- reduce_mean, {opr::AxisAddRemove::AxisDesc::make_add(2),
- opr::AxisAddRemove::AxisDesc::make_add(3)});
-
- opr::Elemwise::Param elem_param;
- elem_param.mode = opr::Elemwise::Param::Mode::RELU;
- auto y = opr::Elemwise::make({global_pool}, elem_param);
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_grain();
- options.enable_nchw44();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(
- opr::AdaptivePooling::Param::Format::NCHW44,
- find_opr<opr::AdaptivePooling>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.ConvertFormatNCHW44GlobalPooling.json"));
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- //! meybe go to winograd in x86-32, so set error 1e-1
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
- }
-
- TEST(TestGoptInference, ConvertFormatNCHW44_DOT) {
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
- auto mkcvar_dtype = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto host_x = gen({2, 3, 16, 16}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
- //! Hybrid nchw44 mode
- opr::Convolution::Param param_conv;
- param_conv.pad_h = param_conv.pad_w = 1;
- auto w1 = mkcvar("w1", {8, 3, 3, 3}),
- conv1 = opr::Convolution::make(
- x, w1, param_conv, {}, OperatorNodeConfig("conv1"));
- printf("create conv1 %s\n", conv1.node()->owner_opr()->dyn_typeinfo()->name);
- param_conv.pad_h = param_conv.pad_w = 1;
- //! no supported hybrid nchw44
- opr::ConvBias::Param param_conv_bias_pad0;
- param_conv_bias_pad0.pad_h = param_conv_bias_pad0.pad_w = 0;
- auto b1 = mkcvar("b1", {1, 8, 1, 1});
- auto w1_f1 = mkcvar("w1_1", {8, 3, 1, 1});
- auto conv1_f1 = opr::ConvBias::make(
- x, w1_f1, b1, param_conv_bias_pad0, {}, OperatorNodeConfig("conv1_f1"));
-
- //! hybrid dot
- auto x_s = opr::TypeCvt::make(x, dtype::QuantizedS8(2.5f));
- auto w1_3 = mkcvar_dtype("w1_3", {8, 3, 3, 3}, dtype::QuantizedS8(2.5f));
- auto conv1_3_q = opr::Convolution::make(
- x_s, w1_3, param_conv, {},
- OperatorNodeConfig{"conv1_3_q", cn, dtype::QuantizedS8{6.25f}});
- auto conv1_3 = opr::TypeCvt::make(conv1_3_q, dtype::Float32());
-
- auto conv1_add = conv1_f1 * conv1 * conv1_3;
- auto conv_1_q8 = opr::TypeCvt::make(conv1_add, dtype::QuantizedS8(2.5f));
-
- //! s8 dense conv
- opr::ConvBias::Param param_conv_bias;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- auto w1_2 = mkcvar_dtype("w1_2", {8, 8, 3, 3}, dtype::QuantizedS8(2.5f));
- auto conv_1_2 = opr::ConvBias::make(
- conv_1_q8, w1_2, param_conv_bias, {},
- OperatorNodeConfig{"conv_1_2", cn, dtype::QuantizedS8{6.25f}});
- auto conv_1_2_fp32 = opr::TypeCvt::make(conv_1_2, dtype::Float32());
-
- //! channel wise
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
- conv2 = opr::ConvBias::make(conv_1_2_fp32, w2, b2, param_conv_bias);
- //! group
- auto w3 = mkcvar("w3", {2, 4, 4, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
- conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
-
- auto shape_of = opr::GetVarShape::make(conv3);
- auto subtensor = opr::Subtensor::make(
- shape_of, {opr::Subtensor::AxisIndexer::make_interval(
- 0, x.make_scalar(2), None, x.make_scalar(1))});
- opr::Resize::Param param_resize;
- param_resize.format = opr::Resize::Param::Format::NCHW;
- auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
- auto mat = mkcvar("mat", {2, 3, 3}),
- warp = opr::WarpPerspectiveForward::make(
- resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
-
- auto b = mkvar("b", {1, 8, 1, 1}),
- elem = opr::Elemwise::make({warp + b}, opr::Elemwise::Param::Mode::RELU);
- //! Dense
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- auto w3_2 = mkcvar("w3_2", {16, 8, 3, 3}), b3_2 = mkcvar("b3_2", {1, 16, 1, 1}),
- conv3_2 = opr::ConvBias::make(
- elem, w3_2, b3_2, param_conv_bias, {}, OperatorNodeConfig("conv3_2"));
- //! s8 group conv
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- auto conv3_2_q8 = opr::TypeCvt::make(conv3_2, dtype::QuantizedS8(2.5f));
- auto w3_3 = mkcvar_dtype("w3_3", {4, 8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
- b3_3 = mkcvar_dtype("b3_3", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f)),
- conv3_3_q = opr::ConvBias::make(
- conv3_2_q8, w3_3, b3_3, param_conv_bias, {},
- OperatorNodeConfig{"conv_3_3_q", cn, dtype::QuantizedS8{6.25f}});
- auto conv3_3 = opr::TypeCvt::make(conv3_3_q, dtype::Float32());
-
- //! Dense
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
- auto w4 = mkcvar("w4", {4, 32, 3, 3}), b4 = mkcvar("b4", {1, 4, 1, 1}),
- conv4 = opr::ConvBias::make(
- conv3_3, w4, b4, param_conv_bias, {}, OperatorNodeConfig("conv4"));
-
- auto w5 = mkcvar("w5", {6, 4, 3, 3}), b5 = mkcvar("b5", {1, 6, 1, 1}),
- conv5 = opr::ConvBias::make(
- conv4, w5, b5, param_conv_bias, {}, OperatorNodeConfig("conv5"));
- auto w6 = mkcvar("w6", {4, 6, 3, 3}), b6 = mkcvar("b6", {1, 4, 1, 1}),
- y = opr::ConvBias::make(
- conv5, w6, b6, param_conv_bias, {}, OperatorNodeConfig("conv6"));
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity();
- options.enable_nchw44_dot();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(
- opr::Convolution::Param::Format::NCHW44,
- find_opr<opr::Convolution>(y_opt, "conv1").param().format);
- ASSERT_EQ(
- opr::Convolution::Param::Format::NCHW44_DOT,
- find_opr<opr::Convolution>(y_opt, "conv1_3_q").param().format);
- ASSERT_EQ(
- opr::Convolution::Param::Format::NCHW,
- find_opr<opr::ConvBias>(y_opt, "conv1_f1").param().format);
- ASSERT_EQ(
- opr::Convolution::Param::Format::NCHW44_DOT,
- find_opr<opr::ConvBias>(y_opt, "conv_1_2").param().format);
- ASSERT_EQ(
- opr::Convolution::Param::Format::NCHW44,
- find_opr<opr::ConvBias>(y_opt, "conv3_2").param().format);
- ASSERT_EQ(
- opr::Convolution::Param::Format::NCHW44_DOT,
- find_opr<opr::ConvBias>(y_opt, "conv_3_3_q").param().format);
- ASSERT_EQ(
- opr::Convolution::Param::Format::NCHW44,
- find_opr<opr::ConvBias>(y_opt, "conv4").param().format);
- ASSERT_EQ(
- opr::Convolution::Param::Format::NCHW,
- find_opr<opr::ConvBias>(y_opt, "conv5").param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.ConvertFormatNCHW44_DOT.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- //! meybe go to winograd in x86-32, so set error 1e-1
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
-
- *host_x = *gen({2, 3, 32, 32}, cn);
- func->execute();
- //! meybe go to winograd in x86-32, so set error 1e-1
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
- }
-
- TEST(TestGoptInference, ConvertFormatCD4GroupOneConv) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
- };
-
- auto x = mkvar("x", {1, 3, 128, 128});
- // ConvBias
- opr::ConvBias::Param param_conv_bias;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- auto w1 = mkcvar("w1", {1, 16, 3, 3, 3}), b1 = mkcvar("b1", {1, 16, 1, 1});
- auto conv1 = opr::ConvBias::make(x, w1, b1, param_conv_bias);
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- // Convolution
- opr::Convolution::Param param_conv;
- param_conv.pad_h = param_conv.pad_w = 1;
- param_conv.sparse = opr::Convolution::Param::Sparse::GROUP;
- auto w3 = mkcvar("w3", {1, 16, 16, 3, 3});
- auto y = opr::Convolution::make(conv1, w3, param_conv);
-
- SymbolVar y_opt;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- #if MGB_CUDA
- TEST(TestGoptInference, PreProcessCase0) {
- REQUIRE_GPU(1);
- HostTensorGenerator<dtype::Quantized8Asymm, RandomDistribution::UNIFORM> gen(
- dt_quint8(0), dt_quint8(50), 1, 128, 1234);
- auto cn = CompNode::load("gpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
-
- size_t n = 1;
- size_t c = 3;
- size_t h = 16;
- size_t w = 16;
- auto host_x1 = gen({n, c, h, w}, cn);
-
- auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
- auto x_q8 = opr::TypeCvt::make(x, dtype::QuantizedS8(1.f), cn);
- auto zero = DTypeScalar(dtype::QuantizedS8(1.f));
- auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
- auto pad_channel_tensor = opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
- auto paded_x = opr::Concat::make({x_q8, pad_channel_tensor}, 1, cn)
- .reshape({n, 1, 4, h, w});
-
- auto result = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
-
- auto y = result;
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_preprocess();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file("TestGoptInference.PreProcessCase0.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
-
- ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::RelayoutFormat>());
- }
-
- TEST(TestGoptInference, PreProcessCase1) {
- REQUIRE_GPU(1);
- HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
- auto cn = CompNode::load("gpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
-
- size_t n = 1;
- size_t c = 3;
- size_t h = 16;
- size_t w = 16;
- auto host_x1 = gen({n, c, h, w}, cn);
-
- auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
- auto x_u8 = opr::TypeCvt::make(x, dtype::Float32(), cn);
- auto x_s8 = x_u8 - 128;
- auto zero = DTypeScalar(dtype::Float32());
- auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
- auto pad_channel_tensor = opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
- auto paded_x = opr::Concat::make({x_s8, pad_channel_tensor}, 1, cn)
- .reshape({n, 1, 4, h, w});
-
- auto nchw4_out = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
- auto result = opr::TypeCvt::make(nchw4_out, dtype::QuantizedS8(1.f));
-
- auto y = result;
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_preprocess();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file("TestGoptInference.PreProcessCase1.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
-
- ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::RelayoutFormat>());
- }
-
- TEST(TestGoptInference, WarpAndPreProcessCase0) {
- REQUIRE_GPU(1);
- HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
- auto cn = CompNode::load("gpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
-
- size_t n = 1;
- size_t c = 3;
- size_t h = 16;
- size_t w = 16;
- auto host_x1 = gen({n, h, w, c}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
-
- auto mat_host =
- std::make_shared<HostTensorND>(cn, TensorShape{n, 3, 3}, dtype::Float32());
- warp_perspective_mat_gen(*mat_host, n, h, w);
- auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
-
- opr::WarpPerspective::Param warp_param;
- warp_param.format = opr::WarpPerspective::Param::Format::NHWC;
- auto x_warp = opr::WarpPerspective::make(x, mat, TensorShape{h, w}, warp_param);
- auto x_nchw = opr::Dimshuffle::make(x_warp, {0, 3, 1, 2}, 4, cn);
-
- auto x_u8 = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
- auto x_s8 = x_u8 - 128;
- auto zero = DTypeScalar(dtype::Float32());
- auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
- auto pad_channel_tensor = opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
- auto paded_x = opr::Concat::make({x_s8, pad_channel_tensor}, 1, cn)
- .reshape({n, 1, 4, h, w});
-
- auto nchw4_out = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
- auto result = opr::TypeCvt::make(nchw4_out, dtype::QuantizedS8(1.f));
-
- auto y = result;
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_preprocess();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::WarpPerspective>());
-
- ASSERT_EQ(
- opr::WarpPerspective::Param::Format::NHWC_NCHW4_IC_SMALL,
- find_opr<opr::WarpPerspective>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.WarpAndPreProcessCase0.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
- }
-
- TEST(TestGoptInference, PreProcessCaseAutopadNCHW64) {
- REQUIRE_GPU(1);
- HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
- auto cn = CompNode::load("gpu0");
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 75) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 75);
- return;
- }
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
- size_t n = 2;
- size_t c = 3;
- size_t h = 32;
- size_t w = 32;
- auto host_x1 = gen({n, c, h, w}, cn);
-
- auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
- auto x_u8_fp32 = opr::TypeCvt::make(x, dtype::Float32(), cn);
- auto x_s8_fp32 = x_u8_fp32 - 128;
- auto x_s8 = opr::TypeCvt::make(x_s8_fp32, dtype::QuantizedS8(2.5f), cn);
- auto weight = mkcvar("weight", {16, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
- bias = mkcvar("bias", {1, 16, 1, 1}, dtype::QuantizedS32(6.25f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = 1;
- auto result = opr::ConvBias::make(
- x_s8, weight, bias, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
-
- auto y = result;
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw64();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.PreProcessCaseAutopadNCHW64.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
- ASSERT_TRUE(
- find_opr<opr::RelayoutFormat>(y_opt).param().mode ==
- opr::RelayoutFormat::Param::Mode::NCHW_NCHW4);
- }
-
- TEST(TestGoptInference, PreProcessCaseAutopadNHWC) {
- REQUIRE_GPU(1);
- HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
- auto cn = CompNode::load("gpu0");
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 75) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 75);
- return;
- }
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
- size_t n = 2;
- size_t c = 3;
- size_t h = 32;
- size_t w = 32;
- auto host_x1 = gen({n, c, h, w}, cn);
-
- auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
- auto x_u8_fp32 = opr::TypeCvt::make(x, dtype::Float32(), cn);
- auto x_s8_fp32 = x_u8_fp32 - 128;
- auto x_s8 = opr::TypeCvt::make(x_s8_fp32, dtype::QuantizedS8(2.5f), cn);
- auto host_val = std::make_shared<HostTensorND>(cn, dtype::QuantizedS8(2.5f));
- TensorShape scalar{1, 1, 1, 1};
- host_val->resize(scalar);
- auto ptr = host_val->raw_ptr();
- size_t size_bytes =
- TensorLayout{scalar, dtype::QuantizedS8(2.5f)}.span().dist_byte();
- std::memset(ptr, 0, size_bytes);
- auto padding = opr::ImmutableTensor::make(*graph, *host_val);
- padding = opr::Broadcast::make(padding, {n, 1, h, w});
- auto padded_x = opr::Concat::make({x_s8, padding}, 1);
- auto nhwc_x = opr::Dimshuffle::make(padded_x, {0, 2, 3, 1});
- auto weight = mkcvar("weight", {16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- bias = mkcvar("bias", {1, 1, 1, 16}, dtype::QuantizedS32(6.25f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NHWC;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = 1;
- auto result = opr::ConvBias::make(
- nhwc_x, weight, bias, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- auto y = opr::TypeCvt::make(result, dtype::Float32());
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_preprocess();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.PreProcessCaseAutopadNHWC.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
- ASSERT_TRUE(
- find_opr<opr::RelayoutFormat>(y_opt).param().mode ==
- opr::RelayoutFormat::Param::Mode::NCHW_NCHW4);
- }
-
- TEST(TestGoptInference, WarpAndPreProcessCase1) {
- REQUIRE_GPU(1);
- HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
- auto cn = CompNode::load("gpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
-
- size_t n = 1;
- size_t c = 3;
- size_t h = 16;
- size_t w = 16;
- auto host_x1 = gen({n, h, w, c}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
-
- auto mat_host =
- std::make_shared<HostTensorND>(cn, TensorShape{n, 3, 3}, dtype::Float32());
- warp_perspective_mat_gen(*mat_host, n, h, w);
- auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
-
- opr::WarpPerspective::Param warp_param;
- warp_param.format = opr::WarpPerspective::Param::Format::NHWC;
- auto x_warp = opr::WarpPerspective::make(x, mat, TensorShape{h, w}, warp_param);
- auto x_nchw = opr::Dimshuffle::make(x_warp, {0, 3, 1, 2}, 4, cn);
-
- auto result = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
-
- auto y = result;
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_preprocess();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::WarpPerspective>());
-
- ASSERT_EQ(
- opr::WarpPerspective::Param::Format::NHWC_NCHW,
- find_opr<opr::WarpPerspective>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.WarpAndPreProcessCase1.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile(
- {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
- }
-
- #if CUDA_VERSION >= 10020
- TEST(TestGoptInference, FoldingConvDimshuffle) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
- auto nchw42nchw = [](SymbolVar x) {
- auto xshp = opr::GetVarShape::make(x);
- auto cv = [&x](int v) { return x.make_scalar(v); };
- auto sub = [&xshp, &cv](int idx) {
- return opr::IndexAt::make(xshp, {{0, cv(idx)}});
- };
- auto tshp0 = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
- auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
- auto y1 = opr::Reshape::make(y0, tshp0);
- return y1;
- };
-
- auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW4;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(
- x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- y = opr::TypeCvt::make(y, dtype::Float32());
- y = nchw42nchw(y);
- SymbolVar y_fuse, y_non_fuse;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::ShuffleShuffleRemovePass>()
- .add_pass<gopt::FoldingConvBiasDimshufflePass>()
- .add_pass<gopt::ParamFusePass>()
- .apply({{y}})
- .endpoint_vars(),
- y_fuse);
- gopt::modify_opr_algo_strategy_inplace(
- {y_fuse},
- opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy::PROFILE);
- graph->compile({{y_fuse, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.FoldingConvDimshuffle.json"));
- ASSERT_EQ(
- opr::ConvBias::Param::Format::NCHW4_NCHW,
- find_opr<opr::ConvBias>(y_fuse).param().format);
- ASSERT_EQ(0u, find_opr_num<opr::Dimshuffle>(y_fuse));
- unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(), y_non_fuse);
- HostTensorND host_y_fuse, host_y_non_fuse;
- auto func = graph->compile(
- {make_callback_copy(y_fuse, host_y_fuse),
- make_callback_copy(y_non_fuse, host_y_non_fuse)});
- func->execute();
- }
-
- TEST(TestGoptInference, FoldingConvDimshuffleNCHW4NCHW32) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
- auto nchw42nchw32 = [](SymbolVar x) {
- auto xshp = opr::GetVarShape::make(x);
- auto cv = [&x](int v) { return x.make_scalar(v); };
- auto sub = [&xshp, &cv](int idx) {
- return opr::IndexAt::make(xshp, {{0, cv(idx)}});
- };
- auto tshp0 = opr::Concat::make(
- {sub(0), sub(1) / 8, cv(8), sub(2), sub(3), sub(4)}, 0),
- tshp1 = opr::Concat::make(
- {sub(0), sub(1) / 8, sub(2), sub(3), sub(4) * 8}, 0);
- auto y0 = opr::Reshape::make(x, tshp0);
- auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2, 5});
- auto y2 = opr::Reshape::make(y1, tshp1);
- return y2;
- };
-
- auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW4;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(
- x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- y = nchw42nchw32(y);
- y = opr::TypeCvt::make(y, dtype::Float32());
- SymbolVar y_fuse, y_non_fuse;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::FoldingConvBiasDimshufflePass>()
- .add_pass<gopt::ParamFusePass>()
- .apply({{y}})
- .endpoint_vars(),
- y_fuse);
- gopt::modify_opr_algo_strategy_inplace(
- {y_fuse},
- opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy::PROFILE);
- graph->compile({{y_fuse, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.FoldingConvDimshuffleNCHW4NCHW32.json"));
- ASSERT_EQ(
- opr::ConvBias::Param::Format::NCHW4_NCHW32,
- find_opr<opr::ConvBias>(y_fuse).param().format);
- ASSERT_EQ(0u, find_opr_num<opr::Dimshuffle>(y_fuse));
- unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(), y_non_fuse);
- HostTensorND host_y_fuse, host_y_non_fuse;
- auto func = graph->compile(
- {make_callback_copy(y_fuse, host_y_fuse),
- make_callback_copy(y_non_fuse, host_y_non_fuse)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y_fuse, host_y_non_fuse);
- }
-
- TEST(TestGoptInference, FoldingConvDimshuffleNCHW32NCHW4) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- REQUIRE_CUDA_COMPUTE_CAPABILITY(7, 5);
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
- w1 = mkcvar("w1", {16, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b1 = mkcvar("b1", {1, 4, 1, 1, 4}, dtype::QuantizedS32(6.25f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW4;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(
- x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- param.stride_h = param.stride_w = 1;
- y = opr::ConvBias::make(
- y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- y = opr::TypeCvt::make(y, dtype::Float32());
- SymbolVar y_fuse, y_non_fuse;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_fuse);
- }
- graph->compile({{y_fuse, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.FoldingConvDimshuffleNCHW32NCHW4.json"));
- ASSERT_EQ(1u, find_opr_num<opr::Dimshuffle>(y_fuse));
- bool found = false;
- cg::DepOprIter{[&found](cg::OperatorNodeBase* opr) {
- if (!found && opr->same_type<opr::ConvBias>()) {
- opr::ConvBias* cb = &opr->cast_final_safe<opr::ConvBias>();
- if (cb->param().format == opr::ConvBias::Param::Format::NCHW32_NCHW4)
- found = true;
- }
- }}.add(y_fuse.node()->owner_opr());
- EXPECT_TRUE(found);
- unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(), y_non_fuse);
- HostTensorND host_y_fuse, host_y_non_fuse;
- auto func = graph->compile(
- {make_callback_copy(y_fuse, host_y_fuse),
- make_callback_copy(y_non_fuse, host_y_non_fuse)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y_fuse, host_y_non_fuse);
- }
-
- TEST(TestGoptInference, FoldingConvDimshuffleNCHW4NHWC) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- REQUIRE_CUDA_COMPUTE_CAPABILITY(7, 5);
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto x = mkvar("x", {32, 4, 23, 40}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w", {32, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f)),
- w1 = mkcvar("w1", {32, 32, 3, 3}, dtype::QuantizedS4(1.234f)),
- b1 = mkcvar("b1", {1, 32, 1, 1}, dtype::QuantizedS32(12.34567f * 1.234f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(
- x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(12.34567f)});
- y = opr::TypeCvt::make(y, dtype::QuantizedS4(12.34567f));
- y = opr::ConvBias::make(
- y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS4(56.71234f)});
- y = opr::TypeCvt::make(y, dtype::Float32());
- SymbolVar y_fuse, y_non_fuse;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw64();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_fuse);
- }
- using S = opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy;
- S strategy = S::PROFILE;
- gopt::modify_opr_algo_strategy_inplace({y_fuse}, strategy);
- HostTensorND host_y_fuse;
- auto func1 = graph->compile({make_callback_copy(y_fuse, host_y_fuse)});
- func1->execute();
- graph->compile({{y_fuse, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.FoldingConvDimshuffleNCHW4NHWC.json"));
- size_t nr_dimshuffle = find_opr_num<opr::TypeCvt>(y_fuse);
- ASSERT_EQ(2u, nr_dimshuffle);
- bool found = false;
- cg::DepOprIter{[&found](cg::OperatorNodeBase* opr) {
- if (!found && opr->same_type<opr::ConvBias>()) {
- opr::ConvBias* cb = &opr->cast_final_safe<opr::ConvBias>();
- if (cb->param().format == opr::ConvBias::Param::Format::NCHW4_NHWC)
- found = true;
- }
- }}.add(y_fuse.node()->owner_opr());
- EXPECT_TRUE(found);
- unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(), y_non_fuse);
- gopt::modify_opr_algo_strategy_inplace({y_non_fuse}, strategy);
- HostTensorND host_y_non_fuse;
- auto func2 = graph->compile({make_callback_copy(y_non_fuse, host_y_non_fuse)});
- func2->execute();
- MGB_ASSERT_TENSOR_EQ(host_y_fuse, host_y_non_fuse);
- }
- #endif
-
- TEST(TestGoptInference, PaddingChannels) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w", {20, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(
- x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- auto w1 = mkcvar("w1", {24, 20, 3, 3}, dtype::QuantizedS8(2.5f)),
- b1 = mkcvar("b1", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
- auto y1 = opr::ConvBias::make(
- y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- auto w2 = mkcvar("w2", {20, 24, 3, 3}, dtype::QuantizedS8(2.5f)),
- b2 = mkcvar("b2", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
- auto y2 = opr::ConvBias::make(
- y1, w2, b2, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- using ElemMultiMode = opr::ElemwiseMultiType::Param::Mode;
- auto y3 = opr::ElemwiseMultiType::make(
- {y, y2}, {ElemMultiMode::QFUSE_ADD_RELU},
- OperatorNodeConfig{dtype::QuantizedS8{1.2f}});
- y3 = opr::TypeCvt::make(y3, dtype::Float32());
- SymbolVar y3_pad;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass(gopt::PaddingChannelPass::make(
- cg::GraphCommonOptimizeOptions::LayoutTransform::NCHW64))
- .apply({{y3}})
- .endpoint_vars(),
- y3_pad);
- ASSERT_EQ(y3_pad.node()->shape()[1], y3.node()->shape()[1]);
- SmallVector<cg::OperatorNodeBase*> oprs;
- auto cb = [&oprs](cg::OperatorNodeBase* opr) {
- if (opr->same_type<opr::ConvBias>()) {
- oprs.push_back(opr);
- }
- };
- cg::DepOprIter{cb}.add(y3_pad.node()->owner_opr());
- ASSERT_EQ(oprs.size(), 3);
- ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
- ASSERT_EQ(oprs[1]->output(0)->shape()[1], 32);
- ASSERT_EQ(oprs[2]->output(0)->shape()[1], 32);
- HostTensorND t1, t2;
- auto func1 = graph->compile({make_callback_copy(y3, t1)});
- func1->execute();
- auto func2 = graph->compile({make_callback_copy(y3_pad, t2)});
- func2->execute();
- MGB_ASSERT_TENSOR_EQ(t1, t2);
- }
-
- TEST(TestGoptInference, ConcatAfterPaddingChannels) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w", {18, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 18, 1, 1}, dtype::QuantizedS32(6.25f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(
- x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- auto w1 = mkcvar("w1", {18, 18, 3, 3}, dtype::QuantizedS8(2.5f)),
- b1 = mkcvar("b1", {1, 18, 1, 1}, dtype::QuantizedS32(6.25f));
- auto y1 = opr::ConvBias::make(
- y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- // concat at batch dim
- auto y2 = opr::Concat::make({y, y1}, 0);
- y2 = opr::TypeCvt::make(y2, dtype::Float32());
- SymbolVar y2_pad;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass(gopt::PaddingChannelPass::make(
- cg::GraphCommonOptimizeOptions::LayoutTransform::NCHW64))
- .apply({{y2}})
- .endpoint_vars(),
- y2_pad);
- ASSERT_EQ(y2_pad.node()->shape()[1], y2.node()->shape()[1]);
- SmallVector<cg::OperatorNodeBase*> oprs;
- auto cb = [&oprs](cg::OperatorNodeBase* opr) {
- if (opr->same_type<opr::ConvBias>()) {
- oprs.push_back(opr);
- }
- };
- cg::DepOprIter{cb}.add(y2_pad.node()->owner_opr());
- ASSERT_EQ(oprs.size(), 2);
- ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
- ASSERT_EQ(oprs[1]->output(0)->shape()[1], 32);
- HostTensorND t1, t2;
- auto func1 = graph->compile({make_callback_copy(y2, t1)});
- func1->execute();
- auto func2 = graph->compile({make_callback_copy(y2_pad, t2)});
- func2->execute();
- MGB_ASSERT_TENSOR_EQ(t1, t2);
- }
-
- TEST(TestGoptInference, PaddingChannelsWithPooling) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w", {20, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(
- x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- auto w1 = mkcvar("w1", {24, 20, 3, 3}, dtype::QuantizedS8(2.5f)),
- b1 = mkcvar("b1", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
- auto y1 = opr::ConvBias::make(
- y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
-
- opr::Pooling::Param pool_param;
- pool_param.format = opr::Pooling::Param::Format::NCHW;
- y1 = opr::Pooling::make(y1, pool_param);
- y1 = opr::TypeCvt::make(y1, dtype::Float32());
- SymbolVar y1_pad;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass(gopt::PaddingChannelPass::make(
- cg::GraphCommonOptimizeOptions::LayoutTransform::NCHW64))
- .apply({{y1}})
- .endpoint_vars(),
- y1_pad);
- ASSERT_EQ(y1_pad.node()->shape()[1], y1.node()->shape()[1]);
- SmallVector<cg::OperatorNodeBase*> oprs;
- auto cb = [&oprs](cg::OperatorNodeBase* opr) {
- if (opr->same_type<opr::Pooling>()) {
- oprs.push_back(opr);
- }
- };
- cg::DepOprIter{cb}.add(y1_pad.node()->owner_opr());
- ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
- HostTensorND t1, t2;
- auto func1 = graph->compile({make_callback_copy(y1, t1)});
- func1->execute();
- auto func2 = graph->compile({make_callback_copy(y1_pad, t2)});
- func2->execute();
- MGB_ASSERT_TENSOR_EQ(t1, t2);
- }
-
- // FIXME replace cpu with gpu to enable gpu validation
- TEST(TestGoptInference, PaddingChannelsWithWarpPerspective) {
- auto cn = CompNode::load("cpu0");
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
- dtype);
- };
-
- std::shared_ptr<HostTensorND> mat =
- std::make_shared<HostTensorND>(cn, TensorShape{16, 3, 3}, dtype::Float32());
- warp_perspective_mat_gen(*mat, 16, 14, 14);
- auto mat_var = opr::Host2DeviceCopy::make(*graph, mat).rename("mat");
-
- auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w", {20, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(
- x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- auto w1 = mkcvar("w1", {24, 20, 3, 3}, dtype::QuantizedS8(2.5f)),
- b1 = mkcvar("b1", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
- auto y1 = opr::ConvBias::make(
- y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
-
- opr::WarpPerspective::Param warp_param;
- warp_param.format = opr::WarpPerspective::Param::Format::NCHW;
- y1 = opr::WarpPerspective::make(y1, mat_var, TensorShape{14, 14}, warp_param);
- y1 = opr::TypeCvt::make(y1, dtype::Float32());
- SymbolVar y1_pad;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass(gopt::PaddingChannelPass::make(
- cg::GraphCommonOptimizeOptions::LayoutTransform::NCHW64))
- .apply({{y1}})
- .endpoint_vars(),
- y1_pad);
- ASSERT_EQ(y1_pad.node()->shape()[1], y1.node()->shape()[1]);
- SmallVector<cg::OperatorNodeBase*> oprs;
- auto cb = [&oprs](cg::OperatorNodeBase* opr) {
- if (opr->same_type<opr::WarpPerspective>()) {
- oprs.push_back(opr);
- }
- };
- cg::DepOprIter{cb}.add(y1_pad.node()->owner_opr());
- ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
- HostTensorND t1, t2;
- auto func1 = graph->compile({make_callback_copy(y1, t1)});
- func1->execute();
- auto func2 = graph->compile({make_callback_copy(y1_pad, t2)});
- func2->execute();
- MGB_ASSERT_TENSOR_EQ(t1, t2);
- }
-
- #endif
-
- // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
|