You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

inference.cpp 213 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263
  1. #include "megbrain/graph/cg.h"
  2. #include "megbrain/opr/dnn/local.h"
  3. #include "megbrain/test/helper.h"
  4. #include "megbrain/gopt/basic_arith.h"
  5. #include "megbrain/gopt/gtrans.h"
  6. #include "megbrain/gopt/inference.h"
  7. #include "megbrain/opr/basic_arith_wrapper.h"
  8. #include "megbrain/opr/blas.h"
  9. #include "megbrain/opr/dnn/adaptive_pooling.h"
  10. #include "megbrain/opr/dnn/batch_norm.h"
  11. #include "megbrain/opr/dnn/convolution.h"
  12. #include "megbrain/opr/dnn/pooling.h"
  13. #include "megbrain/opr/imgproc.h"
  14. #include "megbrain/opr/io.h"
  15. #include "megbrain/opr/nn_int.h"
  16. #include "megbrain/opr/tensor_gen.h"
  17. #include "megbrain/opr/tensor_manip.h"
  18. #include "megbrain/opr/utility.h"
  19. #include "./helper.h"
  20. #include "megbrain/comp_node_env.h"
  21. #include "megdnn/tensor_format.h"
  22. #include <random>
  23. #include <vector>
  24. #if MGB_CUDA
  25. #include <cudnn.h>
  26. #endif
  27. using namespace mgb;
  28. namespace {
  29. //! find first the operator of specific type; raise exception if not found
  30. template <typename T>
  31. T& find_opr(SymbolVar endpoint) {
  32. T* found = nullptr;
  33. auto cb = [&found](cg::OperatorNodeBase* opr) {
  34. if (!found && opr->same_type<T>()) {
  35. found = &opr->cast_final_safe<T>();
  36. }
  37. };
  38. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  39. mgb_assert(found, "not found opr from %s", endpoint.node()->name().c_str());
  40. return *found;
  41. }
  42. template <typename T>
  43. T& find_opr(SymbolVar endpoint, const std::string& node_name) {
  44. T* found = nullptr;
  45. auto cb = [&found, &node_name](cg::OperatorNodeBase* opr) {
  46. if (!found && opr->same_type<T>() && opr->name() == node_name) {
  47. found = &opr->cast_final_safe<T>();
  48. }
  49. };
  50. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  51. mgb_assert(
  52. found, "not found opr %s from %s", node_name.c_str(),
  53. endpoint.node()->name().c_str());
  54. return *found;
  55. }
  56. template <typename T>
  57. size_t find_opr_num(SymbolVar endpoint) {
  58. size_t opr_num = 0;
  59. auto cb = [&opr_num](cg::OperatorNodeBase* opr) {
  60. if (opr->same_type<T>()) {
  61. opr_num++;
  62. }
  63. };
  64. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  65. return opr_num;
  66. }
  67. class NaiveMegDNNHandleScope {
  68. int m_orig_level;
  69. public:
  70. NaiveMegDNNHandleScope()
  71. : m_orig_level{MegDNNHandle::exchange_default_dbg_level(2)} {
  72. CompNode::finalize();
  73. }
  74. ~NaiveMegDNNHandleScope() {
  75. auto set = MegDNNHandle::exchange_default_dbg_level(m_orig_level);
  76. mgb_assert(set == 2);
  77. CompNode::finalize();
  78. }
  79. };
  80. #if MGB_CUDA
  81. //! this function is only used in TestGoptInference.EnableCHWN4...
  82. void warp_perspective_mat_gen(HostTensorND& mat, size_t N, size_t INP_H, size_t INP_W) {
  83. static std::mt19937 rng(next_rand_seed());
  84. auto rand_real = [&](double lo, double hi) {
  85. return rng() / (std::mt19937::max() + 1.0) * (hi - lo) + lo;
  86. };
  87. auto rand_real2 = [&](double range) { return rand_real(-range, range); };
  88. auto ptr = mat.ptr<float>();
  89. for (size_t i = 0; i < N; ++i) {
  90. auto rot = rand_real(0, M_PI * 2), scale = rand_real(0.8, 1.2),
  91. sheer = rand_real(0.9, 1.1), dy = rand_real2(INP_H * 0.5),
  92. dx = rand_real2(INP_W * 0.5), ky = rand_real2(0.1 / INP_H),
  93. kx = rand_real2(0.1 / INP_W), kb = rand_real2(0.1) + 1;
  94. ptr[0] = ptr[4] = cos(rot) * scale;
  95. ptr[1] = -(ptr[3] = sin(rot) * scale);
  96. ptr[3] *= sheer;
  97. ptr[4] *= sheer;
  98. ptr[2] = dx;
  99. ptr[5] = dy;
  100. ptr[6] = kx;
  101. ptr[7] = ky;
  102. ptr[8] = kb;
  103. ptr += 9;
  104. }
  105. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  106. }
  107. #endif
  108. } // namespace
  109. TEST(TestGoptInference, ParamFuseConstEndPoint) {
  110. constexpr size_t SIZE = 23;
  111. HostTensorGenerator<> gen;
  112. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  113. auto graph = ComputingGraph::make();
  114. graph->options().graph_opt_level = 0;
  115. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  116. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  117. p = opr::Host2DeviceCopy::make(*graph, host_p), q = p + x, a = y + 3,
  118. z0 = a + q, z1 = a + 4;
  119. HostTensorND host_z0, host_z1;
  120. SymbolVar z0_1, z1_1;
  121. unpack_vector(
  122. gopt::GraphOptimizer{}
  123. .add_pass<gopt::ParamFusePass>()
  124. .apply({{z1, z0}})
  125. .endpoint_vars(),
  126. z1_1, z0_1);
  127. auto func = graph->compile(
  128. {make_callback_copy(z0_1, host_z0), make_callback_copy(z1_1, host_z1)});
  129. func->to_json()->writeto_fpath(
  130. output_file("TestGoptInference.ParamFuseEndPoint.json"));
  131. func->execute();
  132. int nr_opr = 0;
  133. func->iter_opr_seq([&](cg::OperatorNodeBase*) {
  134. ++nr_opr;
  135. return true;
  136. });
  137. ASSERT_EQ(8, nr_opr);
  138. auto px = host_x->ptr<float>(), pz0 = host_z0.ptr<float>();
  139. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0],
  140. pz1 = host_z1.ptr<float>()[0];
  141. for (size_t i = 0; i < SIZE; ++i) {
  142. MGB_ASSERT_FLOAT_EQ(px[i] + yv + 3 + pv, pz0[i]);
  143. }
  144. MGB_ASSERT_FLOAT_EQ(yv + 7, pz1);
  145. }
  146. TEST(TestGoptInference, ParamFuse) {
  147. constexpr size_t SIZE = 23;
  148. HostTensorGenerator<> gen;
  149. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  150. auto graph = ComputingGraph::make();
  151. graph->options().graph_opt_level = 0;
  152. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  153. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  154. p = opr::Host2DeviceCopy::make(*graph, host_p),
  155. z = x + y, // endpoint
  156. q = x * y + p; // middle point
  157. SymbolVar z1, q1;
  158. unpack_vector(
  159. gopt::GraphOptimizer{}
  160. .add_pass<gopt::ParamFusePass>()
  161. .apply({{z, q}})
  162. .endpoint_vars(),
  163. z1, q1);
  164. ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
  165. ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
  166. ASSERT_EQ(
  167. q1.node()->owner_opr()->dyn_typeinfo(),
  168. q.node()->owner_opr()->dyn_typeinfo());
  169. HostTensorND host_z, host_q;
  170. auto func = graph->compile(
  171. {make_callback_copy(z1, host_z), make_callback_copy(q1, host_q)});
  172. func->execute();
  173. int nr_opr = 0;
  174. func->iter_opr_seq([&](cg::OperatorNodeBase*) {
  175. ++nr_opr;
  176. return true;
  177. });
  178. ASSERT_EQ(6, nr_opr);
  179. auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(), pq = host_q.ptr<float>();
  180. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
  181. for (size_t i = 0; i < SIZE; ++i) {
  182. MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
  183. MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
  184. }
  185. }
  186. TEST(TestGoptInference, ParamFuseMultiDeviceTensorHolder) {
  187. constexpr size_t SIZE = 23;
  188. HostTensorGenerator<> gen;
  189. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  190. auto graph = ComputingGraph::make();
  191. graph->options().graph_opt_level = 0;
  192. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  193. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  194. p = opr::Host2DeviceCopy::make(*graph, host_p),
  195. z = x + y, //! endpoint
  196. q = x * y + p; //! middle point
  197. SymbolVar z1, q1;
  198. unpack_vector(
  199. gopt::GraphOptimizer{}
  200. .add_pass<gopt::ParamMergePass>()
  201. .apply({{z}})
  202. .endpoint_vars(),
  203. z1);
  204. ASSERT_TRUE(z1.node()
  205. ->owner_opr()
  206. ->input(0)
  207. ->owner_opr()
  208. ->same_type<opr::MultipleDeviceTensorHolder>());
  209. unpack_vector(
  210. gopt::GraphOptimizer{}
  211. .add_pass<gopt::ParamMergePass>()
  212. .add_pass<gopt::ParamFusePass>()
  213. .apply({{z, q}})
  214. .endpoint_vars(),
  215. z1, q1);
  216. ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
  217. ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
  218. ASSERT_EQ(
  219. q1.node()->owner_opr()->dyn_typeinfo(),
  220. q.node()->owner_opr()->dyn_typeinfo());
  221. HostTensorND host_z, host_q;
  222. auto func = graph->compile(
  223. {make_callback_copy(z1, host_z), make_callback_copy(q1, host_q)});
  224. func->execute();
  225. int nr_opr = 0;
  226. func->iter_opr_seq([&](cg::OperatorNodeBase* op) {
  227. ++nr_opr;
  228. return true;
  229. });
  230. ASSERT_EQ(6, nr_opr);
  231. auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(), pq = host_q.ptr<float>();
  232. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
  233. for (size_t i = 0; i < SIZE; ++i) {
  234. MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
  235. MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
  236. }
  237. }
  238. TEST(TestGoptInference, ParamFuseMultiRead) {
  239. HostTensorGenerator<> gen;
  240. auto graph = ComputingGraph::make();
  241. graph->options().graph_opt_level = 0;
  242. auto mkvar = [&](const char* name, const TensorShape& shp) {
  243. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  244. };
  245. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  246. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  247. };
  248. auto x = mkvar("x", {23}), p0 = mkcvar("p0", {1}), p1 = mkcvar("p1", {1}),
  249. z0 = x * (p0 + p1) + x / (p0 + p1);
  250. SymbolVar z1;
  251. unpack_vector(
  252. gopt::GraphOptimizer{}
  253. .add_pass<gopt::ParamFusePass>()
  254. .apply({{z0}})
  255. .endpoint_vars(),
  256. z1);
  257. ASSERT_NE(z0.node(), z1.node());
  258. ASSERT_TRUE(z1.node()
  259. ->owner_opr()
  260. ->input(0)
  261. ->owner_opr()
  262. ->input(1)
  263. ->owner_opr()
  264. ->same_type<opr::SharedDeviceTensor>());
  265. ASSERT_TRUE(z1.node()
  266. ->owner_opr()
  267. ->input(1)
  268. ->owner_opr()
  269. ->input(1)
  270. ->owner_opr()
  271. ->same_type<opr::SharedDeviceTensor>());
  272. HostTensorND host_z0, host_z1;
  273. graph->compile({make_callback_copy(z0, host_z0), make_callback_copy(z1, host_z1)})
  274. ->execute();
  275. MGB_ASSERT_TENSOR_EQ(host_z0, host_z1);
  276. }
  277. TEST(TestGoptInference, ParamFuseStaticInfer) {
  278. HostTensorGenerator<> gen;
  279. auto graph = ComputingGraph::make();
  280. auto mkvar = [&](const char* name, const TensorShape& shp) {
  281. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  282. };
  283. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  284. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  285. };
  286. auto a = mkvar("x", {4}),
  287. b = a.reshape(opr::GetVarShape::make(mkcvar("tshp", {2, 2})));
  288. SymbolVar b1;
  289. unpack_vector(
  290. gopt::GraphOptimizer{}
  291. .add_pass<gopt::ParamFusePass>()
  292. .apply({{b}})
  293. .endpoint_vars(),
  294. b1);
  295. ASSERT_EQ(b1, a.reshape({2, 2}));
  296. }
  297. TEST(TestGoptInference, ParamRedistributeConvMul) {
  298. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  299. HostTensorGenerator<> gen;
  300. auto host_x = gen({N, IC, IH, IW}), host_k = gen({IC}),
  301. host_w = gen({OC, IC, KH, KW});
  302. auto graph = ComputingGraph::make();
  303. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  304. k = opr::Dimshuffle::make(
  305. opr::SharedDeviceTensor::make(*graph, *host_k), {-1, 0, -1, -1}),
  306. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  307. y0 = opr::Convolution::make(x * k, w);
  308. SymbolVar y1;
  309. unpack_vector(
  310. gopt::GraphOptimizer{}
  311. .add_pass<gopt::ParamRedistributePass>()
  312. .apply({{y0}})
  313. .endpoint_vars(),
  314. y1);
  315. ASSERT_NE(y0.node(), y1.node());
  316. HostTensorND host_y0, host_y1;
  317. auto func = graph->compile(
  318. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  319. func->execute();
  320. MGB_ASSERT_TENSOR_EQ(host_y0, host_y1);
  321. }
  322. TEST(TestGoptInference, ParamRedistributeConvMulUniqReader) {
  323. constexpr size_t N = 4, C = 3, IH = 5, IW = 4, KH = 1, KW = 1;
  324. HostTensorGenerator<> gen;
  325. auto host_x = gen({N, C, IH, IW}), host_k = gen({C}), host_w = gen({C, C, KH, KW});
  326. auto graph = ComputingGraph::make();
  327. graph->options().graph_opt_level = 0;
  328. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  329. k = opr::Dimshuffle::make(
  330. opr::SharedDeviceTensor::make(*graph, *host_k) + 2, {-1, 0, -1, -1}),
  331. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  332. // y0 should be replaced
  333. y0 = opr::powf(opr::Convolution::make(x * k, w).rename("y0") + 2, 2),
  334. y0k = (y0 * k).rename("y0k"),
  335. // y0k is accessed twice, so it should not be replaced
  336. y1 = opr::Convolution::make(y0k, w).rename("y1"), z0 = y1 / y0k;
  337. SymbolVar z1;
  338. unpack_vector(
  339. gopt::GraphOptimizer{}
  340. .add_pass<gopt::ParamRedistributePass>()
  341. .apply({{z0}})
  342. .endpoint_vars(),
  343. z1);
  344. ASSERT_NE(z0.node(), z1.node());
  345. auto y1_repl = z1.node()->owner_opr()->input(0)->owner_opr();
  346. ASSERT_TRUE(y1_repl->same_type<opr::Convolution>());
  347. ASSERT_EQ(y1_repl->input(0), z1.node()->owner_opr()->input(1));
  348. HostTensorND host_z0, host_z1;
  349. auto func = graph->compile(
  350. {make_callback_copy(z0, host_z0), make_callback_copy(z1, host_z1)});
  351. func->execute();
  352. MGB_ASSERT_TENSOR_NEAR(host_z0, host_z1, 5e-5);
  353. }
  354. TEST(TestGoptInference, ParamRedistributeMulConvMul) {
  355. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  356. HostTensorGenerator<> gen;
  357. auto host_x = gen({N, IC, IH, IW}), host_k1 = gen({IC}),
  358. host_k2 = gen({1, OC, 1, 1}), host_w = gen({OC, IC, KH, KW});
  359. auto graph = ComputingGraph::make();
  360. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  361. k1 = opr::Dimshuffle::make(
  362. opr::SharedDeviceTensor::make(*graph, *host_k1), {-1, 0, -1, -1}),
  363. k2 = opr::SharedDeviceTensor::make(*graph, *host_k2),
  364. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  365. y0 = opr::Convolution::make(x * k1, w) * k2;
  366. SymbolVar y1;
  367. unpack_vector(
  368. gopt::GraphOptimizer{}
  369. .add_pass<gopt::ParamRedistributePass>()
  370. .add_pass<gopt::ParamFusePass>()
  371. .apply({{y0}})
  372. .endpoint_vars(),
  373. y1);
  374. auto y1opr = y1.node()->owner_opr();
  375. ASSERT_TRUE(y1opr->same_type<opr::Convolution>());
  376. ASSERT_EQ(y1opr->input(0), x.node());
  377. HostTensorND host_y0, host_y1;
  378. auto func = graph->compile(
  379. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  380. func->execute();
  381. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 5e-6);
  382. }
  383. TEST(TestGoptInference, ParamRedistributeConvAdd) {
  384. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  385. HostTensorGenerator<> gen;
  386. auto host_x = gen({N, IC, IH, IW}), host_b = gen({IC}),
  387. host_w = gen({OC, IC, KH, KW});
  388. auto graph = ComputingGraph::make();
  389. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  390. b = opr::Dimshuffle::make(
  391. opr::SharedDeviceTensor::make(*graph, *host_b), {-1, 0, -1, -1}),
  392. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  393. y0 = opr::Convolution::make(x + b, w);
  394. SymbolVar y1;
  395. unpack_vector(
  396. gopt::GraphOptimizer{}
  397. .add_pass<gopt::ParamRedistributePass>()
  398. .add_pass<gopt::ParamFusePass>()
  399. .apply({{y0}})
  400. .endpoint_vars(),
  401. y1);
  402. ASSERT_NE(y0.node(), y1.node());
  403. HostTensorND host_y0, host_y1;
  404. auto func = graph->compile(
  405. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  406. func->execute();
  407. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  408. }
  409. TEST(TestGoptInference, ParamRedistributeDistThenReasso) {
  410. constexpr size_t N = 4, IC0 = 3, IC1 = 6, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  411. HostTensorGenerator<> gen;
  412. auto graph = ComputingGraph::make();
  413. auto mkvar = [&](const char* name, const TensorShape& shp) {
  414. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  415. };
  416. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  417. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  418. };
  419. auto x0 = mkvar("x0", {N, IC0, IH, IW}), x1 = mkvar("x1", {N, IC1, IH, IW}),
  420. k0 = opr::Dimshuffle::make(mkcvar("x1_", {IC0}), {-1, 0, -1, -1}).rename("x1"),
  421. w0 = mkcvar("w0", {OC, IC0, KH, KW}), k1 = mkcvar("k1", {1, IC1, 1, 1}),
  422. w1 = mkcvar("w1", {OC, IC1, KH, KW}), b0 = mkvar("b0", {1, OC, 1, 1}),
  423. b1 = mkcvar("b1", {1}), k2 = mkcvar("k2", {1}),
  424. y0 = (opr::Convolution::make(x0 * k0, w0) +
  425. opr::Convolution::make(x1 + k1, w1) + b0 + b1) *
  426. k2;
  427. SymbolVar y1;
  428. unpack_vector(
  429. gopt::GraphOptimizer{}
  430. .add_pass<gopt::ParamRedistributePass>()
  431. .add_pass<gopt::ReorderArithChainPass>(
  432. gopt::ConstVarType::IMMUTABLE_AND_PARAM)
  433. .add_pass<gopt::ParamFusePass>()
  434. .apply({{y0}})
  435. .endpoint_vars(),
  436. y1);
  437. ASSERT_NE(y0.node(), y1.node());
  438. HostTensorND host_y0, host_y1;
  439. auto func = graph->compile(
  440. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  441. func->execute();
  442. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  443. auto chain = gopt::extract_opr_leaves(y1.node(), [](cg::OperatorNodeBase* opr) {
  444. return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
  445. });
  446. size_t nr_conv = 0;
  447. for (auto i : chain) {
  448. auto opr = i->owner_opr();
  449. if (opr->same_type<opr::Convolution>()) {
  450. ++nr_conv;
  451. ASSERT_TRUE(opr->input(0)->owner_opr()->same_type<opr::Host2DeviceCopy>());
  452. ASSERT_TRUE(
  453. opr->input(1)->owner_opr()->same_type<opr::SharedDeviceTensor>());
  454. }
  455. }
  456. ASSERT_EQ(2u, nr_conv);
  457. ASSERT_EQ(4u, chain.size());
  458. }
  459. TEST(TestGoptInference, ParamRedistributeMultiChange) {
  460. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  461. HostTensorGenerator<> gen;
  462. auto graph = ComputingGraph::make();
  463. graph->options().graph_opt_level = 0;
  464. auto mkvar = [&](const char* name, const TensorShape& shp) {
  465. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  466. };
  467. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  468. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  469. };
  470. auto x = mkvar("x", {N, IC, IH, IW}), k0 = mkcvar("k0", {1, IC, 1, 1}),
  471. b0 = mkcvar("b0", {1, IC, 1, 1}), k1 = mkcvar("k0", {1}),
  472. b1 = mkcvar("b0", {1}), w = mkcvar("w", {OC, IC, KH, KW}),
  473. y0 = (opr::Convolution::make(x * k0 + b0, w) + b1) * k1;
  474. SymbolVar y1;
  475. unpack_vector(
  476. gopt::GraphOptimizer{}
  477. .add_pass<gopt::ParamRedistributePass>()
  478. .add_pass<gopt::ParamFusePass>()
  479. .apply({{y0}})
  480. .endpoint_vars(),
  481. y1);
  482. ASSERT_NE(y0.node(), y1.node());
  483. HostTensorND host_y0, host_y1;
  484. auto func = graph->compile(
  485. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  486. func->execute();
  487. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  488. auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
  489. ASSERT_TRUE(y1elem);
  490. auto yconv = y1elem->input(0)->owner_opr();
  491. if (!yconv->same_type<opr::Convolution>())
  492. yconv = y1elem->input(1)->owner_opr();
  493. ASSERT_TRUE(yconv->same_type<opr::Convolution>());
  494. ASSERT_EQ(x.node(), yconv->input(0));
  495. }
  496. TEST(TestGoptInference, ParamRedistributeMultiReader) {
  497. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  498. HostTensorGenerator<> gen;
  499. auto graph = ComputingGraph::make();
  500. graph->options().graph_opt_level = 0;
  501. auto mkvar = [&](const char* name, const TensorShape& shp) {
  502. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  503. };
  504. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  505. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  506. };
  507. auto x = mkvar("x", {N, IC, IH, IW}), k = mkcvar("k", {1, OC, 1, 1}),
  508. w = mkcvar("w", {OC, IC, KH, KW});
  509. auto conv = opr::Convolution::make(x, w);
  510. auto t = conv * k;
  511. auto y0 = t * 4.2f + t * 2.4f;
  512. SymbolVar y1;
  513. unpack_vector(
  514. gopt::GraphOptimizer{}
  515. .add_pass<gopt::ParamRedistributePass>()
  516. .add_pass<gopt::ParamFusePass>()
  517. .apply({{y0}})
  518. .endpoint_vars(),
  519. y1);
  520. ASSERT_NE(y0.node(), y1.node());
  521. HostTensorND host_y0, host_y1;
  522. auto func = graph->compile(
  523. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  524. func->execute();
  525. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  526. auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
  527. ASSERT_TRUE(y1elem);
  528. auto ymul0 = gopt::as_elem_opr(y1elem->input(0), opr::Elemwise::Mode::MUL),
  529. ymul1 = gopt::as_elem_opr(y1elem->input(1), opr::Elemwise::Mode::MUL);
  530. ASSERT_TRUE(ymul0);
  531. ASSERT_TRUE(ymul1);
  532. auto yconv = ymul0->input(0)->owner_opr();
  533. if (!yconv->same_type<opr::Convolution>()) {
  534. yconv = ymul0->input(1)->owner_opr();
  535. }
  536. ASSERT_TRUE(yconv->same_type<opr::Convolution>());
  537. if (ymul1->input(0) != yconv->output(0)) {
  538. ASSERT_EQ(yconv->output(0), ymul1->input(1));
  539. }
  540. ASSERT_EQ(x.node(), yconv->input(0));
  541. }
  542. TEST(TestGoptInference, ParamFuseBiasMerge) {
  543. HostTensorGenerator<> gen;
  544. auto graph = ComputingGraph::make();
  545. graph->options().graph_opt_level = 0;
  546. auto mkvar = [&](const char* name, const TensorShape& shp) {
  547. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  548. };
  549. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  550. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  551. };
  552. auto x = mkvar("x", {6, 3, 8, 8}), w1 = mkcvar("w1", {4, 3, 3, 3}),
  553. w2 = mkcvar("w2", {4, 3, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
  554. b2 = mkcvar("b2", {1, 4, 1, 1}), y1 = opr::Convolution::make(x, w1) + b1,
  555. y2 = opr::Convolution::make(x, w2) + b2, y = y1 + y2;
  556. SymbolVar y_opt;
  557. unpack_vector(gopt::optimize_for_inference({y}), y_opt);
  558. HostTensorND host_y, host_y_opt;
  559. auto func = graph->compile(
  560. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  561. func->execute();
  562. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  563. graph->compile({{y_opt, {}}})
  564. ->to_json()
  565. ->writeto_fpath(output_file("TestGoptInference.ParamFuseConvMerge.json"));
  566. auto chain = gopt::extract_opr_leaves(y_opt.node(), [](cg::OperatorNodeBase* opr) {
  567. return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
  568. });
  569. ASSERT_EQ(3u, chain.size());
  570. }
  571. TEST(TestGoptInference, Float16IOFloat32Compute) {
  572. constexpr size_t INP_H = 10, INP_W = 10;
  573. HostTensorGenerator<> gen;
  574. auto graph = ComputingGraph::make();
  575. auto mkvar = [&](const char* name, const TensorShape& shp) {
  576. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  577. };
  578. graph->options().graph_opt_level = 0;
  579. auto a = mkvar("a", {1, 4, INP_H, INP_W}), s0 = mkvar("s0", {20, 3, INP_H, INP_W}),
  580. s1 = mkvar("s1", {4, 3, 1, 1});
  581. auto b = opr::Convolution::make(s0, s1, {}, {});
  582. auto y = a + b;
  583. y = opr::Concat::make({y, -y}, 0);
  584. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  585. SymbolVar y_opt;
  586. auto options = gopt::OptimizeForInferenceOptions{};
  587. options.enable_f16_io_f32_comp();
  588. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  589. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  590. HostTensorND host_y, host_y_opt;
  591. auto func = graph->compile(
  592. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  593. func->execute();
  594. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  595. }
  596. TEST(TestGoptInference, Float16IOFloat32ComputeDeConv) {
  597. constexpr size_t INP_H = 10, INP_W = 10;
  598. HostTensorGenerator<> gen;
  599. auto graph = ComputingGraph::make();
  600. auto mkvar = [&](const char* name, const TensorShape& shp) {
  601. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  602. };
  603. graph->options().graph_opt_level = 0;
  604. auto s0 = mkvar("s0", {5, 5, 3, 3}), s1 = mkvar("s1", {1, 5, INP_H, INP_W});
  605. auto y = opr::ConvolutionBackwardData::make(s0, s1, {}, {});
  606. SymbolVar y_opt;
  607. auto options = gopt::OptimizeForInferenceOptions{};
  608. options.enable_f16_io_f32_comp();
  609. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  610. ASSERT_EQ(
  611. find_opr<opr::ConvolutionBackwardData>(y_opt).param().compute_mode,
  612. opr::ConvBias::Param::ConvBias::ComputeMode::FLOAT32);
  613. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  614. HostTensorND host_y, host_y_opt;
  615. auto func = graph->compile(
  616. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  617. func->execute();
  618. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-2);
  619. }
  620. TEST(TestGoptInference, Float16IOFloat32ComputeWarpPerspective) {
  621. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  622. HostTensorGenerator<> gen;
  623. auto graph = ComputingGraph::make();
  624. auto mkvar = [&](const char* name, const TensorShape& shp) {
  625. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  626. };
  627. graph->options().graph_opt_level = 0;
  628. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  629. float value1 = M_PI, value2 = 0.6;
  630. auto gen_mat = [&](HostTensorND& mat) {
  631. auto ptr = mat.ptr<float>();
  632. for (size_t i = 0; i < N; ++i) {
  633. auto rot = value1, scale = value2, sheer = value1, dy = value2, dx = value2,
  634. ky = value2, kx = value2, kb = value2;
  635. ptr[0] = ptr[4] = cos(rot) * scale;
  636. ptr[1] = -(ptr[3] = sin(rot) * scale);
  637. ptr[3] *= sheer;
  638. ptr[4] *= sheer;
  639. ptr[2] = dx;
  640. ptr[5] = dy;
  641. ptr[6] = kx;
  642. ptr[7] = ky;
  643. ptr[8] = kb;
  644. ptr += 9;
  645. }
  646. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  647. };
  648. auto mat_host = std::make_shared<HostTensorND>(
  649. a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
  650. gen_mat(*mat_host);
  651. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  652. TensorShape out_shp{20, 20};
  653. auto y = opr::WarpPerspective::make(a, mat, out_shp);
  654. SymbolVar y_opt;
  655. auto options = gopt::OptimizeForInferenceOptions{};
  656. options.enable_f16_io_f32_comp();
  657. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  658. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  659. HostTensorND host_y, host_y_opt;
  660. auto func = graph->compile(
  661. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  662. func->execute();
  663. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  664. }
  665. TEST(TestGoptInference, Float16IOFloat32ComputeRemap) {
  666. auto cn = CompNode::load("cpu1");
  667. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  668. HostTensorGenerator<> gen;
  669. auto graph = ComputingGraph::make();
  670. auto mkvar = [&](const char* name, const TensorShape& shp) {
  671. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  672. };
  673. graph->options().graph_opt_level = 0;
  674. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  675. auto gen_map = [&](HostTensorND& mat) {
  676. auto ptr = mat.ptr<float>();
  677. for (size_t n = 0; n < N; ++n) {
  678. for (int h = 0; h < 5; ++h) {
  679. for (int w = 0; w < 5; ++w) {
  680. *ptr++ = (h * 5 * 2) + 5 * 2 + 0;
  681. *ptr++ = (h * 5 * 2) + 5 * 2 + 1;
  682. }
  683. }
  684. }
  685. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  686. };
  687. auto map_host = std::make_shared<HostTensorND>(
  688. a.node()->comp_node(), TensorShape{N, 5, 5, 2}, dtype::Float32());
  689. gen_map(*map_host);
  690. auto map = opr::Host2DeviceCopy::make(*graph, map_host).rename("map");
  691. auto y = opr::Remap::make(a, map);
  692. SymbolVar y_opt;
  693. auto options = gopt::OptimizeForInferenceOptions{};
  694. options.enable_f16_io_f32_comp();
  695. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  696. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  697. HostTensorND host_y, host_y_opt;
  698. auto func = graph->compile(
  699. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  700. func->execute();
  701. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  702. }
  703. TEST(TestGoptInference, Uint8IOFloat16ComputeWarpPerspective) {
  704. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  705. HostTensorGenerator<dtype::Uint8> gen_uint8;
  706. auto graph = ComputingGraph::make();
  707. auto mkvar = [&](const char* name, const TensorShape& shp) {
  708. return opr::Host2DeviceCopy::make(*graph, gen_uint8(shp)).rename(name);
  709. };
  710. graph->options().graph_opt_level = 0;
  711. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  712. float value1 = M_PI, value2 = 0.6;
  713. auto gen_mat = [&](HostTensorND& mat) {
  714. auto ptr = mat.ptr<float>();
  715. for (size_t i = 0; i < N; ++i) {
  716. auto rot = value1, scale = value2, sheer = value1, dy = value2, dx = value2,
  717. ky = value2, kx = value2, kb = value2;
  718. ptr[0] = ptr[4] = cos(rot) * scale;
  719. ptr[1] = -(ptr[3] = sin(rot) * scale);
  720. ptr[3] *= sheer;
  721. ptr[4] *= sheer;
  722. ptr[2] = dx;
  723. ptr[5] = dy;
  724. ptr[6] = kx;
  725. ptr[7] = ky;
  726. ptr[8] = kb;
  727. ptr += 9;
  728. }
  729. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  730. };
  731. auto mat_host = std::make_shared<HostTensorND>(
  732. a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
  733. gen_mat(*mat_host);
  734. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  735. TensorShape out_shp{20, 20};
  736. auto y = opr::WarpPerspective::make(a, mat, out_shp);
  737. SymbolVar y_opt;
  738. auto options = gopt::OptimizeForInferenceOptions{};
  739. options.enable_f16_io_comp();
  740. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  741. ASSERT_EQ(y_opt.dtype(), dtype::Uint8());
  742. HostTensorND host_y, host_y_opt;
  743. auto func = graph->compile(
  744. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  745. func->execute();
  746. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  747. }
  748. TEST(TestGoptInference, Float32TOFloat16) {
  749. CompNode cn = CompNode::load("cpu0");
  750. HostTensorGenerator<> gen(0, 1, 0);
  751. auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  752. host_x2 = gen({4, 3, 1, 1}, cn);
  753. auto graph = ComputingGraph::make();
  754. auto make_f32_to_f16_graph = [&]() {
  755. graph->options().graph_opt_level = 0;
  756. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  757. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  758. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  759. auto b = opr::Convolution::make(d1, d2, {}, {});
  760. auto y = d0 + b;
  761. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  762. SymbolVar y_opt;
  763. auto options = gopt::OptimizeForInferenceOptions{};
  764. options.enable_f16_io_comp();
  765. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  766. return y_opt;
  767. };
  768. auto make_f16_graph = [&]() {
  769. auto d0 = opr::TypeCvt::make(
  770. opr::Host2DeviceCopy::make(*graph, host_x0), dtype::Float16{}),
  771. d1 = opr::TypeCvt::make(
  772. opr::Host2DeviceCopy::make(*graph, host_x1), dtype::Float16{}),
  773. d2 = opr::TypeCvt::make(
  774. opr::SharedDeviceTensor::make(*graph, *host_x2), dtype::Float16{});
  775. auto b = opr::Convolution::make(d1, d2, {}, {});
  776. SymbolVar y = d0 + b;
  777. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  778. y = opr::TypeCvt::make(y, dtype::Float32{});
  779. return y;
  780. };
  781. auto y_opt = make_f32_to_f16_graph();
  782. auto y = make_f16_graph();
  783. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  784. ASSERT_EQ(y.dtype(), dtype::Float32{});
  785. HostTensorND host_y_opt, host_y;
  786. auto func = graph->compile(
  787. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  788. func->execute();
  789. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  790. }
  791. TEST(TestGoptInference, Float32TOFloat16C32) {
  792. CompNode cn = CompNode::load("cpu0");
  793. HostTensorGenerator<> gen(0, 1, 0);
  794. auto host_x0 = gen({1, 4, 1, 1}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  795. host_x2 = gen({4, 3, 1, 1}, cn);
  796. auto graph = ComputingGraph::make();
  797. auto make_f32_to_f16_graph = [&]() {
  798. graph->options().graph_opt_level = 0;
  799. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  800. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  801. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  802. auto y = opr::ConvBias::make(d1, d2, d0);
  803. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  804. SymbolVar y_opt;
  805. auto options = gopt::OptimizeForInferenceOptions{};
  806. options.enable_f16_io_f32_comp();
  807. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  808. return y_opt;
  809. };
  810. auto make_f16_graph = [&]() {
  811. auto d0 = opr::TypeCvt::make(
  812. opr::TypeCvt::make(
  813. opr::Host2DeviceCopy::make(*graph, host_x0),
  814. dtype::Float16{}),
  815. dtype::Float32{}),
  816. d1 = opr::TypeCvt::make(
  817. opr::TypeCvt::make(
  818. opr::Host2DeviceCopy::make(*graph, host_x1),
  819. dtype::Float16{}),
  820. dtype::Float32{}),
  821. d2 = opr::TypeCvt::make(
  822. opr::TypeCvt::make(
  823. opr::SharedDeviceTensor::make(*graph, *host_x2),
  824. dtype::Float16{}),
  825. dtype::Float32{});
  826. auto y = opr::ConvBias::make(d1, d2, d0);
  827. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  828. y = opr::TypeCvt::make(
  829. opr::TypeCvt::make(y, dtype::Float16{}), dtype::Float32{});
  830. return y;
  831. };
  832. auto y_opt = make_f32_to_f16_graph();
  833. auto y = make_f16_graph();
  834. ASSERT_EQ(
  835. find_opr<opr::ConvBias>(y_opt).param().compute_mode,
  836. opr::ConvBias::Param::ConvBias::ComputeMode::FLOAT32);
  837. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  838. ASSERT_EQ(y.dtype(), dtype::Float32{});
  839. HostTensorND host_y_opt, host_y;
  840. auto func = graph->compile(
  841. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  842. func->execute();
  843. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  844. }
  845. TEST(TestGoptInference, Float32TOFloat16EndpointElemwise) {
  846. CompNode cn = CompNode::load("cpu0");
  847. HostTensorGenerator<> gen(0, 1, 0);
  848. auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  849. host_x2 = gen({4, 3, 1, 1}, cn);
  850. auto graph = ComputingGraph::make();
  851. auto make_f32_to_f16_graph = [&]() {
  852. graph->options().graph_opt_level = 0;
  853. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  854. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  855. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  856. auto b = opr::Convolution::make(d1, d2, {}, {});
  857. auto y = d0 + b;
  858. SymbolVar y_opt;
  859. auto options = gopt::OptimizeForInferenceOptions{};
  860. options.enable_f16_io_comp();
  861. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  862. return y_opt;
  863. };
  864. auto make_f16_graph = [&]() {
  865. auto d0 = opr::TypeCvt::make(
  866. opr::Host2DeviceCopy::make(*graph, host_x0), dtype::Float16{}),
  867. d1 = opr::TypeCvt::make(
  868. opr::Host2DeviceCopy::make(*graph, host_x1), dtype::Float16{}),
  869. d2 = opr::TypeCvt::make(
  870. opr::SharedDeviceTensor::make(*graph, *host_x2), dtype::Float16{});
  871. auto b = opr::Convolution::make(d1, d2, {}, {});
  872. SymbolVar y = d0 + b;
  873. y = opr::TypeCvt::make(y, dtype::Float32{});
  874. return y;
  875. };
  876. auto y_opt = make_f32_to_f16_graph();
  877. auto y = make_f16_graph();
  878. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  879. ASSERT_EQ(y.dtype(), dtype::Float32{});
  880. HostTensorND host_y_opt, host_y;
  881. auto func = graph->compile(
  882. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  883. func->execute();
  884. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  885. }
  886. TEST(TestGoptInference, Float32TOFloat16Linspace) {
  887. CompNode cn = CompNode::load("cpu0");
  888. HostTensorGenerator<> gen(0, 1, 0);
  889. auto host_x = gen({3, 1}, cn);
  890. auto graph = ComputingGraph::make();
  891. auto make_f32_to_f16_graph = [&]() {
  892. graph->options().graph_opt_level = 0;
  893. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  894. auto xshp = opr::GetVarShape::make(x);
  895. auto cv = [&x](int v) { return x.make_scalar(v); };
  896. auto sub = [&xshp, &cv](int idx) {
  897. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  898. };
  899. auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
  900. auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
  901. auto y = opr::Reshape::make(lin, shp);
  902. auto mm = opr::MatrixMul::make(x, y);
  903. SymbolVar mm_opt;
  904. auto options = gopt::OptimizeForInferenceOptions{};
  905. options.enable_f16_io_comp();
  906. unpack_vector(gopt::optimize_for_inference({mm}, options), mm_opt);
  907. return mm_opt;
  908. };
  909. auto make_f16_graph = [&]() {
  910. auto x = opr::TypeCvt::make(
  911. opr::Host2DeviceCopy::make(*graph, host_x), dtype::Float16());
  912. auto xshp = opr::GetVarShape::make(x);
  913. auto cv = [&x](int v) { return x.make_scalar(v); };
  914. auto sub = [&xshp, &cv](int idx) {
  915. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  916. };
  917. auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
  918. lin = opr::TypeCvt::make(lin, dtype::Float16());
  919. auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
  920. auto y = opr::Reshape::make(lin, shp);
  921. auto mm = opr::MatrixMul::make(x, y);
  922. mm = opr::TypeCvt::make(mm, dtype::Float32{});
  923. return mm;
  924. };
  925. auto y_opt = make_f32_to_f16_graph();
  926. auto y = make_f16_graph();
  927. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  928. ASSERT_EQ(y.dtype(), dtype::Float32{});
  929. HostTensorND host_y_opt, host_y;
  930. auto func = graph->compile(
  931. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  932. func->execute();
  933. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  934. }
  935. TEST(TestGoptInference, Float32TOFloat16Endpoints) {
  936. HostTensorGenerator<> gen;
  937. auto graph = ComputingGraph::make();
  938. auto mkvar = [&](const char* name, const TensorShape& shp) {
  939. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  940. };
  941. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  942. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  943. };
  944. graph->options().graph_opt_level = 0;
  945. opr::Convolution::Param param;
  946. param.pad_h = param.pad_w = 0;
  947. auto x = mkvar("x", {8, 8, 8, 8}), y = mkvar("y", {8, 8, 8, 8}),
  948. w = mkcvar("w", {4, 8, 3, 3}), z = opr::Convolution::make(x + y, w, param);
  949. auto options = gopt::OptimizeForInferenceOptions{};
  950. options.enable_f16_io_f32_comp();
  951. SymbolVarArray out = gopt::optimize_for_inference({x + y, z}, options);
  952. ASSERT_EQ(out[0].dtype(), dtype::Float32());
  953. ASSERT_EQ(out[1].dtype(), dtype::Float32());
  954. ASSERT_EQ(out[0].node()->owner_opr()->input(0)->dtype(), dtype::Float16());
  955. ASSERT_EQ(out[1].node()->owner_opr()->input(0)->dtype(), dtype::Float16());
  956. }
  957. TEST(TestGoptInference, ConvertFormatNHWCD4) {
  958. // hwcd4 is only supported in naive handle
  959. NaiveMegDNNHandleScope naive_megdnn_handle;
  960. HostTensorGenerator<> gen;
  961. auto cn = CompNode::load("cpu0");
  962. auto graph = ComputingGraph::make();
  963. graph->options().graph_opt_level = 0;
  964. auto mkvar = [&](const char* name, const TensorShape& shp) {
  965. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  966. };
  967. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  968. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  969. };
  970. auto host_x = gen({8, 8, 8, 8}, cn);
  971. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  972. opr::Convolution::Param param;
  973. param.pad_h = param.pad_w = 0;
  974. auto w1 = mkcvar("w1", {4, 8, 3, 3}), conv = opr::Convolution::make(x, w1, param);
  975. auto shape_of = opr::GetVarShape::make(conv);
  976. auto subtensor = opr::Subtensor::make(
  977. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  978. 0, x.make_scalar(2), None, x.make_scalar(1))});
  979. opr::Resize::Param param_resize;
  980. param_resize.format = opr::Resize::Param::Format::NCHW;
  981. auto resize = opr::ResizeForward::make(conv, subtensor * 2, param_resize);
  982. auto mat = mkcvar("mat", {8, 3, 3}),
  983. warp = opr::WarpPerspectiveForward::make(
  984. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  985. auto b = mkvar("b", {1, 4, 1, 1}),
  986. elem = opr::Elemwise::make({warp + b}, opr::Elemwise::Param::Mode::RELU);
  987. param.pad_h = param.pad_w = 1;
  988. auto w2 = mkcvar("w2", {4, 4, 3, 3}), y = opr::Convolution::make(elem, w2, param),
  989. z = opr::AxisAddRemove::make(y, {opr::AxisAddRemove::AxisDesc::make_add(0)});
  990. SymbolVar y_opt, z_opt;
  991. auto options = gopt::OptimizeForInferenceOptions{};
  992. options.enable_nhwcd4();
  993. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  994. unpack_vector(gopt::optimize_for_inference({z}, options), z_opt);
  995. ASSERT_EQ(
  996. opr::Convolution::Param::Format::NHWCD4,
  997. find_opr<opr::Convolution>(y_opt).param().format);
  998. ASSERT_EQ(
  999. TensorFormat::Type::DEFAULT,
  1000. find_opr<opr::AxisAddRemove>(z_opt).input(0)->format().type());
  1001. ASSERT_EQ(4, find_opr<opr::AxisAddRemove>(z_opt).input(0)->shape().ndim);
  1002. graph->compile({{y_opt, {}}})
  1003. ->to_json()
  1004. ->writeto_fpath(output_file("TestGoptInference.ConvertFormatNHWCD4.json"));
  1005. HostTensorND host_y_opt, host_y;
  1006. auto func = graph->compile(
  1007. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1008. func->execute();
  1009. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1010. *host_x = *gen({8, 8, 16, 16}, cn);
  1011. func->execute();
  1012. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1013. }
  1014. #if MGB_OPENCL
  1015. #include "megcore_opencl.h"
  1016. #define REQUIRE_OPENCL() \
  1017. do { \
  1018. if (!CompNode::get_device_count(CompNode::DeviceType::OPENCL)) { \
  1019. return; \
  1020. } \
  1021. } while (0)
  1022. TEST(TestGoptInference, ConvertFormatNHWCD4OpenCL) {
  1023. REQUIRE_OPENCL();
  1024. HostTensorGenerator<> gen;
  1025. auto cn = CompNode::load("openclx");
  1026. auto graph = ComputingGraph::make();
  1027. graph->options().graph_opt_level = 0;
  1028. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1029. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1030. };
  1031. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1032. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1033. };
  1034. auto host_x = gen({8, 8, 8, 8}, cn);
  1035. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1036. opr::Convolution::Param param;
  1037. param.pad_h = param.pad_w = 0;
  1038. auto w1 = mkcvar("w1", {4, 8, 3, 3}), conv = opr::Convolution::make(x, w1, param);
  1039. auto shape_of = opr::GetVarShape::make(conv);
  1040. auto subtensor = opr::Subtensor::make(
  1041. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  1042. 0, x.make_scalar(2), None, x.make_scalar(1))});
  1043. opr::Resize::Param param_resize;
  1044. param_resize.format = opr::Resize::Param::Format::NCHW;
  1045. auto resize = opr::ResizeForward::make(conv, subtensor * 2, param_resize);
  1046. auto mat = mkcvar("mat", {8, 3, 3}),
  1047. warp = opr::WarpPerspectiveForward::make(
  1048. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  1049. auto b = mkvar("b", {1, 4, 1, 1}),
  1050. elem = opr::Elemwise::make({warp + b}, opr::Elemwise::Param::Mode::RELU);
  1051. param.pad_h = param.pad_w = 1;
  1052. auto w2 = mkcvar("w2", {4, 4, 3, 3}), y = opr::Convolution::make(elem, w2, param),
  1053. z = opr::AxisAddRemove::make(y, {opr::AxisAddRemove::AxisDesc::make_add(0)});
  1054. SymbolVar y_opt, z_opt;
  1055. auto options = gopt::OptimizeForInferenceOptions{};
  1056. options.enable_nhwcd4();
  1057. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1058. unpack_vector(gopt::optimize_for_inference({z}, options), z_opt);
  1059. ASSERT_EQ(
  1060. opr::Convolution::Param::Format::NHWCD4,
  1061. find_opr<opr::Convolution>(y_opt).param().format);
  1062. ASSERT_EQ(
  1063. TensorFormat::Type::DEFAULT,
  1064. find_opr<opr::AxisAddRemove>(z_opt).input(0)->format().type());
  1065. ASSERT_EQ(4, find_opr<opr::AxisAddRemove>(z_opt).input(0)->shape().ndim);
  1066. HostTensorND host_y_opt, host_y;
  1067. auto func = graph->compile(
  1068. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1069. func->execute();
  1070. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1071. *host_x = *gen({8, 8, 16, 16}, cn);
  1072. func->execute();
  1073. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1074. }
  1075. #undef REQUIRE_OPENCL
  1076. #endif
  1077. //! this is to test elemwise to cd4 only
  1078. TEST(TestGoptInference, ConvertFormatNHWCD4Elemwise0) {
  1079. // hwcd4 is only supported in naive handle
  1080. NaiveMegDNNHandleScope naive_megdnn_handle;
  1081. HostTensorGenerator<> gen;
  1082. auto cn = CompNode::load("cpu0");
  1083. auto graph = ComputingGraph::make();
  1084. graph->options().graph_opt_level = 0;
  1085. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1086. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1087. };
  1088. auto host_x = gen({8, 8, 8, 8}, cn);
  1089. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1090. auto a = mkvar("a", {1});
  1091. auto b = mkvar("b", {1});
  1092. auto y = x * a + b;
  1093. SymbolVar y_opt;
  1094. auto options = gopt::OptimizeForInferenceOptions{};
  1095. options.enable_nhwcd4();
  1096. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1097. ASSERT_EQ(
  1098. opr::Elemwise::Mode::FUSE_MUL_ADD3,
  1099. find_opr<opr::Elemwise>(y_opt).param().mode);
  1100. ASSERT_EQ(
  1101. TensorFormat::Type::IMAGE2D_PACK4,
  1102. find_opr<opr::Elemwise>(y_opt).input(1)->format().type());
  1103. graph->compile({{y_opt, {}}})
  1104. ->to_json()
  1105. ->writeto_fpath(
  1106. output_file("TestGoptInference.ConvertFormatNHWCD4Elemwise0.json"));
  1107. HostTensorND host_y_opt, host_y;
  1108. auto func = graph->compile(
  1109. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1110. func->execute();
  1111. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1112. *host_x = *gen({8, 8, 16, 16}, cn);
  1113. func->execute();
  1114. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1115. }
  1116. TEST(TestGoptInference, MergeDimShuffleAndRelayoutFormat) {
  1117. // hwcd4 is only supported in naive handle
  1118. NaiveMegDNNHandleScope naive_megdnn_handle;
  1119. HostTensorGenerator<> gen;
  1120. auto cn = CompNode::load("cpu0");
  1121. auto graph = ComputingGraph::make();
  1122. graph->options().graph_opt_level = 0;
  1123. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1124. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1125. };
  1126. auto host_x = gen({8, 8, 8, 8}, cn);
  1127. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1128. auto d0 = opr::Dimshuffle::make(x, {0, 3, 1, 2});
  1129. auto a = mkvar("a", {1});
  1130. auto b = mkvar("b", {1});
  1131. auto y = d0 * a + b;
  1132. SymbolVar y_opt;
  1133. auto options = gopt::OptimizeForInferenceOptions{};
  1134. options.enable_nhwcd4();
  1135. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1136. ASSERT_EQ(
  1137. megdnn::param::RelayoutFormat::Mode::NHWC_NHWCD4I,
  1138. find_opr<opr::RelayoutFormat>(y_opt).param().mode);
  1139. ASSERT_EQ(0, find_opr_num<opr::Dimshuffle>(y_opt));
  1140. graph->compile({{y_opt, {}}})
  1141. ->to_json()
  1142. ->writeto_fpath(output_file(
  1143. "TestGoptInference.MergeDimShuffleAndRelayoutFormat.json"));
  1144. HostTensorND host_y_opt, host_y;
  1145. auto func = graph->compile(
  1146. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1147. func->execute();
  1148. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1149. *host_x = *gen({8, 8, 16, 16}, cn);
  1150. func->execute();
  1151. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1152. }
  1153. TEST(TestGoptInference, MergeRelayoutFormatAndDimShuffle) {
  1154. // hwcd4 is only supported in naive handle
  1155. NaiveMegDNNHandleScope naive_megdnn_handle;
  1156. HostTensorGenerator<> gen;
  1157. auto cn = CompNode::load("cpu0");
  1158. auto graph = ComputingGraph::make();
  1159. graph->options().graph_opt_level = 0;
  1160. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1161. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1162. };
  1163. auto host_x = gen({2, 8, 16, 32}, cn);
  1164. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1165. auto a = mkvar("a", {1});
  1166. auto b = mkvar("b", {1});
  1167. auto z = x * a + b;
  1168. //! to NHWC
  1169. auto y = opr::Dimshuffle::make(z, {0, 2, 3, 1});
  1170. SymbolVar y_opt;
  1171. auto options = gopt::OptimizeForInferenceOptions{};
  1172. options.enable_nhwcd4();
  1173. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1174. ASSERT_EQ(0, find_opr_num<opr::Dimshuffle>(y_opt));
  1175. auto check = [](SymbolVar endpoint) -> bool {
  1176. bool valid = true;
  1177. auto cb = [&](cg::OperatorNodeBase* opr) {
  1178. if (opr->same_type<opr::RelayoutFormat>()) {
  1179. auto mode = opr->try_cast_final<opr::RelayoutFormat>()->param().mode;
  1180. //! The first relayout_format opr's mode is NCHW_NHWCD4I. The second is
  1181. //! NHWCD4I_NHWC
  1182. if (mode == megdnn::param::RelayoutFormat::Mode::NCHW_NHWCD4I ||
  1183. mode == megdnn::param::RelayoutFormat::Mode::NHWCD4I_NHWC) {
  1184. valid &= true;
  1185. } else {
  1186. valid &= false;
  1187. }
  1188. }
  1189. };
  1190. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  1191. return valid;
  1192. };
  1193. ASSERT_EQ(true, check(y_opt));
  1194. graph->compile({{y_opt, {}}})
  1195. ->to_json()
  1196. ->writeto_fpath(output_file(
  1197. "TestGoptInference.MergeRelayoutFormatAndDimShuffle.json"));
  1198. HostTensorND host_y;
  1199. HostTensorND host_y_opt;
  1200. auto func = graph->compile(
  1201. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1202. func->execute();
  1203. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1204. *host_x = *gen({8, 8, 16, 16}, cn);
  1205. func->execute();
  1206. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1207. }
  1208. TEST(TestGoptInference, ConvertFormatNHWCD4Elemwise) {
  1209. // hwcd4 is only supported in naive handle
  1210. NaiveMegDNNHandleScope naive_megdnn_handle;
  1211. HostTensorGenerator<> gen;
  1212. auto cn = CompNode::load("cpu0");
  1213. auto graph = ComputingGraph::make();
  1214. graph->options().graph_opt_level = 0;
  1215. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1216. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1217. };
  1218. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1219. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1220. };
  1221. auto host_x = gen({8, 8, 8, 8}, cn);
  1222. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1223. opr::Convolution::Param param;
  1224. param.pad_h = param.pad_w = 0;
  1225. auto w1 = mkcvar("w1", {8, 8, 3, 3}), conv = opr::Convolution::make(x, w1, param);
  1226. auto b = mkvar("b", {1, 1, 1, 1}),
  1227. elem = opr::Elemwise::make({conv + b}, opr::Elemwise::Param::Mode::RELU);
  1228. param.pad_h = param.pad_w = 1;
  1229. auto w2 = mkcvar("w2", {8, 8, 3, 3}),
  1230. conv2 = opr::Convolution::make(elem, w2, param);
  1231. auto b_scaler = mkvar("b", {1}), elem2 = conv2 + b_scaler;
  1232. param.pad_h = param.pad_w = 1;
  1233. auto w3 = mkcvar("w2", {8, 8, 3, 3}), y = opr::Convolution::make(elem2, w3, param);
  1234. SymbolVar y_opt;
  1235. auto options = gopt::OptimizeForInferenceOptions{};
  1236. options.enable_nhwcd4();
  1237. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1238. ASSERT_EQ(
  1239. opr::Convolution::Param::Format::NHWCD4,
  1240. find_opr<opr::Convolution>(y_opt).param().format);
  1241. graph->compile({{y_opt, {}}})
  1242. ->to_json()
  1243. ->writeto_fpath(
  1244. output_file("TestGoptInference.ConvertFormatNHWCD4Elemwise.json"));
  1245. HostTensorND host_y_opt, host_y;
  1246. auto func = graph->compile(
  1247. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1248. func->execute();
  1249. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1250. *host_x = *gen({8, 8, 16, 16}, cn);
  1251. func->execute();
  1252. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1253. }
  1254. TEST(TestGoptInference, ConvertFormatNHWCD4TypeCvt) {
  1255. NaiveMegDNNHandleScope naive_megdnn_handle;
  1256. HostTensorGenerator<> gen;
  1257. auto cn = CompNode::load("cpu0");
  1258. auto graph = ComputingGraph::make();
  1259. graph->options().graph_opt_level = 0;
  1260. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1261. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1262. };
  1263. auto host_x = gen({8, 8, 8, 8}, cn);
  1264. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1265. opr::Convolution::Param param;
  1266. param.pad_h = param.pad_w = 0;
  1267. auto w1 = mkcvar("w1", {8, 8, 3, 3}), conv1 = opr::Convolution::make(x, w1, param),
  1268. tcvt1 = opr::TypeCvt::make(conv1, dtype::Float16());
  1269. auto w2 = mkcvar("w2", {8, 8, 3, 3}), conv2 = opr::Convolution::make(x, w2, param),
  1270. tcvt2 = opr::TypeCvt::make(conv2, dtype::Float16());
  1271. auto y = opr::Elemwise::make({tcvt1, tcvt2}, opr::Elemwise::Param::Mode::ADD);
  1272. SymbolVar y_opt;
  1273. auto options = gopt::OptimizeForInferenceOptions{};
  1274. options.enable_nhwcd4();
  1275. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1276. ASSERT_EQ(
  1277. opr::Convolution::Param::Format::NHWCD4,
  1278. find_opr<opr::Convolution>(y_opt).param().format);
  1279. graph->compile({{y_opt, {}}})
  1280. ->to_json()
  1281. ->writeto_fpath(
  1282. output_file("TestGoptInference.ConvertFormatNHWCD4TypeCvt.json"));
  1283. HostTensorND host_y_opt, host_y;
  1284. auto func = graph->compile(
  1285. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1286. func->execute();
  1287. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1288. *host_x = *gen({8, 8, 16, 16}, cn);
  1289. func->execute();
  1290. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1291. }
  1292. TEST(TestGoptInference, ConvertFormatNHWCD4LOCAL) {
  1293. // hwcd4 is only supported in naive handle
  1294. NaiveMegDNNHandleScope naive_megdnn_handle;
  1295. HostTensorGenerator<> gen;
  1296. auto cn = CompNode::load("cpu0");
  1297. auto graph = ComputingGraph::make();
  1298. graph->options().graph_opt_level = 0;
  1299. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1300. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1301. };
  1302. auto host_x = gen({2, 8, 8, 16}, cn);
  1303. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1304. opr::Convolution::Param param;
  1305. param.pad_h = param.pad_w = 1;
  1306. auto w1 = mkcvar("w1", {4, 8, 3, 3}), conv1 = opr::Convolution::make(x, w1, param);
  1307. auto w2 = mkcvar("w2", {8, 16, 4, 3, 3, 4}),
  1308. local = opr::Local::make(conv1, w2, param);
  1309. auto w3 = mkcvar("w3", {4, 4, 3, 3}),
  1310. conv2 = opr::Convolution::make(local, w3, param);
  1311. opr::GroupLocal::Param param_group_local;
  1312. param_group_local.pad_h = param_group_local.pad_w = 1;
  1313. auto w4 = mkcvar("w4", {2, 8, 16, 2, 3, 3, 2}),
  1314. group_local = opr::GroupLocal::make(conv2, w4, param_group_local);
  1315. auto w5 = mkcvar("w5", {4, 4, 3, 3}),
  1316. y = opr::Convolution::make(group_local, w5, param);
  1317. SymbolVar y_opt;
  1318. auto options = gopt::OptimizeForInferenceOptions{};
  1319. options.enable_nhwcd4();
  1320. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1321. ASSERT_EQ(
  1322. opr::Convolution::Param::Format::NHWCD4,
  1323. find_opr<opr::Convolution>(y_opt).param().format);
  1324. ASSERT_EQ(
  1325. opr::Local::Param::Format::NCHW,
  1326. find_opr<opr::Local>(y_opt).param().format);
  1327. ASSERT_EQ(
  1328. opr::GroupLocal::Param::Format::NCHW,
  1329. find_opr<opr::GroupLocal>(y_opt).param().format);
  1330. graph->compile({{y_opt, {}}})
  1331. ->to_json()
  1332. ->writeto_fpath(
  1333. output_file("TestGoptInference.ConvertFormatNHWCD4LOCAL.json"));
  1334. HostTensorND host_y_opt, host_y;
  1335. auto func = graph->compile(
  1336. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1337. func->execute();
  1338. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1339. }
  1340. TEST(TestGoptInference, ConvertFormatNHWCD4Deconv) {
  1341. // hwcd4 is only supported in naive handle
  1342. NaiveMegDNNHandleScope naive_megdnn_handle;
  1343. HostTensorGenerator<> gen;
  1344. auto cn = CompNode::load("cpu0");
  1345. auto graph = ComputingGraph::make();
  1346. graph->options().graph_opt_level = 0;
  1347. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1348. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1349. };
  1350. auto host_x = gen({8, 8, 8, 8}, cn);
  1351. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1352. opr::Convolution::Param param;
  1353. param.pad_h = param.pad_w = 0;
  1354. auto w0 = mkcvar("w1", {4, 8, 2, 2}), conv = opr::Convolution::make(x, w0, param);
  1355. auto w1 = mkcvar("w1", {4, 1, 2, 2}),
  1356. y = opr::ConvolutionBackwardData::make(w1, conv, param, {}, {});
  1357. SymbolVar y_opt;
  1358. auto options = gopt::OptimizeForInferenceOptions{};
  1359. options.enable_nhwcd4();
  1360. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1361. ASSERT_EQ(
  1362. opr::Convolution::Param::Format::NCHW,
  1363. find_opr<opr::ConvolutionBackwardData>(y_opt).param().format);
  1364. ASSERT_EQ(
  1365. opr::Convolution::Param::Format::NHWCD4,
  1366. find_opr<opr::Convolution>(y_opt).param().format);
  1367. HostTensorND host_y_opt, host_y;
  1368. auto func = graph->compile(
  1369. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1370. func->execute();
  1371. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1372. }
  1373. TEST(TestGoptInference, ConvertFormatNHWCD4Qint8) {
  1374. // hwcd4 is only supported in naive handle
  1375. NaiveMegDNNHandleScope naive_megdnn_handle;
  1376. HostTensorGenerator<> gen;
  1377. auto cn = CompNode::load("cpu0");
  1378. auto graph = ComputingGraph::make();
  1379. graph->options().graph_opt_level = 0;
  1380. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  1381. return opr::TypeCvt::make(
  1382. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  1383. dtype);
  1384. };
  1385. auto host_x = gen({8, 8, 8, 8}, cn);
  1386. auto _x = opr::Host2DeviceCopy::make(*graph, host_x),
  1387. x = opr::TypeCvt::make(_x, dtype::QuantizedS8(0.2f));
  1388. opr::ConvBias::Param param;
  1389. param.pad_h = param.pad_w = 0;
  1390. auto w = mkcvar("w", {4, 8, 3, 3}, dtype::QuantizedS8(0.1f)),
  1391. b = mkcvar("b", {1, 4, 1, 1}, dtype::QuantizedS32(0.02f)),
  1392. y = opr::ConvBias::make(
  1393. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(0.2f)});
  1394. SymbolVar y_opt;
  1395. auto options = gopt::OptimizeForInferenceOptions{};
  1396. options.enable_nhwcd4();
  1397. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1398. ASSERT_EQ(
  1399. opr::ConvBias::Param::Format::NHWCD4,
  1400. find_opr<opr::ConvBias>(y_opt).param().format);
  1401. graph->compile({{y_opt, {}}})
  1402. ->to_json()
  1403. ->writeto_fpath(
  1404. output_file("TestGoptInference.ConvertFormatNHWCD4Qint8.json"));
  1405. auto float_y = opr::TypeCvt::make(y, dtype::Float32()),
  1406. float_y_opt = opr::TypeCvt::make(y_opt, dtype::Float32());
  1407. HostTensorND host_y_opt, host_y;
  1408. auto func = graph->compile(
  1409. {make_callback_copy(float_y, host_y),
  1410. make_callback_copy(float_y_opt, host_y_opt)});
  1411. func->execute();
  1412. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1413. }
  1414. TEST(TestGoptInference, ConvertFormatPadIC) {
  1415. // hwcd4 is only supported in naive handle
  1416. NaiveMegDNNHandleScope naive_megdnn_handle;
  1417. HostTensorGenerator<> gen;
  1418. auto cn = CompNode::load("cpu0");
  1419. auto graph = ComputingGraph::make();
  1420. graph->options().graph_opt_level = 0;
  1421. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1422. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1423. };
  1424. auto host_inp1 = gen({1, 6, 128, 128}, cn), host_inp2 = gen({1, 6, 256, 256}, cn);
  1425. auto inp1 = opr::Host2DeviceCopy::make(*graph, host_inp1),
  1426. inp2 = opr::Host2DeviceCopy::make(*graph, host_inp2);
  1427. auto shape_tmp = mkcvar("tmp", {256, 256});
  1428. auto shape_of = opr::GetVarShape::make(shape_tmp);
  1429. opr::Resize::Param param_resize;
  1430. param_resize.format = opr::Resize::Param::Format::NCHW;
  1431. auto resize = opr::ResizeForward::make(inp1, shape_of, param_resize);
  1432. auto concat = opr::Concat::make({inp2, resize}, 1);
  1433. opr::Convolution::Param param;
  1434. param.pad_h = param.pad_w = 1;
  1435. param.sparse = opr::Convolution::Param::Sparse::DENSE;
  1436. auto w1 = mkcvar("w1", {12, 12, 3, 3});
  1437. auto y = opr::Convolution::make(concat, w1, param);
  1438. SymbolVar y_opt;
  1439. auto options = gopt::OptimizeForInferenceOptions{};
  1440. options.enable_nhwcd4();
  1441. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1442. HostTensorND host_y_opt, host_y;
  1443. auto func = graph->compile(
  1444. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1445. func->execute();
  1446. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1447. }
  1448. TEST(TestGoptInference, concatbypass) {
  1449. // hwcd4 is only supported in naive handle
  1450. NaiveMegDNNHandleScope naive_megdnn_handle;
  1451. HostTensorGenerator<> gen;
  1452. auto cn = CompNode::load("cpu0");
  1453. auto graph = ComputingGraph::make();
  1454. graph->options().graph_opt_level = 0;
  1455. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1456. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1457. };
  1458. auto host_inp1 = gen({1, 6, 16, 16}, cn), host_inp2 = gen({1, 6, 32, 32}, cn);
  1459. auto inp1 = opr::Host2DeviceCopy::make(*graph, host_inp1),
  1460. inp2 = opr::Host2DeviceCopy::make(*graph, host_inp2);
  1461. auto shape_tmp = mkcvar("tmp", {32, 32});
  1462. auto shape_of = opr::GetVarShape::make(shape_tmp);
  1463. opr::Resize::Param param_resize;
  1464. param_resize.format = opr::Resize::Param::Format::NCHW;
  1465. auto resize = opr::ResizeForward::make(inp1, shape_of, param_resize);
  1466. //! this concat should forward to chw
  1467. auto concat = opr::Concat::make({inp2, resize}, 1);
  1468. opr::Convolution::Param param;
  1469. param.pad_h = param.pad_w = 1;
  1470. param.sparse = opr::Convolution::Param::Sparse::DENSE;
  1471. auto w1 = mkcvar("w1", {12, 12, 3, 3});
  1472. auto w2 = mkcvar("w1", {12, 24, 3, 3});
  1473. auto y = opr::Convolution::make(concat, w1, param);
  1474. //! this concat should bypass CD4
  1475. y = opr::Concat::make({y, y}, 0);
  1476. y = opr::Convolution::make(y, w1, param);
  1477. //! this concat should bypass CD4
  1478. y = opr::Concat::make({y, y}, 1);
  1479. y = opr::Convolution::make(y, w2, param);
  1480. //! this concat should bypass CD4
  1481. y = opr::Concat::make({y, y}, 2);
  1482. y = opr::Convolution::make(y, w1, param);
  1483. SymbolVar y_opt;
  1484. auto options = gopt::OptimizeForInferenceOptions{};
  1485. options.enable_nhwcd4();
  1486. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1487. HostTensorND host_y_opt, host_y;
  1488. auto func = graph->compile(
  1489. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1490. size_t relayout_format_nr = 0;
  1491. auto cb = [&](cg::OperatorNodeBase* opr) {
  1492. if (opr->try_cast_final<opr::Convolution>()) {
  1493. auto conv_inputs = opr->input();
  1494. for (auto& input : conv_inputs) {
  1495. if (std::string::npos !=
  1496. std::string(input->cname()).find("relayout_format")) {
  1497. relayout_format_nr++;
  1498. }
  1499. }
  1500. }
  1501. return true;
  1502. };
  1503. func->iter_opr_seq(cb);
  1504. func->execute();
  1505. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1506. ASSERT_EQ(
  1507. opr::Convolution::Param::Format::NHWCD4,
  1508. find_opr<opr::Convolution>(y_opt).param().format);
  1509. ASSERT_EQ(1, relayout_format_nr);
  1510. }
  1511. TEST(TestGoptInference, ConvertBatchNormPass) {
  1512. auto cn = CompNode::load("cpu0");
  1513. std::vector<TensorShape> shps = {{1, 3, 1, 1}, {1, 1, 1, 3}},
  1514. xshps = {{2, 3, 16, 24}, {2, 16, 24, 3}};
  1515. for (int t = 0; t < 2; t++) {
  1516. HostTensorGenerator<> gen(0, 1, 0);
  1517. auto graph = ComputingGraph::make();
  1518. graph->options().graph_opt_level = 0;
  1519. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1520. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1521. };
  1522. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1523. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1524. };
  1525. using Param = opr::BatchNorm::Param;
  1526. Param::ParamDim param_dim =
  1527. t == 0 ? Param::ParamDim::DIM_1C11 : Param::ParamDim::DIM_111C;
  1528. Param param(param_dim, Param::FwdMode::INFERENCE);
  1529. TensorShape shp = shps[t], xshp = xshps[t];
  1530. auto x = mkvar("x", xshp), scale = mkcvar("scale", shp),
  1531. bias = mkcvar("bias", shp), mean = mkcvar("mean", shp);
  1532. auto host_variance = gen(shp, cn);
  1533. for (size_t i = 0; i < shp.total_nr_elems(); ++i) {
  1534. host_variance->ptr<float>()[i] = std::abs(host_variance->ptr<float>()[i]);
  1535. }
  1536. auto variance = opr::SharedDeviceTensor::make(*graph, *host_variance)
  1537. .rename("variance");
  1538. auto y = opr::BatchNorm::make(x, scale, bias, mean, variance, param)[5];
  1539. SymbolVar y_opt;
  1540. unpack_vector(
  1541. gopt::optimize_for_inference({y}, gopt::OptimizeForInferenceOptions{}),
  1542. y_opt);
  1543. ASSERT_EQ(0u, find_opr_num<opr::BatchNorm>(y_opt));
  1544. graph->compile({{y_opt, {}}})
  1545. ->to_json()
  1546. ->writeto_fpath(
  1547. output_file("TestGoptInference.ConvertBatchNormPass.json"));
  1548. HostTensorND host_y, host_y_opt;
  1549. auto func = graph->compile(
  1550. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1551. func->execute();
  1552. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  1553. }
  1554. }
  1555. TEST(TestGoptInference, ConvBiasNonlinearityFusePass) {
  1556. // hwcd4 is only supported in naive handle
  1557. NaiveMegDNNHandleScope naive_megdnn_handle;
  1558. auto cn = CompNode::load("cpu0");
  1559. HostTensorGenerator<> gen;
  1560. auto graph = ComputingGraph::make();
  1561. graph->options().graph_opt_level = 0;
  1562. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1563. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1564. };
  1565. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1566. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1567. };
  1568. opr::Convolution::Param param;
  1569. auto x = mkvar("x", {5, 8, 16, 24}), w1 = mkcvar("w1", {4, 8, 1, 1}),
  1570. w2 = mkcvar("w2", {4, 4, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
  1571. b2 = mkcvar("b2", {1, 4, 1, 1}), w3 = mkcvar("w3", {8, 4, 1, 1}),
  1572. y_cut = opr::Convolution::make(x, w1, param),
  1573. y1 = opr::Elemwise::make({y_cut + b1}, opr::Elemwise::Param::Mode::RELU);
  1574. param.pad_w = param.pad_h = 1;
  1575. auto y2 = opr::Elemwise::make(
  1576. {opr::Convolution::make(y1, w2, param) + b2},
  1577. opr::Elemwise::Param::Mode::SIGMOID);
  1578. param.pad_w = param.pad_h = 0;
  1579. auto y3 = opr::Convolution::make(y2, w3, param), y_tmp = y3 + x,
  1580. y_expand = opr::Elemwise::make({y_cut}, opr::Elemwise::Param::Mode::RELU),
  1581. y_y = opr::Convolution::make(y_expand, w3, param), y = y_y + y_tmp;
  1582. SymbolVar y_opt;
  1583. auto options = gopt::OptimizeForInferenceOptions{};
  1584. options.enable_nhwcd4().enable_fuse_conv_bias_nonlinearity();
  1585. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1586. ASSERT_EQ(3u, find_opr<opr::ConvBias>(y_opt).input().size());
  1587. graph->compile({{y_opt, {}}})
  1588. ->to_json()
  1589. ->writeto_fpath(
  1590. output_file("TestGoptInference.FuseConvBiasNonlinPass.json"));
  1591. HostTensorND host_y, host_y_opt;
  1592. auto func = graph->compile(
  1593. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1594. func->execute();
  1595. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  1596. }
  1597. TEST(TestGoptInference, ConvBiasNonlinearityFusePass2) {
  1598. // hwcd4 is only supported in naive handle
  1599. NaiveMegDNNHandleScope naive_megdnn_handle;
  1600. auto cn = CompNode::load("cpu0");
  1601. HostTensorGenerator<> gen;
  1602. auto graph = ComputingGraph::make();
  1603. graph->options().graph_opt_level = 0;
  1604. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1605. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1606. };
  1607. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1608. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1609. };
  1610. opr::Convolution::Param param;
  1611. auto x = mkvar("x", {5, 8, 16, 24}), w1 = mkcvar("w1", {4, 8, 1, 1}),
  1612. w2 = mkcvar("w2", {4, 8, 1, 1});
  1613. auto b1 = mkcvar("b1", {1, 4, 1, 1});
  1614. auto y_cut = opr::Convolution::make(x, w1, param);
  1615. auto y = opr::Elemwise::make({y_cut + b1}, opr::Elemwise::Param::Mode::SIGMOID);
  1616. y = opr::Elemwise::make({y}, opr::Elemwise::Param::Mode::RELU);
  1617. auto y_cut2 = opr::Convolution::make(x, w2, param);
  1618. y_cut2 = opr::Elemwise::make({y_cut2}, opr::Elemwise::Param::Mode::SIGMOID);
  1619. y_cut2 = opr::Elemwise::make({y_cut2}, opr::Elemwise::Param::Mode::RELU);
  1620. y = y + y_cut2;
  1621. SymbolVar y_opt;
  1622. auto options = gopt::OptimizeForInferenceOptions{};
  1623. options.enable_nhwcd4().enable_fuse_conv_bias_nonlinearity();
  1624. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1625. ASSERT_EQ(
  1626. opr::ConvBias::Param::NonlineMode::SIGMOID,
  1627. find_opr<opr::ConvBias>(y_opt).param().nonlineMode);
  1628. graph->compile({{y_opt, {}}})
  1629. ->to_json()
  1630. ->writeto_fpath(
  1631. output_file("TestGoptInference.FuseConvBiasNonlinPass2.json"));
  1632. HostTensorND host_y, host_y_opt;
  1633. auto func = graph->compile(
  1634. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1635. func->execute();
  1636. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  1637. }
  1638. TEST(TestGoptInference, ConvBiasNonlinearityFusePassHswish) {
  1639. // hwcd4 is only supported in naive handle
  1640. NaiveMegDNNHandleScope naive_megdnn_handle;
  1641. auto cn = CompNode::load("cpu0");
  1642. HostTensorGenerator<> gen;
  1643. auto graph = ComputingGraph::make();
  1644. graph->options().graph_opt_level = 0;
  1645. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1646. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1647. };
  1648. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1649. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1650. };
  1651. opr::Convolution::Param param;
  1652. auto x = mkvar("x", {5, 8, 16, 24}), w1 = mkcvar("w1", {4, 8, 1, 1}),
  1653. w2 = mkcvar("w2", {4, 8, 1, 1});
  1654. auto b1 = mkcvar("b1", {1, 4, 1, 1});
  1655. auto y_cut = opr::Convolution::make(x, w1, param);
  1656. auto y = opr::Elemwise::make({y_cut + b1}, opr::Elemwise::Param::Mode::H_SWISH);
  1657. y = opr::Elemwise::make({y}, opr::Elemwise::Param::Mode::RELU);
  1658. auto y_cut2 = opr::Convolution::make(x, w2, param);
  1659. y_cut2 = opr::Elemwise::make({y_cut2}, opr::Elemwise::Param::Mode::H_SWISH);
  1660. y_cut2 = opr::Elemwise::make({y_cut2}, opr::Elemwise::Param::Mode::RELU);
  1661. y = y + y_cut2;
  1662. SymbolVar y_opt;
  1663. auto options = gopt::OptimizeForInferenceOptions{};
  1664. options.enable_nhwcd4().enable_fuse_conv_bias_nonlinearity();
  1665. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1666. ASSERT_EQ(
  1667. opr::ConvBias::Param::NonlineMode::H_SWISH,
  1668. find_opr<opr::ConvBias>(y_opt).param().nonlineMode);
  1669. graph->compile({{y_opt, {}}})
  1670. ->to_json()
  1671. ->writeto_fpath(
  1672. output_file("TestGoptInference.FuseConvBiasNonlinPassHswish.json"));
  1673. HostTensorND host_y, host_y_opt;
  1674. auto func = graph->compile(
  1675. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1676. func->execute();
  1677. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  1678. }
  1679. TEST(TestGoptInference, ConvBiasNonlinearityFusePass_FullBias) {
  1680. NaiveMegDNNHandleScope naive_megdnn_handle;
  1681. for (int i = 0; i < 2; i++) {
  1682. auto graph = ComputingGraph::make();
  1683. auto cn = CompNode::load("cpu0");
  1684. HostTensorGenerator<> gen;
  1685. auto mkImvar = [&](const char* name, const TensorShape& shp) {
  1686. return opr::ImmutableTensor::make(*graph, *gen(shp, cn)).rename(name);
  1687. };
  1688. graph->options().graph_opt_level = 0;
  1689. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1690. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1691. };
  1692. opr::Convolution::Param param;
  1693. auto host_x = gen({1, 8, 16, 24}, cn);
  1694. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1695. w1 = mkcvar("w1", {4, 8, 1, 1}), w2 = mkcvar("w2", {4, 8, 3, 3}),
  1696. w3 = mkcvar("w3", {4, 4, 1, 1}),
  1697. b = i == 0 ? mkcvar("b", {1, 4, 16, 24}) : mkImvar("bias", {1, 4, 16, 24}),
  1698. y_cut0 = opr::Convolution::make(x, w1, param);
  1699. param.pad_w = param.pad_h = 1;
  1700. auto y_cut1 = opr::Convolution::make(x, w2, param);
  1701. auto y1 = opr::Elemwise::make(
  1702. {y_cut0 + y_cut1}, opr::Elemwise::Param::Mode::RELU);
  1703. param.pad_w = param.pad_h = 0;
  1704. auto y2 = opr::Convolution::make(y1, w3, param);
  1705. auto y = opr::Elemwise::make({y2 + b}, opr::Elemwise::Param::Mode::RELU);
  1706. SymbolVar y_opt;
  1707. auto options = gopt::OptimizeForInferenceOptions{};
  1708. options.enable_fuse_conv_bias_nonlinearity();
  1709. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1710. ASSERT_EQ(3u, find_opr<opr::ConvBias>(y_opt).input().size());
  1711. graph->compile({{y_opt, {}}})
  1712. ->to_json()
  1713. ->writeto_fpath(output_file("TestGoptInference.FuseConvBiasNonlinPass_"
  1714. "FulBias.json"));
  1715. HostTensorND host_y, host_y_opt;
  1716. auto func = graph->compile(
  1717. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1718. func->execute();
  1719. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  1720. *host_x = *gen({4, 8, 16, 24}, cn);
  1721. func->execute();
  1722. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  1723. }
  1724. }
  1725. #if (MEGDNN_AARCH64 || MEGDNN_ARMV7) && !MGB_OPENCL && !MGB_CUDA
  1726. TEST(TestGoptInference, FuseTypeCvtAndElemwiseCase0) {
  1727. HostTensorGenerator<dtype::Int16, RandomDistribution::UNIFORM> gen(0, 255);
  1728. auto cn = CompNode::load("cpu0");
  1729. auto graph = ComputingGraph::make();
  1730. graph->options().graph_opt_level = 0;
  1731. size_t n = 1;
  1732. size_t c = 128;
  1733. size_t h = 16;
  1734. size_t w = 16;
  1735. auto host_x1 = gen({n, h, w, c}, cn);
  1736. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  1737. auto x_nchw = opr::Dimshuffle::make(x, {0, 3, 1, 2}, 4, cn);
  1738. auto x_f32 = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
  1739. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1740. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1741. };
  1742. auto s = mkcvar("s", {1, c, 1, 1});
  1743. auto b = mkcvar("b", {1, c, 1, 1});
  1744. auto result = opr::Elemwise::make(
  1745. {x_f32, s, b}, opr::Elemwise::Param::Mode::FUSE_MUL_ADD3);
  1746. auto y = result;
  1747. SymbolVar y_opt;
  1748. auto options = gopt::OptimizeForInferenceOptions{};
  1749. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1750. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::ElemwiseMultiType>());
  1751. ASSERT_EQ(
  1752. opr::ElemwiseMultiType::Param::Mode::FUSE_MUL_ADD3_INT16xF32xF32xF32,
  1753. find_opr<opr::ElemwiseMultiType>(y_opt).param().mode);
  1754. HostTensorND host_y_opt, host_y;
  1755. auto func = graph->compile({make_callback_copy(y, host_y)});
  1756. func->execute();
  1757. graph->options().graph_opt_level = 2;
  1758. auto func_opt = graph->compile({make_callback_copy(y, host_y_opt)});
  1759. func_opt->execute();
  1760. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  1761. }
  1762. TEST(TestGoptInference, FuseTypeCvtAndElemwiseCase1) {
  1763. HostTensorGenerator<dtype::Int16, RandomDistribution::UNIFORM> gen(0, 255);
  1764. auto cn = CompNode::load("cpu0");
  1765. auto graph = ComputingGraph::make();
  1766. graph->options().graph_opt_level = 0;
  1767. size_t n = 1;
  1768. size_t c = 128;
  1769. size_t h = 16;
  1770. size_t w = 16;
  1771. auto host_x1 = gen({n, h, w, c}, cn);
  1772. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  1773. auto x_nchw = opr::Dimshuffle::make(x, {0, 3, 1, 2}, 4, cn);
  1774. auto x_f32 = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
  1775. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1776. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1777. };
  1778. auto s = mkcvar("s", {1, c, 1, 1});
  1779. auto result = opr::Elemwise::make({x_f32, s}, opr::Elemwise::Param::Mode::MUL);
  1780. auto y = result;
  1781. SymbolVar y_opt;
  1782. auto options = gopt::OptimizeForInferenceOptions{};
  1783. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1784. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::ElemwiseMultiType>());
  1785. ASSERT_EQ(
  1786. opr::ElemwiseMultiType::Param::Mode::MUL_INT16xF32xF32,
  1787. find_opr<opr::ElemwiseMultiType>(y_opt).param().mode);
  1788. HostTensorND host_y_opt, host_y;
  1789. auto func = graph->compile({make_callback_copy(y, host_y)});
  1790. func->execute();
  1791. graph->options().graph_opt_level = 2;
  1792. auto func_opt = graph->compile({make_callback_copy(y, host_y_opt)});
  1793. func_opt->execute();
  1794. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  1795. }
  1796. TEST(TestGoptInference, FuseTypeCvtAndElemwiseCase2) {
  1797. HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
  1798. auto cn = CompNode::load("cpu0");
  1799. auto graph = ComputingGraph::make();
  1800. graph->options().graph_opt_level = 0;
  1801. size_t n = 1;
  1802. size_t c = 128;
  1803. size_t h = 16;
  1804. size_t w = 16;
  1805. auto host_x1 = gen({n, h, w, c}, cn);
  1806. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  1807. auto x_nchw = opr::Dimshuffle::make(x, {0, 3, 1, 2}, 4, cn);
  1808. auto x_f32 = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
  1809. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1810. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1811. };
  1812. auto s = mkcvar("s", {1, c, 1, 1});
  1813. auto b = mkcvar("b", {1, c, 1, 1});
  1814. auto result = opr::Elemwise::make(
  1815. {x_f32, s, b}, opr::Elemwise::Param::Mode::FUSE_MUL_ADD3);
  1816. auto y = result;
  1817. SymbolVar y_opt;
  1818. auto options = gopt::OptimizeForInferenceOptions{};
  1819. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1820. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::ElemwiseMultiType>());
  1821. ASSERT_EQ(
  1822. opr::ElemwiseMultiType::Param::Mode::FUSE_MUL_ADD3_UINT8xF32xF32xF32,
  1823. find_opr<opr::ElemwiseMultiType>(y_opt).param().mode);
  1824. HostTensorND host_y_opt, host_y;
  1825. auto func = graph->compile({make_callback_copy(y, host_y)});
  1826. func->execute();
  1827. graph->options().graph_opt_level = 2;
  1828. auto func_opt = graph->compile({make_callback_copy(y, host_y_opt)});
  1829. func_opt->execute();
  1830. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  1831. }
  1832. #endif
  1833. TEST(TestGoptInference, ParamMerge) {
  1834. auto cns = load_multiple_xpus(2);
  1835. HostTensorGenerator<> gen;
  1836. auto graph = ComputingGraph::make();
  1837. auto var0 = opr::SharedDeviceTensor::make(*graph, *gen({2, 3}, cns[0])),
  1838. var1 = opr::SharedDeviceTensor::make(*graph, *gen({1, 3}, cns[1])),
  1839. y = var0 + opr::Copy::make(var1, {cns[0]});
  1840. HostTensorND y_expected_val;
  1841. graph->compile({make_callback_copy(y, y_expected_val)})->execute();
  1842. SymbolVar y_opt;
  1843. unpack_vector(
  1844. gopt::GraphOptimizer{}
  1845. .add_pass<gopt::ParamMergePass>()
  1846. .apply({{y}})
  1847. .endpoint_vars(),
  1848. y_opt);
  1849. auto opr = y_opt.node()->owner_opr();
  1850. ASSERT_EQ(2u, opr->input().size());
  1851. ASSERT_EQ(2u, find_opr<opr::MultipleDeviceTensorHolder>(y_opt).output().size());
  1852. HostTensorND y_got_val;
  1853. graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
  1854. MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
  1855. }
  1856. TEST(TestGoptInference, ParamMergeFormat) {
  1857. auto cns = load_multiple_xpus(2);
  1858. auto make_dv = [](const HostTensorND& hv) {
  1859. TensorLayout layout{
  1860. hv.layout(), hv.layout().dtype,
  1861. megdnn::Image2DPack4TensorFormat::make_raw(1, 64)};
  1862. auto ret = std::make_shared<DeviceTensorND>(hv.comp_node(), layout);
  1863. ret->copy_from_fixlayout(hv).sync();
  1864. return ret;
  1865. };
  1866. HostTensorGenerator<> gen;
  1867. auto graph = ComputingGraph::make();
  1868. auto var0 = opr::SharedDeviceTensorWithFormat::make(
  1869. *graph, make_dv(*gen({2, 32}, cns[0]))),
  1870. var1 = opr::SharedDeviceTensorWithFormat::make(
  1871. *graph, make_dv(*gen({1, 32}, cns[1]))),
  1872. y = var0 + opr::Copy::make(var1, {cns[0]});
  1873. HostTensorND y_expected_val;
  1874. graph->compile({make_callback_copy(y, y_expected_val)})->execute();
  1875. SymbolVar y_opt;
  1876. unpack_vector(
  1877. gopt::GraphOptimizer{}
  1878. .add_pass<gopt::ParamMergePass>()
  1879. .apply({{y}})
  1880. .endpoint_vars(),
  1881. y_opt);
  1882. auto opr = y_opt.node()->owner_opr();
  1883. ASSERT_EQ(2u, opr->input().size());
  1884. ASSERT_EQ(
  1885. 2u,
  1886. find_opr<opr::MultipleDeviceTensorWithFormatHolder>(y_opt).output().size());
  1887. HostTensorND y_got_val;
  1888. graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
  1889. MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
  1890. }
  1891. #if MGB_ENABLE_FASTRUN
  1892. TEST(TestGoptInference, AlgoProfile) {
  1893. HostTensorGenerator<> gen;
  1894. auto graph = ComputingGraph::make();
  1895. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1896. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1897. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1898. z = opr::Convolution::make(x, y);
  1899. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1900. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1901. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1902. gopt::enable_opr_algo_profiling_inplace({z + 2.3f});
  1903. ASSERT_EQ(S::PROFILE, conv.execution_policy().strategy);
  1904. }
  1905. #endif
  1906. TEST(TestGoptInference, ProfileCache) {
  1907. HostTensorGenerator<> gen;
  1908. auto graph = ComputingGraph::make();
  1909. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1910. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1911. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1912. z = opr::Convolution::make(x, y);
  1913. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1914. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1915. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1916. gopt::enable_opr_use_profiling_cache_inplace({z + 2.3f});
  1917. ASSERT_EQ(S::PROFILE | S::HEURISTIC, conv.execution_policy().strategy);
  1918. }
  1919. TEST(TestGoptInference, FastProfileCache) {
  1920. HostTensorGenerator<> gen;
  1921. auto graph = ComputingGraph::make();
  1922. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1923. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1924. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1925. z = opr::Convolution::make(x, y);
  1926. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1927. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1928. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1929. gopt::modify_opr_algo_strategy_inplace({z + 2.3f}, S::PROFILE | S::OPTIMIZED);
  1930. ASSERT_EQ(S::PROFILE | S::OPTIMIZED, conv.execution_policy().strategy);
  1931. }
  1932. TEST(TestGoptInference, AlgoWorkspaceLimit) {
  1933. HostTensorGenerator<> gen;
  1934. auto graph = ComputingGraph::make();
  1935. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1936. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1937. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1938. z = opr::Convolution::make(x, y);
  1939. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1940. ASSERT_EQ(
  1941. std::numeric_limits<uint64_t>::max(),
  1942. conv.execution_policy_transient().workspace_limit);
  1943. gopt::set_opr_algo_workspace_limit_inplace({z + 2.3f}, 10000u);
  1944. ASSERT_EQ(10000u, conv.execution_policy().workspace_limit);
  1945. }
  1946. TEST_PASS(FuseConvBiasNonlinPass, Basic) {
  1947. auto cn = CompNode::load("xpux");
  1948. HostTensorGenerator<dtype::Int8> gen;
  1949. auto graph = ComputingGraph::make();
  1950. graph->options().graph_opt_level = 0;
  1951. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  1952. return opr::TypeCvt::make(
  1953. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  1954. };
  1955. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  1956. return opr::TypeCvt::make(
  1957. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  1958. dtype);
  1959. };
  1960. for (auto format :
  1961. {opr::Convolution::Param::Format::NCHW, opr::Convolution::Param::Format::NHWC,
  1962. opr::Convolution::Param::Format::NCHW4}) {
  1963. opr::Convolution::Param param;
  1964. param.format = format;
  1965. SymbolVar x, w, b;
  1966. if (format == opr::Convolution::Param::Format::NHWC) {
  1967. x = mkvar("x", {20, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
  1968. w = mkcvar("w1", {24, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
  1969. b = mkcvar("b", {1, 1, 1, 24}, dtype::QuantizedS32(6.25f));
  1970. } else if (format == opr::Convolution::Param::Format::NCHW) {
  1971. x = mkvar("x", {20, 4, 20, 20}, dtype::QuantizedS8(2.5f)),
  1972. w = mkcvar("w1", {24, 4, 1, 1}, dtype::QuantizedS8(2.5f)),
  1973. b = mkcvar("b", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  1974. } else {
  1975. mgb_assert(format == opr::Convolution::Param::Format::NCHW4);
  1976. x = mkvar("x", {20, 1, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
  1977. w = mkcvar("w1", {24, 1, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
  1978. b = mkcvar("b", {1, 6, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  1979. }
  1980. auto y = opr::Convolution::make(x, w, param);
  1981. y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
  1982. y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
  1983. opr::ConvBias::Param conv_bias_param;
  1984. conv_bias_param.format = format;
  1985. conv_bias_param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1986. auto concret_y = opr::ConvBias::make(
  1987. x, w, b, conv_bias_param, {},
  1988. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1989. check(concret_y, y);
  1990. }
  1991. }
  1992. #if MGB_CUDA
  1993. TEST(TestEnableTensorCore, SmallInputShape) {
  1994. REQUIRE_GPU(1);
  1995. auto cn = CompNode::load("gpu0");
  1996. cn.activate();
  1997. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1998. auto sm_ver = prop.major * 10 + prop.minor;
  1999. if (sm_ver < 75) {
  2000. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2001. "expected: %d)\n",
  2002. sm_ver, 75);
  2003. return;
  2004. }
  2005. HostTensorGenerator<dtype::Int8> gen;
  2006. auto graph = ComputingGraph::make();
  2007. graph->options().graph_opt_level = 0;
  2008. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2009. return opr::TypeCvt::make(
  2010. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2011. };
  2012. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2013. return opr::TypeCvt::make(
  2014. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2015. dtype);
  2016. };
  2017. auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  2018. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2019. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2020. z = mkcvar("b1", {32, 16, 2, 4, 4}, dtype::QuantizedS8(2.5f));
  2021. opr::ConvBias::Param param;
  2022. param.format = opr::ConvBias::Param::Format::NCHW4;
  2023. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2024. param.stride_h = param.stride_w = 2;
  2025. param.pad_h = param.pad_w = 1;
  2026. auto y = opr::ConvBias::make(
  2027. x, w, b, z, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2028. y = opr::ConvBias::make(
  2029. y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2030. y = opr::TypeCvt::make(y, dtype::Float32());
  2031. SymbolVar y_opt;
  2032. SymbolVar y_no_tc;
  2033. {
  2034. auto options = gopt::OptimizeForInferenceOptions{};
  2035. options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
  2036. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2037. }
  2038. {
  2039. auto options = gopt::OptimizeForInferenceOptions{};
  2040. options.enable_fuse_conv_bias_nonlinearity();
  2041. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  2042. }
  2043. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2044. ASSERT_EQ(2u, nr_dimshuffle);
  2045. HostTensorND host_y, host_y_opt;
  2046. auto func = graph->compile(
  2047. {make_callback_copy(y_no_tc, host_y),
  2048. make_callback_copy(y_opt, host_y_opt)});
  2049. func->execute();
  2050. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2051. }
  2052. TEST(TestEnableTensorCore, Nchw4Nchw) {
  2053. REQUIRE_GPU(1);
  2054. auto cn = CompNode::load("gpu0");
  2055. cn.activate();
  2056. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2057. auto sm_ver = prop.major * 10 + prop.minor;
  2058. if (sm_ver < 75) {
  2059. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2060. "expected: %d)\n",
  2061. sm_ver, 75);
  2062. return;
  2063. }
  2064. HostTensorGenerator<dtype::Int8> gen;
  2065. auto graph = ComputingGraph::make();
  2066. graph->options().graph_opt_level = 0;
  2067. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2068. return opr::TypeCvt::make(
  2069. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2070. };
  2071. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2072. return opr::TypeCvt::make(
  2073. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2074. dtype);
  2075. };
  2076. auto mkshape = [](opr::ConvBias::Param::Format format, size_t N, size_t C, size_t H,
  2077. size_t W) -> TensorShape {
  2078. mgb_assert(C % 4 == 0);
  2079. if (format == opr::ConvBias::Param::Format::NCHW4) {
  2080. return {N, C / 4, H, W, 4};
  2081. } else {
  2082. mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
  2083. return {N, C, H, W};
  2084. }
  2085. };
  2086. for (auto format :
  2087. {opr::ConvBias::Param::Format::NCHW, opr::ConvBias::Param::Format::NCHW4}) {
  2088. auto x = mkvar("x", mkshape(format, 32, 64, 16, 16), dtype::QuantizedS8(2.5f)),
  2089. w = mkcvar("w1", mkshape(format, 64, 64, 3, 3), dtype::QuantizedS8(2.5f)),
  2090. b = mkcvar("b", mkshape(format, 1, 64, 1, 1), dtype::QuantizedS32(6.25f)),
  2091. z = mkcvar("b1", mkshape(format, 32, 64, 8, 8), dtype::QuantizedS8(2.5f));
  2092. opr::ConvBias::Param param;
  2093. param.format = format;
  2094. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2095. param.stride_h = param.stride_w = 2;
  2096. param.pad_h = param.pad_w = 1;
  2097. auto y = opr::ConvBias::make(
  2098. x, w, b, z, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2099. y = opr::ConvBias::make(
  2100. y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2101. y = opr::TypeCvt::make(y, dtype::Float32());
  2102. SymbolVar y_opt;
  2103. SymbolVar y_no_tc;
  2104. {
  2105. auto options = gopt::OptimizeForInferenceOptions{};
  2106. options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
  2107. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2108. }
  2109. {
  2110. auto options = gopt::OptimizeForInferenceOptions{};
  2111. options.enable_fuse_conv_bias_nonlinearity();
  2112. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  2113. }
  2114. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2115. if (format == opr::ConvBias::Param::Format::NCHW4) {
  2116. #if CUDA_VERSION >= 10020
  2117. //! try_conv_reformat_nchw322nchw4 used when cuda_version >= 10020
  2118. ASSERT_EQ(1u, nr_dimshuffle);
  2119. #else
  2120. ASSERT_EQ(2u, nr_dimshuffle);
  2121. #endif
  2122. } else {
  2123. ASSERT_EQ(2u, nr_dimshuffle);
  2124. }
  2125. std::string json_name;
  2126. if (format == opr::ConvBias::Param::Format::NCHW4) {
  2127. json_name = "TestGoptInference.Nchw4Nchw.NCHW4.json";
  2128. } else {
  2129. mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
  2130. json_name = "TestGoptInference.Nchw4Nchw.NCHW.json";
  2131. }
  2132. graph->compile({{y_opt, {}}})
  2133. ->to_json()
  2134. ->writeto_fpath(output_file(json_name.c_str()));
  2135. HostTensorND host_y, host_y_opt;
  2136. auto func = graph->compile(
  2137. {make_callback_copy(y_no_tc, host_y),
  2138. make_callback_copy(y_opt, host_y_opt)});
  2139. func->execute();
  2140. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2141. }
  2142. }
  2143. TEST(TestEnableTensorCore, ConvBiasWithZ) {
  2144. REQUIRE_GPU(1);
  2145. auto cn = CompNode::load("gpu0");
  2146. cn.activate();
  2147. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2148. auto sm_ver = prop.major * 10 + prop.minor;
  2149. if (sm_ver < 75) {
  2150. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2151. "expected: %d)\n",
  2152. sm_ver, 75);
  2153. return;
  2154. }
  2155. HostTensorGenerator<dtype::Int8> gen;
  2156. auto graph = ComputingGraph::make();
  2157. graph->options().graph_opt_level = 0;
  2158. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2159. return opr::TypeCvt::make(
  2160. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2161. };
  2162. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2163. return opr::TypeCvt::make(
  2164. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2165. dtype);
  2166. };
  2167. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2168. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2169. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2170. z = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  2171. opr::ConvBias::Param param;
  2172. param.format = opr::ConvBias::Param::Format::NCHW4;
  2173. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2174. param.stride_h = param.stride_w = 1;
  2175. param.pad_h = param.pad_w = 1;
  2176. auto y = opr::ConvBias::make(
  2177. x, w, b, z, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2178. y = opr::TypeCvt::make(y, dtype::Float32());
  2179. SymbolVar y_opt;
  2180. SymbolVar y_no_tc;
  2181. {
  2182. auto options = gopt::OptimizeForInferenceOptions{};
  2183. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  2184. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2185. }
  2186. {
  2187. auto options = gopt::OptimizeForInferenceOptions{};
  2188. options.enable_fuse_conv_bias_nonlinearity();
  2189. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  2190. }
  2191. HostTensorND host_y, host_y_opt;
  2192. auto func = graph->compile(
  2193. {make_callback_copy(y_no_tc, host_y),
  2194. make_callback_copy(y_opt, host_y_opt)});
  2195. func->execute();
  2196. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2197. }
  2198. TEST(TestEnableTensorCore, Pooling) {
  2199. REQUIRE_GPU(1);
  2200. auto cn = CompNode::load("gpu0");
  2201. cn.activate();
  2202. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2203. auto sm_ver = prop.major * 10 + prop.minor;
  2204. if (sm_ver < 75) {
  2205. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2206. "expected: %d)\n",
  2207. sm_ver, 75);
  2208. return;
  2209. }
  2210. HostTensorGenerator<dtype::Int8> gen;
  2211. auto graph = ComputingGraph::make();
  2212. graph->options().graph_opt_level = 0;
  2213. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2214. return opr::TypeCvt::make(
  2215. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2216. };
  2217. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2218. return opr::TypeCvt::make(
  2219. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2220. dtype);
  2221. };
  2222. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2223. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2224. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2225. z = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  2226. opr::ConvBias::Param param;
  2227. param.format = opr::ConvBias::Param::Format::NCHW4;
  2228. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2229. param.stride_h = param.stride_w = 1;
  2230. param.pad_h = param.pad_w = 1;
  2231. auto y = opr::ConvBias::make(
  2232. x, w, b, z, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2233. opr::Pooling::Param pool_param;
  2234. pool_param.format = opr::Pooling::Param::Format::NCHW4;
  2235. y = opr::Pooling::make(y, pool_param);
  2236. y = opr::TypeCvt::make(y, dtype::Float32());
  2237. SymbolVar y_opt;
  2238. SymbolVar y_no_tc;
  2239. {
  2240. auto options = gopt::OptimizeForInferenceOptions{};
  2241. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  2242. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2243. }
  2244. ASSERT_EQ(
  2245. opr::Pooling::Param::Format::NCHW32,
  2246. find_opr<opr::Pooling>(y_opt).param().format);
  2247. {
  2248. auto options = gopt::OptimizeForInferenceOptions{};
  2249. options.enable_fuse_conv_bias_nonlinearity();
  2250. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  2251. }
  2252. HostTensorND host_y, host_y_opt;
  2253. auto func = graph->compile(
  2254. {make_callback_copy(y_no_tc, host_y),
  2255. make_callback_copy(y_opt, host_y_opt)});
  2256. func->execute();
  2257. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2258. }
  2259. TEST(TestEnableTensorCore, BatchConvBias) {
  2260. REQUIRE_GPU(1);
  2261. auto cn = CompNode::load("gpu0");
  2262. cn.activate();
  2263. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2264. auto sm_ver = prop.major * 10 + prop.minor;
  2265. if (sm_ver < 75) {
  2266. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2267. "expected: %d)\n",
  2268. sm_ver, 75);
  2269. return;
  2270. }
  2271. HostTensorGenerator<dtype::Int8> gen;
  2272. auto graph = ComputingGraph::make();
  2273. graph->options().graph_opt_level = 0;
  2274. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2275. return opr::TypeCvt::make(
  2276. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2277. };
  2278. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2279. return opr::TypeCvt::make(
  2280. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2281. dtype);
  2282. };
  2283. auto inp = mkvar("inp", {32, 24, 24, 24, 4}, dtype::QuantizedS8(1.1f)),
  2284. flt = mkcvar("flt", {32, 96, 24, 1, 1, 4}, dtype::QuantizedS8(1.2f)),
  2285. bias = mkcvar("bias", {1, 24, 1, 1, 4}, dtype::QuantizedS32{1.1f * 1.2f});
  2286. opr::BatchConvBias::Param param;
  2287. param.format = opr::BatchConvBias::Param::Format::NCHW4;
  2288. param.stride_h = param.stride_w = 1;
  2289. param.pad_h = param.pad_w = 0;
  2290. auto y = opr::BatchConvBias::make(
  2291. inp, flt, bias, param, {}, OperatorNodeConfig{dtype::QuantizedS8{1.3f}});
  2292. y = opr::TypeCvt::make(y, dtype::Float32());
  2293. SymbolVar y_opt;
  2294. SymbolVar y_no_tc;
  2295. {
  2296. auto options = gopt::OptimizeForInferenceOptions{};
  2297. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  2298. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2299. }
  2300. ASSERT_EQ(
  2301. opr::BatchConvBias::Param::Format::NCHW4,
  2302. find_opr<opr::BatchConvBias>(y_opt).param().format);
  2303. {
  2304. auto options = gopt::OptimizeForInferenceOptions{};
  2305. options.enable_fuse_conv_bias_nonlinearity();
  2306. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  2307. }
  2308. HostTensorND host_y, host_y_opt;
  2309. auto func = graph->compile(
  2310. {make_callback_copy(y_no_tc, host_y),
  2311. make_callback_copy(y_opt, host_y_opt)});
  2312. func->execute();
  2313. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2314. }
  2315. TEST(TestGoptInference, EnableTensorCore) {
  2316. REQUIRE_GPU(1);
  2317. auto cn = CompNode::load("gpu0");
  2318. cn.activate();
  2319. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2320. auto sm_ver = prop.major * 10 + prop.minor;
  2321. if (sm_ver < 75) {
  2322. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2323. "expected: %d)\n",
  2324. sm_ver, 75);
  2325. return;
  2326. }
  2327. HostTensorGenerator<dtype::Int8> gen;
  2328. auto graph = ComputingGraph::make();
  2329. graph->options().graph_opt_level = 0;
  2330. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2331. return opr::TypeCvt::make(
  2332. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2333. };
  2334. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2335. return opr::TypeCvt::make(
  2336. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2337. dtype);
  2338. };
  2339. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2340. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2341. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2342. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  2343. opr::Convolution::Param param;
  2344. param.format = opr::Convolution::Param::Format::NCHW4;
  2345. param.stride_h = param.stride_w = 1;
  2346. param.pad_h = param.pad_w = 1;
  2347. auto y = opr::Convolution::make(x, w, param);
  2348. y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
  2349. y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
  2350. auto y1 = y + b1, y2 = opr::Convolution::make(y, w, param),
  2351. y3 = opr::Elemwise::make({y - b1}, opr::Elemwise::Param::Mode::RELU);
  2352. y2 = opr::Elemwise::make({y2 + b}, opr::Elemwise::Param::Mode::RELU),
  2353. y2 = opr::TypeCvt::make(y2, dtype::QuantizedS8(2.5f));
  2354. auto y4 = y1 + y2 + y3;
  2355. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  2356. SymbolVar y_opt;
  2357. SymbolVar y_no_tc;
  2358. {
  2359. auto options = gopt::OptimizeForInferenceOptions{};
  2360. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  2361. unpack_vector(gopt::optimize_for_inference({y4}, options), y_opt);
  2362. }
  2363. {
  2364. auto options = gopt::OptimizeForInferenceOptions{};
  2365. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  2366. unpack_vector(gopt::optimize_for_inference({y4}, options), y_no_tc);
  2367. }
  2368. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2369. ASSERT_EQ(3u, nr_dimshuffle);
  2370. graph->compile({{y_opt, {}}})
  2371. ->to_json()
  2372. ->writeto_fpath(output_file("TestGoptInference.EnableTensorCorePass.json"));
  2373. HostTensorND host_y, host_y_opt;
  2374. auto func = graph->compile(
  2375. {make_callback_copy(y_no_tc, host_y),
  2376. make_callback_copy(y_opt, host_y_opt)});
  2377. func->execute();
  2378. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2379. }
  2380. TEST(FuseConvBiasZPass, BlockFuse) {
  2381. REQUIRE_GPU(1);
  2382. auto cn = CompNode::load("gpu0");
  2383. cn.activate();
  2384. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2385. auto sm_ver = prop.major * 10 + prop.minor;
  2386. if (sm_ver < 61) {
  2387. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2388. "expected: %d)\n",
  2389. sm_ver, 61);
  2390. return;
  2391. }
  2392. HostTensorGenerator<dtype::Int8> gen;
  2393. auto graph = ComputingGraph::make();
  2394. graph->options().graph_opt_level = 0;
  2395. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2396. return opr::TypeCvt::make(
  2397. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2398. };
  2399. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2400. return opr::TypeCvt::make(
  2401. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2402. dtype);
  2403. };
  2404. using ElemMultiMode = opr::ElemwiseMultiType::Param::Mode;
  2405. using NonlineMode = opr::ConvBias::Param::NonlineMode;
  2406. for (auto mode :
  2407. {ElemMultiMode::QFUSE_ADD_RELU, ElemMultiMode::QFUSE_ADD_H_SWISH}) {
  2408. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2409. w1 = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2410. b1 = mkcvar("b1", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2411. w2 = mkcvar("w2", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2412. b2 = mkcvar("b2", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2413. w3 = mkcvar("w3", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2414. b3 = mkcvar("b3", {1, 16, 1, 1, 4}, dtype::QuantizedS32(3.0f));
  2415. NonlineMode nonline_mode = NonlineMode::RELU;
  2416. if (mode == ElemMultiMode::QFUSE_ADD_H_SWISH) {
  2417. nonline_mode = NonlineMode::H_SWISH;
  2418. }
  2419. opr::ConvBias::Param param;
  2420. param.format = opr::Convolution::Param::Format::NCHW4;
  2421. param.nonlineMode = nonline_mode;
  2422. param.stride_h = param.stride_w = 1;
  2423. param.pad_h = param.pad_w = 1;
  2424. auto y1 = opr::ConvBias::make(
  2425. x, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2426. param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY;
  2427. auto y2 = opr::ConvBias::make(
  2428. y1, w2, b2, param, {},
  2429. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  2430. y3 = opr::ElemwiseMultiType::make(
  2431. {y1, y2}, {mode}, OperatorNodeConfig{dtype::QuantizedS8(1.2f)});
  2432. param.nonlineMode = nonline_mode;
  2433. auto y4 = opr::ConvBias::make(
  2434. y3, w3, b3, param, {},
  2435. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  2436. z = opr::ElemwiseMultiType::make(
  2437. {y3, y4}, {opr::ElemwiseMultiType::Param::Mode::QADD},
  2438. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2439. z = opr::TypeCvt::make(z, dtype::Float32());
  2440. SymbolVar z_fuse;
  2441. {
  2442. auto options = gopt::OptimizeForInferenceOptions{};
  2443. options.enable_fuse_conv_bias_nonlinearity().enable_fuse_conv_bias_with_z();
  2444. unpack_vector(gopt::optimize_for_inference({z}, options), z_fuse);
  2445. }
  2446. graph->compile({{z_fuse, {}}})
  2447. ->to_json()
  2448. ->writeto_fpath(output_file("FuseConvBiasZPass.BlockFuse_fuse.json"));
  2449. auto nr_elem_multi_type = find_opr_num<mgb::opr::ElemwiseMultiType>(z_fuse);
  2450. MGB_MARK_USED_VAR(nr_elem_multi_type);
  2451. #if MGB_CUDA && (CUDNN_MAJOR == 8)
  2452. ASSERT_EQ(2u, nr_elem_multi_type);
  2453. #else
  2454. ASSERT_EQ(1u, nr_elem_multi_type);
  2455. //! fuse z mannually
  2456. auto z0 = opr::ConvBias::make(
  2457. x, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2458. auto z1 = opr::ConvBias::make(
  2459. z0, w2, b2, z0, param, {},
  2460. OperatorNodeConfig{dtype::QuantizedS8(1.2f)}),
  2461. z2 = opr::ConvBias::make(
  2462. z1, w3, b3, param, {},
  2463. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  2464. z4 = opr::ElemwiseMultiType::make(
  2465. {z1, z2}, {opr::ElemwiseMultiType::Mode::QADD},
  2466. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2467. z4 = opr::TypeCvt::make(z4, dtype::Float32());
  2468. SymbolVar z_nonfuse;
  2469. {
  2470. auto options = gopt::OptimizeForInferenceOptions{};
  2471. options.enable_fuse_conv_bias_nonlinearity();
  2472. unpack_vector(gopt::optimize_for_inference({z4}, options), z_nonfuse);
  2473. }
  2474. graph->compile({{z_nonfuse, {}}})
  2475. ->to_json()
  2476. ->writeto_fpath(
  2477. output_file("FuseConvBiasZPass.BlockFuse_nonfuse.json"));
  2478. HostTensorND host_z_fuse, host_z_nonfuse;
  2479. auto func = graph->compile(
  2480. {make_callback_copy(z_nonfuse, host_z_nonfuse),
  2481. make_callback_copy(z_fuse, host_z_fuse)});
  2482. func->execute();
  2483. MGB_ASSERT_TENSOR_EQ(host_z_fuse, host_z_nonfuse);
  2484. #endif
  2485. }
  2486. }
  2487. TEST(TestEnableTensorCore, ShuffleMerge) {
  2488. REQUIRE_GPU(1);
  2489. auto cn = CompNode::load("gpu0");
  2490. cn.activate();
  2491. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2492. auto sm_ver = prop.major * 10 + prop.minor;
  2493. if (sm_ver < 75) {
  2494. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2495. "expected: %d)\n",
  2496. sm_ver, 75);
  2497. return;
  2498. }
  2499. HostTensorGenerator<dtype::Int8> gen;
  2500. auto graph = ComputingGraph::make();
  2501. graph->options().graph_opt_level = 0;
  2502. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2503. return opr::TypeCvt::make(
  2504. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2505. };
  2506. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2507. return opr::TypeCvt::make(
  2508. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2509. dtype);
  2510. };
  2511. auto nchw2nchw4 = [](SymbolVar x) {
  2512. auto xshp = opr::GetVarShape::make(x);
  2513. auto cv = [&x](int v) { return x.make_scalar(v); };
  2514. auto sub = [&xshp, &cv](int idx) {
  2515. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2516. };
  2517. auto tshp = opr::Concat::make({sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
  2518. auto y0 = opr::Reshape::make(x, tshp);
  2519. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
  2520. return y1;
  2521. };
  2522. auto nchw42nchw = [](SymbolVar x) {
  2523. auto xshp = opr::GetVarShape::make(x);
  2524. auto cv = [&x](int v) { return x.make_scalar(v); };
  2525. auto sub = [&xshp, &cv](int idx) {
  2526. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2527. };
  2528. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2529. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2530. auto y1 = opr::Reshape::make(y0, tshp);
  2531. return y1;
  2532. };
  2533. auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
  2534. w = mkcvar("w1", {64, 64, 3, 3}, dtype::QuantizedS8(2.5f)),
  2535. b = mkcvar("b", {1, 64, 1, 1}, dtype::QuantizedS32(6.25f)),
  2536. z = mkvar("b1", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f));
  2537. x = nchw2nchw4(x), w = nchw2nchw4(w), b = nchw2nchw4(b), z = nchw2nchw4(z);
  2538. opr::ConvBias::Param param;
  2539. param.format = opr::ConvBias::Param::Format::NCHW4;
  2540. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2541. param.stride_h = param.stride_w = 1;
  2542. param.pad_h = param.pad_w = 1;
  2543. auto y = opr::ConvBias::make(
  2544. x, w, b, z, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2545. y = nchw42nchw(y);
  2546. y = opr::TypeCvt::make(y, dtype::Float32());
  2547. SymbolVar y_opt;
  2548. SymbolVar y_no_tc;
  2549. {
  2550. auto options = gopt::OptimizeForInferenceOptions{};
  2551. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  2552. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2553. }
  2554. {
  2555. auto options = gopt::OptimizeForInferenceOptions{};
  2556. options.enable_fuse_conv_bias_nonlinearity();
  2557. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  2558. }
  2559. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2560. ASSERT_EQ(3u, nr_dimshuffle);
  2561. HostTensorND host_y, host_y_opt;
  2562. auto func = graph->compile(
  2563. {make_callback_copy(y_no_tc, host_y),
  2564. make_callback_copy(y_opt, host_y_opt)});
  2565. func->execute();
  2566. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2567. }
  2568. #endif
  2569. TEST(FuseConvBiasZPass, Basic) {
  2570. REQUIRE_GPU(1);
  2571. auto cn = CompNode::load("gpu0");
  2572. HostTensorGenerator<dtype::Int8> gen;
  2573. auto graph = ComputingGraph::make();
  2574. graph->options().graph_opt_level = 0;
  2575. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2576. return opr::TypeCvt::make(
  2577. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2578. };
  2579. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2580. return opr::TypeCvt::make(
  2581. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2582. dtype);
  2583. };
  2584. auto format = opr::Convolution::Param::Format::NCHW4;
  2585. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2586. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2587. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2588. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2589. b2 = mkvar("b2", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  2590. opr::ConvBias::Param conv_bias_param;
  2591. conv_bias_param.format = format;
  2592. conv_bias_param.stride_h = conv_bias_param.stride_w = 1;
  2593. conv_bias_param.pad_h = conv_bias_param.pad_w = 1;
  2594. auto y = opr::ConvBias::make(
  2595. x, w, b, conv_bias_param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2596. SymbolVar y_opt;
  2597. // check fuse mode
  2598. for (auto mode :
  2599. {opr::ElemwiseMultiType::Param::Mode::QADD,
  2600. opr::ElemwiseMultiType::Param::Mode::QMUL,
  2601. opr::ElemwiseMultiType::Param::Mode::QFUSE_ADD_RELU}) {
  2602. auto y1 = opr::ElemwiseMultiType::make(
  2603. {y, b1}, {mode}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2604. {
  2605. auto options = gopt::OptimizeForInferenceOptions{};
  2606. options.enable_fuse_conv_bias_nonlinearity()
  2607. .enable_fuse_conv_bias_with_z()
  2608. .enable_nchw32();
  2609. unpack_vector(gopt::optimize_for_inference({y1}, options), y_opt);
  2610. }
  2611. auto nr_elemwisemultitype = find_opr_num<opr::ElemwiseMultiType>(y_opt);
  2612. if (mode == opr::ElemwiseMultiType::Param::Mode::QMUL) {
  2613. ASSERT_NE(0u, nr_elemwisemultitype);
  2614. } else
  2615. ASSERT_EQ(0u, nr_elemwisemultitype);
  2616. // fuse convbiasz and z
  2617. if (mode == opr::ElemwiseMultiType::Param::Mode::QADD) {
  2618. auto y2 = opr::ElemwiseMultiType::make(
  2619. {y1, b2}, {mode}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2620. {
  2621. auto options = gopt::OptimizeForInferenceOptions{};
  2622. options.enable_fuse_conv_bias_nonlinearity()
  2623. .enable_fuse_conv_bias_with_z()
  2624. .enable_nchw32();
  2625. unpack_vector(gopt::optimize_for_inference({y2}, options), y_opt);
  2626. }
  2627. auto nr_elemwisemultitype = find_opr_num<opr::ElemwiseMultiType>(y_opt);
  2628. ASSERT_NE(0u, nr_elemwisemultitype);
  2629. }
  2630. }
  2631. }
  2632. #if MGB_CUDA
  2633. //! close for cu111 ci, reopen it when bug fixed
  2634. #if CUDA_VERSION < 11000
  2635. TEST(TestGoptInference, EnableCHWN4) {
  2636. REQUIRE_GPU(1);
  2637. auto cn = CompNode::load("gpu0");
  2638. cn.activate();
  2639. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2640. auto sm_ver = prop.major * 10 + prop.minor;
  2641. if (sm_ver < 61) {
  2642. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2643. "expected: %d)\n",
  2644. sm_ver, 61);
  2645. return;
  2646. }
  2647. HostTensorGenerator<dtype::Int8> gen;
  2648. auto graph = ComputingGraph::make();
  2649. graph->options().graph_opt_level = 0;
  2650. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2651. return opr::TypeCvt::make(
  2652. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2653. };
  2654. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2655. return opr::TypeCvt::make(
  2656. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2657. dtype);
  2658. };
  2659. auto mkshape = [](opr::ConvBias::Param::Format format, size_t N, size_t C, size_t H,
  2660. size_t W) -> TensorShape {
  2661. mgb_assert(C % 4 == 0);
  2662. if (format == opr::ConvBias::Param::Format::NCHW4) {
  2663. return {N, C / 4, H, W, 4};
  2664. } else {
  2665. mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
  2666. return {N, C, H, W};
  2667. }
  2668. };
  2669. for (auto format :
  2670. {opr::ConvBias::Param::Format::NCHW, opr::ConvBias::Param::Format::NCHW4}) {
  2671. auto x = mkvar("x", mkshape(format, 32, 64, 16, 16), dtype::QuantizedS8(2.5f)),
  2672. w = mkcvar("w1", mkshape(format, 64, 64, 3, 3), dtype::QuantizedS8(2.5f)),
  2673. b = mkcvar("b", mkshape(format, 1, 64, 1, 1), dtype::QuantizedS32(6.25f)),
  2674. b1 = mkvar(
  2675. "b1", mkshape(format, 32, 64, 16, 16), dtype::QuantizedS8(2.5f));
  2676. opr::ConvBias::Param param;
  2677. param.format = format;
  2678. param.stride_h = param.stride_w = 1;
  2679. param.pad_h = param.pad_w = 1;
  2680. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2681. auto y = opr::ConvBiasForward::make(
  2682. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2683. auto y1 = opr::ElemwiseMultiType::make(
  2684. {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
  2685. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2686. auto y2 = opr::ConvBiasForward::make(
  2687. y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2688. auto y3 = opr::ElemwiseMultiType::make(
  2689. {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
  2690. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2691. auto y4 = opr::ElemwiseMultiType::make(
  2692. {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2693. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2694. y4 = opr::ElemwiseMultiType::make(
  2695. {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2696. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2697. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  2698. SymbolVar y_opt;
  2699. SymbolVar y_cudnn;
  2700. {
  2701. auto options = gopt::OptimizeForInferenceOptions{};
  2702. options.enable_chwn4();
  2703. unpack_vector(gopt::optimize_for_inference({y4}, options), y_opt);
  2704. }
  2705. unpack_vector(
  2706. gopt::GraphOptimizer{}
  2707. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2708. .add_pass<gopt::FuseConvBiasZPass>()
  2709. .apply({{y4}})
  2710. .endpoint_vars(),
  2711. y_cudnn);
  2712. ASSERT_EQ(
  2713. opr::ConvBias::Param::Format::CHWN4,
  2714. find_opr<opr::ConvBias>(y_opt).param().format);
  2715. HostTensorND host_y, host_y_opt;
  2716. auto func = graph->compile(
  2717. {make_callback_copy(y_cudnn, host_y),
  2718. make_callback_copy(y_opt, host_y_opt)});
  2719. func->execute();
  2720. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2721. }
  2722. }
  2723. #endif
  2724. TEST(TestGoptInference, EnableCHWN4WarpPespective) {
  2725. REQUIRE_GPU(1);
  2726. auto cn = CompNode::load("gpu0");
  2727. cn.activate();
  2728. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2729. auto sm_ver = prop.major * 10 + prop.minor;
  2730. if (sm_ver < 61) {
  2731. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2732. "expected: %d)\n",
  2733. sm_ver, 61);
  2734. return;
  2735. }
  2736. HostTensorGenerator<dtype::Int8> gen;
  2737. auto graph = ComputingGraph::make();
  2738. graph->options().graph_opt_level = 0;
  2739. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2740. return opr::TypeCvt::make(
  2741. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2742. };
  2743. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2744. return opr::TypeCvt::make(
  2745. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2746. dtype);
  2747. };
  2748. std::shared_ptr<HostTensorND> mat =
  2749. std::make_shared<HostTensorND>(cn, TensorShape{32, 3, 3}, dtype::Float32());
  2750. warp_perspective_mat_gen(*mat, 32, 16, 16);
  2751. auto mat_var = opr::Host2DeviceCopy::make(*graph, mat).rename("mat");
  2752. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2753. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2754. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  2755. opr::ConvBias::Param param;
  2756. param.format = opr::ConvBias::Param::Format::NCHW4;
  2757. param.stride_h = param.stride_w = 1;
  2758. param.pad_h = param.pad_w = 1;
  2759. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2760. auto y = opr::ConvBiasForward::make(
  2761. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2762. opr::WarpPerspective::Param warp_param;
  2763. warp_param.format = opr::WarpPerspective::Param::Format::NCHW4;
  2764. auto y1 = opr::WarpPerspective::make(y, mat_var, TensorShape{16, 16}, warp_param);
  2765. y1 = opr::TypeCvt::make(y1, dtype::Float32());
  2766. auto nchw42nchw = [](SymbolVar x) {
  2767. auto xshp = opr::GetVarShape::make(x);
  2768. auto cv = [&x](int v) { return x.make_scalar(v); };
  2769. auto sub = [&xshp, &cv](int idx) {
  2770. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2771. };
  2772. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2773. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2774. auto y1 = opr::Reshape::make(y0, tshp);
  2775. return y1;
  2776. };
  2777. y1 = nchw42nchw(y1);
  2778. warp_param.format = opr::WarpPerspective::Param::Format::NCHW;
  2779. auto y2 = opr::WarpPerspective::make(y1, mat_var, TensorShape{16, 16}, warp_param);
  2780. SymbolVar y_opt;
  2781. SymbolVar y_cudnn;
  2782. {
  2783. auto options = gopt::OptimizeForInferenceOptions{};
  2784. options.enable_chwn4();
  2785. unpack_vector(gopt::optimize_for_inference({y2}, options), y_opt);
  2786. }
  2787. unpack_vector(
  2788. gopt::GraphOptimizer{}
  2789. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2790. .add_pass<gopt::FuseConvBiasZPass>()
  2791. .apply({{y2}})
  2792. .endpoint_vars(),
  2793. y_cudnn);
  2794. HostTensorND host_y, host_y_opt;
  2795. auto func = graph->compile(
  2796. {make_callback_copy(y_cudnn, host_y),
  2797. make_callback_copy(y_opt, host_y_opt)});
  2798. func->execute();
  2799. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2800. }
  2801. TEST(TestGoptInference, EnableCHWN4Pooling) {
  2802. REQUIRE_GPU(1);
  2803. auto cn = CompNode::load("gpu0");
  2804. cn.activate();
  2805. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2806. auto sm_ver = prop.major * 10 + prop.minor;
  2807. if (sm_ver < 61) {
  2808. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2809. "expected: %d)\n",
  2810. sm_ver, 61);
  2811. return;
  2812. }
  2813. HostTensorGenerator<dtype::Int8> gen;
  2814. auto graph = ComputingGraph::make();
  2815. graph->options().graph_opt_level = 0;
  2816. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2817. return opr::TypeCvt::make(
  2818. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2819. };
  2820. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2821. return opr::TypeCvt::make(
  2822. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2823. dtype);
  2824. };
  2825. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2826. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2827. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  2828. opr::ConvBias::Param param;
  2829. param.format = opr::ConvBias::Param::Format::NCHW4;
  2830. param.stride_h = param.stride_w = 1;
  2831. param.pad_h = param.pad_w = 1;
  2832. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2833. auto y = opr::ConvBiasForward::make(
  2834. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2835. opr::Pooling::Param pool_param;
  2836. pool_param.format = opr::Pooling::Param::Format::NCHW4;
  2837. y = opr::Pooling::make(y, pool_param);
  2838. y = opr::TypeCvt::make(y, dtype::Float32());
  2839. auto nchw42nchw = [](SymbolVar x) {
  2840. auto xshp = opr::GetVarShape::make(x);
  2841. auto cv = [&x](int v) { return x.make_scalar(v); };
  2842. auto sub = [&xshp, &cv](int idx) {
  2843. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2844. };
  2845. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2846. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2847. auto y1 = opr::Reshape::make(y0, tshp);
  2848. return y1;
  2849. };
  2850. y = nchw42nchw(y);
  2851. pool_param.format = opr::Pooling::Param::Format::NCHW;
  2852. auto y1 = opr::Pooling::make(y, pool_param);
  2853. SymbolVar y_opt;
  2854. SymbolVar y_cudnn;
  2855. unpack_vector(
  2856. gopt::GraphOptimizer{}
  2857. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2858. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  2859. .add_pass<gopt::FuseConvBiasZPass>()
  2860. .apply({{y1}})
  2861. .endpoint_vars(),
  2862. y_opt);
  2863. unpack_vector(
  2864. gopt::GraphOptimizer{}
  2865. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2866. .add_pass<gopt::FuseConvBiasZPass>()
  2867. .apply({{y1}})
  2868. .endpoint_vars(),
  2869. y_cudnn);
  2870. HostTensorND host_y, host_y_opt;
  2871. auto func = graph->compile(
  2872. {make_callback_copy(y_cudnn, host_y),
  2873. make_callback_copy(y_opt, host_y_opt)});
  2874. func->execute();
  2875. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2876. }
  2877. TEST(TestGoptInference, EnableCHWN4ShuffleRemove) {
  2878. REQUIRE_GPU(1);
  2879. auto cn = CompNode::load("gpu0");
  2880. cn.activate();
  2881. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2882. auto sm_ver = prop.major * 10 + prop.minor;
  2883. if (sm_ver < 61) {
  2884. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2885. "expected: %d)\n",
  2886. sm_ver, 61);
  2887. return;
  2888. }
  2889. HostTensorGenerator<dtype::Int8> gen;
  2890. auto graph = ComputingGraph::make();
  2891. graph->options().graph_opt_level = 0;
  2892. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2893. return opr::TypeCvt::make(
  2894. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2895. };
  2896. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2897. return opr::TypeCvt::make(
  2898. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2899. dtype);
  2900. };
  2901. auto nchw2nchw4 = [](SymbolVar x) {
  2902. auto xshp = opr::GetVarShape::make(x);
  2903. auto cv = [&x](int v) { return x.make_scalar(v); };
  2904. auto sub = [&xshp, &cv](int idx) {
  2905. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2906. };
  2907. auto tshp = opr::Concat::make({sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
  2908. auto y0 = opr::Reshape::make(x, tshp);
  2909. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
  2910. return y1;
  2911. };
  2912. auto nchw42nchw = [](SymbolVar x) {
  2913. auto xshp = opr::GetVarShape::make(x);
  2914. auto cv = [&x](int v) { return x.make_scalar(v); };
  2915. auto sub = [&xshp, &cv](int idx) {
  2916. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2917. };
  2918. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2919. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2920. auto y1 = opr::Reshape::make(y0, tshp);
  2921. return y1;
  2922. };
  2923. auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
  2924. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2925. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2926. b1 = mkcvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8{2.5f});
  2927. x = nchw2nchw4(x);
  2928. opr::ConvBias::Param param;
  2929. param.format = opr::ConvBias::Param::Format::NCHW4;
  2930. param.stride_h = param.stride_w = 1;
  2931. param.pad_h = param.pad_w = 1;
  2932. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2933. auto y = opr::ConvBiasForward::make(
  2934. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2935. auto y1 = opr::ElemwiseMultiType::make(
  2936. {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
  2937. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2938. auto y2 = opr::ConvBiasForward::make(
  2939. y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2940. auto y3 = opr::ElemwiseMultiType::make(
  2941. {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
  2942. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2943. auto y4 = opr::ElemwiseMultiType::make(
  2944. {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2945. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2946. y4 = opr::ElemwiseMultiType::make(
  2947. {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2948. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2949. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  2950. y4 = nchw42nchw(y4);
  2951. SymbolVar y_opt;
  2952. SymbolVar y_cudnn;
  2953. unpack_vector(
  2954. gopt::GraphOptimizer{}
  2955. .add_pass<gopt::ParamRedistributePass>()
  2956. .add_pass<gopt::ParamFusePass>()
  2957. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2958. .add_pass<gopt::FuseConvBiasZPass>()
  2959. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  2960. .add_pass<gopt::ShuffleShuffleRemovePass>()
  2961. .add_pass<gopt::ParamFusePass>()
  2962. .apply({{y4}})
  2963. .endpoint_vars(),
  2964. y_opt);
  2965. graph->compile({{y_opt, {}}})
  2966. ->to_json()
  2967. ->writeto_fpath(
  2968. output_file("TestGoptInference.EnableCHWN4ShuffleRemove.json"));
  2969. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2970. ASSERT_EQ(2u, nr_dimshuffle);
  2971. auto nr_reformat = find_opr_num<mgb::opr::RelayoutFormat>(y_opt);
  2972. ASSERT_EQ(0u, nr_reformat);
  2973. unpack_vector(
  2974. gopt::GraphOptimizer{}
  2975. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2976. .add_pass<gopt::FuseConvBiasZPass>()
  2977. .apply({{y4}})
  2978. .endpoint_vars(),
  2979. y_cudnn);
  2980. HostTensorND host_y, host_y_opt;
  2981. auto func = graph->compile(
  2982. {make_callback_copy(y_cudnn, host_y),
  2983. make_callback_copy(y_opt, host_y_opt)});
  2984. func->execute();
  2985. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2986. }
  2987. TEST(TestGoptInference, ConvertFormatNCHW4GPU) {
  2988. REQUIRE_GPU(1);
  2989. auto cn = CompNode::load("gpu0");
  2990. cn.activate();
  2991. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2992. auto sm_ver = prop.major * 10 + prop.minor;
  2993. if (sm_ver < 61) {
  2994. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2995. "expected: %d)\n",
  2996. sm_ver, 61);
  2997. return;
  2998. }
  2999. HostTensorGenerator<dtype::Int8> gen;
  3000. auto graph = ComputingGraph::make();
  3001. graph->options().graph_opt_level = 0;
  3002. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  3003. return opr::TypeCvt::make(
  3004. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  3005. };
  3006. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  3007. return opr::TypeCvt::make(
  3008. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  3009. dtype);
  3010. };
  3011. auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(2.5f));
  3012. opr::ConvBias::Param param_conv_bias;
  3013. param_conv_bias.format = opr::ConvBias::Param::Format::NCHW;
  3014. param_conv_bias.stride_h = param_conv_bias.stride_w = 1;
  3015. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3016. param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  3017. // dense
  3018. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3019. auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  3020. b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  3021. auto conv1 = opr::ConvBiasForward::make(
  3022. x, w1, b1, param_conv_bias, {},
  3023. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  3024. // group
  3025. // icpg != 1 && ocpg != 1
  3026. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3027. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  3028. b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  3029. auto conv2 = opr::ConvBiasForward::make(
  3030. conv1, w2, b2, param_conv_bias, {},
  3031. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  3032. opr::Convolution::Param param_deconv;
  3033. param_deconv.format = opr::Convolution::Param::Format::NCHW;
  3034. param_deconv.stride_h = param_deconv.stride_w = 2;
  3035. param_deconv.pad_h = param_deconv.pad_w = 2;
  3036. // dense
  3037. param_deconv.sparse = opr::Convolution::Param::Sparse::DENSE;
  3038. auto w3 = mkcvar("w3", {8, 8, 4, 4}, dtype::QuantizedS8(2.5f));
  3039. auto deconv1 = opr::ConvolutionBackwardData::make_deconv(
  3040. conv2, w3, param_deconv, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  3041. auto deconv1_fp32 = opr::TypeCvt::make(deconv1, dtype::Float32());
  3042. auto y = deconv1_fp32 + opr::TypeCvt::make(b2, dtype::Float32());
  3043. SymbolVar y_opt;
  3044. {
  3045. auto options = gopt::OptimizeForInferenceOptions{};
  3046. options.enable_nchw4();
  3047. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3048. }
  3049. ASSERT_EQ(
  3050. opr::ConvBias::Param::Format::NCHW4,
  3051. find_opr<opr::ConvBias>(y_opt).param().format);
  3052. ASSERT_EQ(
  3053. opr::ConvolutionBackwardData::Param::Format::NCHW4,
  3054. find_opr<opr::ConvolutionBackwardData>(y_opt).param().format);
  3055. auto nr_reshape = find_opr_num<mgb::opr::Reshape>(y_opt);
  3056. ASSERT_EQ(2u, nr_reshape);
  3057. graph->compile({{y_opt, {}}})
  3058. ->to_json()
  3059. ->writeto_fpath(
  3060. output_file("TestGoptInference.ConvertFormatNCHW4GPU.json"));
  3061. HostTensorND host_y, host_y_opt;
  3062. auto func = graph->compile(
  3063. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3064. func->execute();
  3065. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  3066. }
  3067. TEST(TestGoptInference, ConvertFormatNCHW4FloatGPU) {
  3068. REQUIRE_GPU(1);
  3069. auto cn = CompNode::load("gpu0");
  3070. cn.activate();
  3071. REQUIRE_CUDA_COMPUTE_CAPABILITY_EQ(6, 1);
  3072. HostTensorGenerator<> gen;
  3073. auto graph = ComputingGraph::make();
  3074. graph->options().graph_opt_level = 0;
  3075. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  3076. return opr::TypeCvt::make(
  3077. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  3078. };
  3079. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  3080. return opr::TypeCvt::make(
  3081. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  3082. dtype);
  3083. };
  3084. auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(1.2f));
  3085. opr::ConvBias::Param param_conv_bias;
  3086. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3087. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3088. // conv1, with bias
  3089. auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(1.3f)),
  3090. b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::Float32());
  3091. auto conv1 = opr::ConvBias::make(
  3092. x, w1, b1, param_conv_bias, {}, OperatorNodeConfig{dtype::Float32()});
  3093. // conv2, with bias and z
  3094. auto w2 = mkcvar("w2", {8, 4, 3, 3}, dtype::QuantizedS8(1.3f)),
  3095. b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::Float32()),
  3096. z2 = mkcvar("z2", {2, 8, 16, 16}, dtype::Float32());
  3097. auto conv2 = opr::ConvBias::make(
  3098. x, w2, b2, z2, param_conv_bias, {}, OperatorNodeConfig{dtype::Float32()});
  3099. // conv3, relu
  3100. param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  3101. auto w3 = mkcvar("w3", {8, 4, 3, 3}, dtype::QuantizedS8(1.3f)),
  3102. b3 = mkcvar("b3", {1, 8, 1, 1}, dtype::Float32()),
  3103. z3 = mkcvar("z3", {2, 8, 16, 16}, dtype::Float32());
  3104. auto conv3 = opr::ConvBias::make(
  3105. x, w3, b3, z3, param_conv_bias, {}, OperatorNodeConfig{dtype::Float32()});
  3106. auto y = conv1 + conv2 + conv3;
  3107. SymbolVar y_opt;
  3108. {
  3109. auto options = gopt::OptimizeForInferenceOptions{};
  3110. options.enable_nchw4();
  3111. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3112. }
  3113. bool succ = true;
  3114. auto cb = [&succ](cg::OperatorNodeBase* opr) {
  3115. if (opr->same_type<opr::ConvBias>()) {
  3116. auto& conv_bias = opr->cast_final_safe<opr::ConvBias>();
  3117. if (conv_bias.param().format != opr::ConvBias::Param::Format::NCHW4_NCHW) {
  3118. succ = false;
  3119. }
  3120. }
  3121. };
  3122. cg::DepOprIter{cb}.add(y_opt);
  3123. ASSERT_TRUE(succ);
  3124. HostTensorND host_y, host_y_opt;
  3125. auto func = graph->compile(
  3126. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3127. func->execute();
  3128. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  3129. }
  3130. #endif
  3131. TEST(TestGoptInference, ConvertFormatNCHW4NonConvOpr) {
  3132. auto cn = CompNode::load("xpu0");
  3133. HostTensorGenerator<dtype::Int8> gen;
  3134. auto graph = ComputingGraph::make();
  3135. graph->options().graph_opt_level = 0;
  3136. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  3137. return opr::TypeCvt::make(
  3138. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  3139. };
  3140. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  3141. return opr::TypeCvt::make(
  3142. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  3143. dtype);
  3144. };
  3145. auto mkcvarf32 = [&](const char* name, const TensorShape& shp) {
  3146. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  3147. };
  3148. auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(2.5f));
  3149. opr::ConvBias::Param param_conv_bias;
  3150. param_conv_bias.format = opr::ConvBias::Param::Format::NCHW;
  3151. param_conv_bias.stride_h = param_conv_bias.stride_w = 1;
  3152. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3153. param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  3154. // dense
  3155. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3156. auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  3157. b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  3158. auto conv1 = opr::ConvBiasForward::make(
  3159. x, w1, b1, param_conv_bias, {},
  3160. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  3161. // test Resize
  3162. auto shape_of = opr::GetVarShape::make(x);
  3163. auto subtensor = opr::Subtensor::make(
  3164. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  3165. 0, x.make_scalar(2), None, x.make_scalar(1))});
  3166. opr::Resize::Param param_resize;
  3167. param_resize.format = opr::Resize::Param::Format::NCHW;
  3168. auto resize = opr::ResizeForward::make(conv1, subtensor * 2, param_resize);
  3169. // test WarpPerspective
  3170. auto mat = mkcvarf32("mat", {2, 3, 3}),
  3171. warp = opr::WarpPerspectiveForward::make(
  3172. resize, mat, nullptr, cg::var_from_tensor_shape(x, {32, 32}));
  3173. opr::Pooling::Param pool_param;
  3174. pool_param.format = opr::Pooling::Param::Format::NCHW;
  3175. // test Pooling
  3176. auto pool = opr::Pooling::make(warp, pool_param);
  3177. // group
  3178. // icpg != 1 && ocpg != 1
  3179. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3180. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  3181. b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  3182. auto conv2 = opr::ConvBiasForward::make(
  3183. pool, w2, b2, param_conv_bias, {},
  3184. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  3185. auto add = opr::ElemwiseMultiType::make(
  3186. {conv1, conv2}, {opr::ElemwiseMultiType::Param::Mode::QADD},
  3187. OperatorNodeConfig{dtype::QuantizedS8{1.2f}});
  3188. auto y = opr::TypeCvt::make(add, dtype::Float32());
  3189. SymbolVar y_opt;
  3190. {
  3191. auto options = gopt::OptimizeForInferenceOptions{};
  3192. options.enable_nchw4();
  3193. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3194. }
  3195. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  3196. ASSERT_EQ(2u, nr_dimshuffle);
  3197. ASSERT_EQ(
  3198. opr::ConvBias::Param::Format::NCHW4,
  3199. find_opr<opr::ConvBias>(y_opt).param().format);
  3200. ASSERT_EQ(
  3201. opr::ResizeForward::Param::Format::NCHW4,
  3202. find_opr<opr::ResizeForward>(y_opt).param().format);
  3203. ASSERT_EQ(
  3204. opr::WarpPerspectiveForward::Param::Format::NCHW4,
  3205. find_opr<opr::WarpPerspectiveForward>(y_opt).param().format);
  3206. ASSERT_EQ(
  3207. opr::PoolingForward::Param::Format::NCHW4,
  3208. find_opr<opr::PoolingForward>(y_opt).param().format);
  3209. }
  3210. TEST(TestGoptInference, ConvertFormatNCHW4) {
  3211. HostTensorGenerator<> gen;
  3212. auto cn = CompNode::load("cpu0");
  3213. auto graph = ComputingGraph::make();
  3214. graph->options().graph_opt_level = 0;
  3215. auto mkvar = [&](const char* name, const TensorShape& shp) {
  3216. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  3217. };
  3218. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3219. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  3220. };
  3221. auto x = mkvar("x", {2, 4, 16, 16});
  3222. // ConvBias test dense
  3223. opr::ConvBias::Param param_conv_bias;
  3224. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3225. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3226. auto w1 = mkcvar("w1", {8, 4, 3, 3}), b1 = mkcvar("b1", {1, 8, 1, 1});
  3227. auto conv1 = opr::ConvBias::make(x, w1, b1, param_conv_bias);
  3228. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3229. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1});
  3230. auto conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  3231. // Convolution
  3232. opr::Convolution::Param param_conv;
  3233. param_conv.pad_h = param_conv.pad_w = 1;
  3234. param_conv.sparse = opr::Convolution::Param::Sparse::DENSE;
  3235. auto w3 = mkcvar("w3", {8, 8, 3, 3});
  3236. auto y = opr::Convolution::make(conv2, w3, param_conv);
  3237. SymbolVar y_opt;
  3238. {
  3239. auto options = gopt::OptimizeForInferenceOptions{};
  3240. options.enable_nchw4();
  3241. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3242. }
  3243. ASSERT_EQ(
  3244. opr::ConvBias::Param::Format::NCHW,
  3245. find_opr<opr::ConvBias>(y_opt).param().format);
  3246. graph->compile({{y_opt, {}}})
  3247. ->to_json()
  3248. ->writeto_fpath(output_file("TestGoptInference.ConvertFormatNCHW4.json"));
  3249. HostTensorND host_y_opt, host_y;
  3250. auto func = graph->compile(
  3251. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3252. func->execute();
  3253. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  3254. }
  3255. TEST(TestGoptInference, ConvertFormatNCHW4Ic3) {
  3256. REQUIRE_GPU(1);
  3257. auto cn = CompNode::load("gpu0");
  3258. cn.activate();
  3259. REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
  3260. HostTensorGenerator<dtype::Float32, RandomDistribution::UNIFORM> gen{
  3261. 1.2f, 127 * 127};
  3262. auto graph = ComputingGraph::make();
  3263. graph->options().graph_opt_level = 0;
  3264. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  3265. return opr::TypeCvt::make(
  3266. opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name), dtype);
  3267. };
  3268. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  3269. return opr::TypeCvt::make(
  3270. opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name), dtype);
  3271. };
  3272. auto x = mkvar("x", {2, 3, 16, 16}, dtype::QuantizedS8(2.5f));
  3273. // ConvBias test dense
  3274. opr::ConvBias::Param param_conv_bias;
  3275. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3276. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3277. auto w1 = mkcvar("w1", {8, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  3278. b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  3279. auto conv1 = opr::ConvBias::make(
  3280. x, w1, b1, param_conv_bias, {},
  3281. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  3282. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3283. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  3284. b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  3285. auto conv2 = opr::ConvBias::make(
  3286. conv1, w2, b2, param_conv_bias, {},
  3287. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  3288. auto y = opr::TypeCvt::make(conv2, dtype::Float32());
  3289. SymbolVar y_opt;
  3290. {
  3291. auto options = gopt::OptimizeForInferenceOptions{};
  3292. options.enable_nchw4();
  3293. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3294. }
  3295. ASSERT_EQ(
  3296. opr::ConvBias::Param::Format::NCHW4,
  3297. find_opr<opr::ConvBias>(y_opt).param().format);
  3298. graph->compile({{y_opt, {}}})
  3299. ->to_json()
  3300. ->writeto_fpath(
  3301. output_file("TestGoptInference.ConvertFormatNCHW4Ic3.json"));
  3302. HostTensorND host_y_opt, host_y;
  3303. auto func = graph->compile(
  3304. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3305. func->execute();
  3306. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  3307. }
  3308. TEST(TestGoptInference, ConvertFormatNCHW88) {
  3309. HostTensorGenerator<> gen;
  3310. auto cn = CompNode::load("cpu0");
  3311. auto graph = ComputingGraph::make();
  3312. graph->options().graph_opt_level = 0;
  3313. auto mkvar = [&](const char* name, const TensorShape& shp) {
  3314. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  3315. };
  3316. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3317. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  3318. };
  3319. auto host_x = gen({2, 3, 16, 16}, cn);
  3320. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  3321. //! Hybrid nchw88 mode
  3322. opr::Convolution::Param param_conv;
  3323. param_conv.pad_h = param_conv.pad_w = 1;
  3324. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  3325. conv1 = opr::Convolution::make(
  3326. x, w1, param_conv, {}, OperatorNodeConfig("conv1"));
  3327. //! channel wise
  3328. opr::ConvBias::Param param_conv_bias;
  3329. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3330. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3331. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  3332. conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  3333. //! group
  3334. auto w3 = mkcvar("w3", {1, 8, 8, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  3335. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  3336. //! reduce
  3337. opr::Reduce::Param param_reduce1;
  3338. param_reduce1.axis = 2;
  3339. param_reduce1.mode = opr::Reduce::Mode::SUM;
  3340. opr::Reduce::Param param_reduce2;
  3341. param_reduce2.axis = 0;
  3342. param_reduce2.mode = opr::Reduce::Mode::MAX;
  3343. auto reduce1 = conv3 + opr::Reduce::make(conv3, param_reduce1) +
  3344. opr::Reduce::make(conv3, param_reduce2);
  3345. auto shape_of = opr::GetVarShape::make(reduce1);
  3346. auto subtensor = opr::Subtensor::make(
  3347. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  3348. 0, x.make_scalar(2), None, x.make_scalar(1))});
  3349. opr::Resize::Param param_resize;
  3350. param_resize.format = opr::Resize::Param::Format::NCHW;
  3351. auto resize = opr::ResizeForward::make(reduce1, subtensor * 2, param_resize);
  3352. auto mat = mkcvar("mat", {2, 3, 3}),
  3353. warp = opr::WarpPerspectiveForward::make(
  3354. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  3355. auto b = mkvar("b", {1, 8, 1, 1}),
  3356. elem = opr::Elemwise::make({warp + b}, opr::Elemwise::Param::Mode::RELU);
  3357. //! Dense
  3358. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3359. auto w4 = mkcvar("w4", {2, 6, 4, 3, 3}), b4 = mkcvar("b4", {1, 12, 1, 1}),
  3360. conv4 = opr::ConvBias::make(elem, w4, b4, param_conv_bias);
  3361. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3362. auto w5 = mkcvar("w5", {8, 12, 3, 3}), b5 = mkcvar("b5", {1, 8, 1, 1}),
  3363. conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias);
  3364. auto w6 = mkcvar("w6", {8, 8, 3, 3}), b6 = mkcvar("b6", {1, 8, 1, 1}),
  3365. y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias);
  3366. SymbolVar y_opt;
  3367. {
  3368. auto options = gopt::OptimizeForInferenceOptions{};
  3369. options.enable_nchw88();
  3370. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3371. }
  3372. ASSERT_EQ(
  3373. opr::ConvBias::Param::Format::NCHW88,
  3374. find_opr<opr::Convolution>(y_opt, "conv1").param().format);
  3375. ASSERT_EQ(
  3376. opr::ConvBias::Param::Format::NCHW88,
  3377. find_opr<opr::ConvBias>(y_opt).param().format);
  3378. graph->compile({{y_opt, {}}})
  3379. ->to_json()
  3380. ->writeto_fpath(output_file("TestGoptInference.ConvertFormatNCHW88.json"));
  3381. HostTensorND host_y_opt, host_y;
  3382. auto func = graph->compile(
  3383. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3384. func->execute();
  3385. //! meybe go to winograd in x86-32, so set error 1e-1
  3386. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3387. *host_x = *gen({2, 3, 32, 32}, cn);
  3388. func->execute();
  3389. //! meybe go to winograd in x86-32, so set error 1e-1
  3390. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3391. }
  3392. TEST(TestGoptInference, ConvertFormatNCHW44) {
  3393. HostTensorGenerator<> gen;
  3394. auto cn = CompNode::load("cpu0");
  3395. auto graph = ComputingGraph::make();
  3396. graph->options().graph_opt_level = 0;
  3397. auto mkvar = [&](const char* name, const TensorShape& shp) {
  3398. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  3399. };
  3400. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3401. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  3402. };
  3403. auto mkcvar_dtype = [&](const char* name, const TensorShape& shp,
  3404. const DType& dtype) {
  3405. return opr::TypeCvt::make(
  3406. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  3407. dtype);
  3408. };
  3409. auto host_x = gen({2, 3, 16, 16}, cn);
  3410. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  3411. //! Hybrid nchw44 mode
  3412. opr::Convolution::Param param_conv;
  3413. param_conv.pad_h = param_conv.pad_w = 1;
  3414. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  3415. conv1 = opr::Convolution::make(
  3416. x, w1, param_conv, {}, OperatorNodeConfig("conv1"));
  3417. //! no supported hybrid nchw44
  3418. opr::ConvBias::Param param_conv_bias_pad0;
  3419. param_conv_bias_pad0.pad_h = param_conv_bias_pad0.pad_w = 0;
  3420. auto w1_f1 = mkcvar("w1_1", {8, 3, 1, 1});
  3421. auto conv1_f1 = opr::ConvBias::make(
  3422. x, w1_f1, param_conv_bias_pad0, {}, OperatorNodeConfig("conv1_f1"));
  3423. auto conv1_add = conv1_f1 * conv1;
  3424. auto conv_1_q8 = opr::TypeCvt::make(conv1_add, dtype::QuantizedS8(2.5f));
  3425. //! s8 dense conv
  3426. opr::ConvBias::Param param_conv_bias;
  3427. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3428. auto w1_2 = mkcvar_dtype("w1_2", {8, 8, 3, 3}, dtype::QuantizedS8(2.5f));
  3429. auto b1_2 = mkcvar_dtype("b1_2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  3430. auto conv_1_2 = opr::ConvBias::make(
  3431. conv_1_q8, w1_2, b1_2, param_conv_bias, {},
  3432. OperatorNodeConfig{"conv_1_2", cn, dtype::QuantizedS8{6.25f}});
  3433. auto conv_1_2_fp32 = opr::TypeCvt::make(conv_1_2, dtype::Float32());
  3434. //! channel wise
  3435. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3436. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  3437. conv2 = opr::ConvBias::make(conv_1_2_fp32, w2, b2, param_conv_bias);
  3438. //! group
  3439. auto w3 = mkcvar("w3", {2, 4, 4, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  3440. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  3441. //! reduce
  3442. opr::Reduce::Param param_reduce1;
  3443. param_reduce1.axis = 1;
  3444. param_reduce1.mode = opr::Reduce::Mode::MIN;
  3445. opr::Reduce::Param param_reduce2;
  3446. param_reduce2.axis = 3;
  3447. param_reduce2.mode = opr::Reduce::Mode::SUM_SQR;
  3448. auto reduce1 = conv3 + opr::Reduce::make(conv3, param_reduce1) +
  3449. opr::Reduce::make(conv3, param_reduce2);
  3450. auto shape_of = opr::GetVarShape::make(reduce1);
  3451. auto subtensor = opr::Subtensor::make(
  3452. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  3453. 0, x.make_scalar(2), None, x.make_scalar(1))});
  3454. opr::Resize::Param param_resize;
  3455. param_resize.format = opr::Resize::Param::Format::NCHW;
  3456. auto resize = opr::ResizeForward::make(reduce1, subtensor * 2, param_resize);
  3457. auto mat = mkcvar("mat", {2, 3, 3}),
  3458. warp = opr::WarpPerspectiveForward::make(
  3459. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  3460. auto b = mkvar("b", {1, 8, 1, 1}),
  3461. elem = opr::Elemwise::make({warp + b}, opr::Elemwise::Param::Mode::RELU);
  3462. //! Dense
  3463. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3464. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3465. auto w3_2 = mkcvar("w3_2", {16, 8, 3, 3}), b3_2 = mkcvar("b3_2", {1, 16, 1, 1}),
  3466. conv3_2 = opr::ConvBias::make(
  3467. elem, w3_2, b3_2, param_conv_bias, {}, OperatorNodeConfig("conv3_2"));
  3468. //! s8 group conv
  3469. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3470. auto conv3_2_q8 = opr::TypeCvt::make(conv3_2, dtype::QuantizedS8(2.5f));
  3471. auto w3_3 = mkcvar_dtype("w3_3", {4, 8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  3472. b3_3 = mkcvar_dtype("b3_3", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f)),
  3473. conv3_3_q = opr::ConvBias::make(
  3474. conv3_2_q8, w3_3, b3_3, param_conv_bias, {},
  3475. OperatorNodeConfig{"conv_3_3_q", cn, dtype::QuantizedS8{6.25f}});
  3476. auto conv3_3 = opr::TypeCvt::make(conv3_3_q, dtype::Float32());
  3477. //! Dense
  3478. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3479. auto w4 = mkcvar("w4", {16, 32, 3, 3}), b4 = mkcvar("b4", {1, 16, 1, 1}),
  3480. conv4 = opr::ConvBias::make(
  3481. conv3_3, w4, b4, param_conv_bias, {}, OperatorNodeConfig("conv4"));
  3482. auto w4_1 = mkcvar("w4_1", {16, 32, 1, 1}), b4_1 = mkcvar("b4_1", {2, 16, 4, 4}),
  3483. conv4_1 = opr::ConvBias::make(
  3484. conv3_3, w4_1, b4_1, param_conv_bias_pad0, {},
  3485. OperatorNodeConfig("conv4_1"));
  3486. auto conv4_add = conv4 + conv4_1;
  3487. auto w5 = mkcvar("w5", {6, 16, 3, 3}), b5 = mkcvar("b5", {1, 6, 1, 1}),
  3488. conv5 = opr::ConvBias::make(
  3489. conv4_add, w5, b5, param_conv_bias, {}, OperatorNodeConfig("conv5"));
  3490. auto w6 = mkcvar("w6", {4, 6, 3, 3}), b6 = mkcvar("b6", {1, 4, 1, 1}),
  3491. y = opr::ConvBias::make(
  3492. conv5, w6, b6, param_conv_bias, {}, OperatorNodeConfig("conv6"));
  3493. SymbolVar y_opt;
  3494. auto options = gopt::OptimizeForInferenceOptions{};
  3495. options.enable_fuse_conv_bias_nonlinearity();
  3496. options.enable_nchw44();
  3497. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3498. ASSERT_EQ(
  3499. opr::Convolution::Param::Format::NCHW44,
  3500. find_opr<opr::Convolution>(y_opt, "conv1").param().format);
  3501. ASSERT_EQ(
  3502. opr::Convolution::Param::Format::NCHW,
  3503. find_opr<opr::ConvBias>(y_opt, "conv1_f1").param().format);
  3504. ASSERT_EQ(
  3505. opr::Convolution::Param::Format::NCHW44,
  3506. find_opr<opr::ConvBias>(y_opt, "conv_1_2").param().format);
  3507. ASSERT_EQ(
  3508. opr::Convolution::Param::Format::NCHW44,
  3509. find_opr<opr::ConvBias>(y_opt, "conv3_2").param().format);
  3510. ASSERT_EQ(
  3511. opr::Convolution::Param::Format::NCHW44,
  3512. find_opr<opr::ConvBias>(y_opt, "conv_3_3_q").param().format);
  3513. ASSERT_EQ(
  3514. opr::Convolution::Param::Format::NCHW44,
  3515. find_opr<opr::ConvBias>(y_opt, "conv4").param().format);
  3516. ASSERT_EQ(
  3517. opr::Convolution::Param::Format::NCHW,
  3518. find_opr<opr::ConvBias>(y_opt, "conv5").param().format);
  3519. graph->compile({{y_opt, {}}})
  3520. ->to_json()
  3521. ->writeto_fpath(output_file("TestGoptInference.ConvertFormatNCHW44.json"));
  3522. HostTensorND host_y_opt, host_y;
  3523. auto func = graph->compile(
  3524. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3525. func->execute();
  3526. //! meybe go to winograd in x86-32, so set error 1e-1
  3527. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3528. *host_x = *gen({2, 3, 32, 32}, cn);
  3529. func->execute();
  3530. //! meybe go to winograd in x86-32, so set error 1e-1
  3531. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3532. }
  3533. TEST(TestGoptInference, ConvertFormatNCHW44MultiInput) {
  3534. HostTensorGenerator<> gen;
  3535. auto cn = CompNode::load("cpu0");
  3536. auto graph = ComputingGraph::make();
  3537. graph->options().graph_opt_level = 0;
  3538. auto mkvar = [&](const char* name, const TensorShape& shp) {
  3539. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  3540. };
  3541. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3542. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  3543. };
  3544. auto host_x1 = gen({1, 8, 16, 16}, cn);
  3545. auto host_x2 = gen({1, 1, 16, 16}, cn);
  3546. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3547. opr::Convolution::Param param_conv;
  3548. param_conv.pad_h = param_conv.pad_w = 1;
  3549. auto w1 = mkcvar("w1", {8, 8, 3, 3}),
  3550. conv1 = opr::Convolution::make(x, w1, param_conv);
  3551. auto b = mkvar("b", {1, 1, 16, 16}),
  3552. elem0 = opr::Elemwise::make({conv1 + b + b}, opr::Elemwise::Param::Mode::RELU);
  3553. auto w2 = mkcvar("w2", {8, 8, 3, 3}),
  3554. conv2 = opr::Convolution::make(elem0, w2, param_conv);
  3555. auto b1 = mkvar("b1", {1}),
  3556. y = opr::Elemwise::make({conv2 + b1 + b}, opr::Elemwise::Param::Mode::RELU);
  3557. SymbolVar y_opt;
  3558. auto options = gopt::OptimizeForInferenceOptions{};
  3559. options.enable_nchw44();
  3560. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3561. ASSERT_EQ(
  3562. opr::Convolution::Param::Format::NCHW44,
  3563. find_opr<opr::Convolution>(y_opt).param().format);
  3564. graph->compile({{y_opt, {}}})
  3565. ->to_json()
  3566. ->writeto_fpath(output_file(
  3567. "TestGoptInference.ConvertFormatNCHW44MultiInput.json"));
  3568. HostTensorND host_y_opt, host_y;
  3569. auto func = graph->compile(
  3570. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3571. func->execute();
  3572. //! meybe go to winograd in x86-32, so set error 1e-1
  3573. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3574. }
  3575. TEST(TestGoptInference, ConvertFormatNCHW44Reshape) {
  3576. HostTensorGenerator<> gen;
  3577. auto cn = CompNode::load("cpu0");
  3578. auto graph = ComputingGraph::make();
  3579. graph->options().graph_opt_level = 0;
  3580. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3581. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  3582. };
  3583. auto host_x1 = gen({1, 8, 16, 16}, cn);
  3584. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3585. opr::Convolution::Param param_conv;
  3586. param_conv.pad_h = param_conv.pad_w = 1;
  3587. auto w1 = mkcvar("w1", {8, 8, 3, 3}),
  3588. conv1 = opr::Convolution::make(x, w1, param_conv);
  3589. auto y = opr::Reshape::make(conv1, {8, 16 * 16});
  3590. SymbolVar y_opt;
  3591. auto options = gopt::OptimizeForInferenceOptions{};
  3592. options.enable_nchw44();
  3593. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3594. ASSERT_EQ(
  3595. opr::Convolution::Param::Format::NCHW44,
  3596. find_opr<opr::Convolution>(y_opt).param().format);
  3597. graph->compile({{y_opt, {}}})
  3598. ->to_json()
  3599. ->writeto_fpath(
  3600. output_file("TestGoptInference.ConvertFormatNCHW44Reshape.json"));
  3601. HostTensorND host_y_opt, host_y;
  3602. auto func = graph->compile(
  3603. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3604. func->execute();
  3605. //! meybe go to winograd in x86-32, so set error 1e-1
  3606. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3607. }
  3608. TEST(TestGoptInference, ConvertFormatNCHW44GlobalPooling) {
  3609. HostTensorGenerator<> gen;
  3610. auto cn = CompNode::load("cpu0");
  3611. auto graph = ComputingGraph::make();
  3612. graph->options().graph_opt_level = 0;
  3613. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3614. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  3615. };
  3616. auto host_x1 = gen({1, 4, 16, 16}, cn);
  3617. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3618. opr::Convolution::Param param_conv;
  3619. param_conv.stride_h = param_conv.stride_w = 1;
  3620. param_conv.pad_h = param_conv.pad_w = 1;
  3621. auto w1 = mkcvar("w1", {8, 4, 3, 3});
  3622. auto conv1 =
  3623. opr::Convolution::make(x, w1, param_conv, {}, OperatorNodeConfig("conv1"));
  3624. auto conv_n = opr::GetVarShape::make(conv1, 0);
  3625. auto conv_c = opr::GetVarShape::make(conv1, 1);
  3626. auto conv_h = opr::GetVarShape::make(conv1, 2);
  3627. auto conv_w = opr::GetVarShape::make(conv1, 3);
  3628. auto hxw = conv_h * conv_w;
  3629. auto reshape_shape = opr::Concat::make({conv_n, conv_c, hxw}, 0);
  3630. auto reshape1 = opr::Reshape::make(conv1, reshape_shape);
  3631. opr::Reduce::Param param_reduce;
  3632. param_reduce.axis = 2;
  3633. param_reduce.mode = opr::Reduce::Mode::SUM;
  3634. auto reduce = opr::Reduce::make(reshape1, param_reduce);
  3635. auto reduce_remove_axis = opr::AxisAddRemove::make(
  3636. reduce, {opr::AxisAddRemove::AxisDesc::make_remove(2)});
  3637. auto hw_count = opr::GetVarShape::make(reshape1, 2);
  3638. auto fp32_hw_count = opr::TypeCvt::make(hw_count, dtype::Float32());
  3639. auto reduce_mean = reduce_remove_axis / fp32_hw_count;
  3640. auto global_pool = opr::AxisAddRemove::make(
  3641. reduce_mean, {opr::AxisAddRemove::AxisDesc::make_add(2),
  3642. opr::AxisAddRemove::AxisDesc::make_add(3)});
  3643. opr::Elemwise::Param elem_param;
  3644. elem_param.mode = opr::Elemwise::Param::Mode::RELU;
  3645. auto y = opr::Elemwise::make({global_pool}, elem_param);
  3646. SymbolVar y_opt;
  3647. auto options = gopt::OptimizeForInferenceOptions{};
  3648. options.enable_fuse_grain();
  3649. options.enable_nchw44();
  3650. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3651. ASSERT_EQ(
  3652. opr::AdaptivePooling::Param::Format::NCHW44,
  3653. find_opr<opr::AdaptivePooling>(y_opt).param().format);
  3654. graph->compile({{y_opt, {}}})
  3655. ->to_json()
  3656. ->writeto_fpath(output_file(
  3657. "TestGoptInference.ConvertFormatNCHW44GlobalPooling.json"));
  3658. HostTensorND host_y_opt, host_y;
  3659. auto func = graph->compile(
  3660. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3661. func->execute();
  3662. //! meybe go to winograd in x86-32, so set error 1e-1
  3663. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3664. }
  3665. TEST(TestGoptInference, ConvertFormatNCHW44_DOT) {
  3666. HostTensorGenerator<> gen;
  3667. auto cn = CompNode::load("cpu0");
  3668. auto graph = ComputingGraph::make();
  3669. graph->options().graph_opt_level = 0;
  3670. auto mkvar = [&](const char* name, const TensorShape& shp) {
  3671. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  3672. };
  3673. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3674. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  3675. };
  3676. auto mkcvar_dtype = [&](const char* name, const TensorShape& shp,
  3677. const DType& dtype) {
  3678. return opr::TypeCvt::make(
  3679. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  3680. dtype);
  3681. };
  3682. auto host_x = gen({2, 3, 16, 16}, cn);
  3683. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  3684. //! Hybrid nchw44 mode
  3685. opr::Convolution::Param param_conv;
  3686. param_conv.pad_h = param_conv.pad_w = 1;
  3687. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  3688. conv1 = opr::Convolution::make(
  3689. x, w1, param_conv, {}, OperatorNodeConfig("conv1"));
  3690. printf("create conv1 %s\n", conv1.node()->owner_opr()->dyn_typeinfo()->name);
  3691. param_conv.pad_h = param_conv.pad_w = 1;
  3692. //! no supported hybrid nchw44
  3693. opr::ConvBias::Param param_conv_bias_pad0;
  3694. param_conv_bias_pad0.pad_h = param_conv_bias_pad0.pad_w = 0;
  3695. auto b1 = mkcvar("b1", {1, 8, 1, 1});
  3696. auto w1_f1 = mkcvar("w1_1", {8, 3, 1, 1});
  3697. auto conv1_f1 = opr::ConvBias::make(
  3698. x, w1_f1, b1, param_conv_bias_pad0, {}, OperatorNodeConfig("conv1_f1"));
  3699. //! hybrid dot
  3700. auto x_s = opr::TypeCvt::make(x, dtype::QuantizedS8(2.5f));
  3701. auto w1_3 = mkcvar_dtype("w1_3", {8, 3, 3, 3}, dtype::QuantizedS8(2.5f));
  3702. auto conv1_3_q = opr::Convolution::make(
  3703. x_s, w1_3, param_conv, {},
  3704. OperatorNodeConfig{"conv1_3_q", cn, dtype::QuantizedS8{6.25f}});
  3705. auto conv1_3 = opr::TypeCvt::make(conv1_3_q, dtype::Float32());
  3706. auto conv1_add = conv1_f1 * conv1 * conv1_3;
  3707. auto conv_1_q8 = opr::TypeCvt::make(conv1_add, dtype::QuantizedS8(2.5f));
  3708. //! s8 dense conv
  3709. opr::ConvBias::Param param_conv_bias;
  3710. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3711. auto w1_2 = mkcvar_dtype("w1_2", {8, 8, 3, 3}, dtype::QuantizedS8(2.5f));
  3712. auto conv_1_2 = opr::ConvBias::make(
  3713. conv_1_q8, w1_2, param_conv_bias, {},
  3714. OperatorNodeConfig{"conv_1_2", cn, dtype::QuantizedS8{6.25f}});
  3715. auto conv_1_2_fp32 = opr::TypeCvt::make(conv_1_2, dtype::Float32());
  3716. //! channel wise
  3717. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3718. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  3719. conv2 = opr::ConvBias::make(conv_1_2_fp32, w2, b2, param_conv_bias);
  3720. //! group
  3721. auto w3 = mkcvar("w3", {2, 4, 4, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  3722. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  3723. auto shape_of = opr::GetVarShape::make(conv3);
  3724. auto subtensor = opr::Subtensor::make(
  3725. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  3726. 0, x.make_scalar(2), None, x.make_scalar(1))});
  3727. opr::Resize::Param param_resize;
  3728. param_resize.format = opr::Resize::Param::Format::NCHW;
  3729. auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
  3730. auto mat = mkcvar("mat", {2, 3, 3}),
  3731. warp = opr::WarpPerspectiveForward::make(
  3732. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  3733. auto b = mkvar("b", {1, 8, 1, 1}),
  3734. elem = opr::Elemwise::make({warp + b}, opr::Elemwise::Param::Mode::RELU);
  3735. //! Dense
  3736. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3737. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3738. auto w3_2 = mkcvar("w3_2", {16, 8, 3, 3}), b3_2 = mkcvar("b3_2", {1, 16, 1, 1}),
  3739. conv3_2 = opr::ConvBias::make(
  3740. elem, w3_2, b3_2, param_conv_bias, {}, OperatorNodeConfig("conv3_2"));
  3741. //! s8 group conv
  3742. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3743. auto conv3_2_q8 = opr::TypeCvt::make(conv3_2, dtype::QuantizedS8(2.5f));
  3744. auto w3_3 = mkcvar_dtype("w3_3", {4, 8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  3745. b3_3 = mkcvar_dtype("b3_3", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f)),
  3746. conv3_3_q = opr::ConvBias::make(
  3747. conv3_2_q8, w3_3, b3_3, param_conv_bias, {},
  3748. OperatorNodeConfig{"conv_3_3_q", cn, dtype::QuantizedS8{6.25f}});
  3749. auto conv3_3 = opr::TypeCvt::make(conv3_3_q, dtype::Float32());
  3750. //! Dense
  3751. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3752. auto w4 = mkcvar("w4", {4, 32, 3, 3}), b4 = mkcvar("b4", {1, 4, 1, 1}),
  3753. conv4 = opr::ConvBias::make(
  3754. conv3_3, w4, b4, param_conv_bias, {}, OperatorNodeConfig("conv4"));
  3755. auto w5 = mkcvar("w5", {6, 4, 3, 3}), b5 = mkcvar("b5", {1, 6, 1, 1}),
  3756. conv5 = opr::ConvBias::make(
  3757. conv4, w5, b5, param_conv_bias, {}, OperatorNodeConfig("conv5"));
  3758. auto w6 = mkcvar("w6", {4, 6, 3, 3}), b6 = mkcvar("b6", {1, 4, 1, 1}),
  3759. y = opr::ConvBias::make(
  3760. conv5, w6, b6, param_conv_bias, {}, OperatorNodeConfig("conv6"));
  3761. SymbolVar y_opt;
  3762. auto options = gopt::OptimizeForInferenceOptions{};
  3763. options.enable_fuse_conv_bias_nonlinearity();
  3764. options.enable_nchw44_dot();
  3765. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3766. ASSERT_EQ(
  3767. opr::Convolution::Param::Format::NCHW44,
  3768. find_opr<opr::Convolution>(y_opt, "conv1").param().format);
  3769. ASSERT_EQ(
  3770. opr::Convolution::Param::Format::NCHW44_DOT,
  3771. find_opr<opr::Convolution>(y_opt, "conv1_3_q").param().format);
  3772. ASSERT_EQ(
  3773. opr::Convolution::Param::Format::NCHW,
  3774. find_opr<opr::ConvBias>(y_opt, "conv1_f1").param().format);
  3775. ASSERT_EQ(
  3776. opr::Convolution::Param::Format::NCHW44_DOT,
  3777. find_opr<opr::ConvBias>(y_opt, "conv_1_2").param().format);
  3778. ASSERT_EQ(
  3779. opr::Convolution::Param::Format::NCHW44,
  3780. find_opr<opr::ConvBias>(y_opt, "conv3_2").param().format);
  3781. ASSERT_EQ(
  3782. opr::Convolution::Param::Format::NCHW44_DOT,
  3783. find_opr<opr::ConvBias>(y_opt, "conv_3_3_q").param().format);
  3784. ASSERT_EQ(
  3785. opr::Convolution::Param::Format::NCHW44,
  3786. find_opr<opr::ConvBias>(y_opt, "conv4").param().format);
  3787. ASSERT_EQ(
  3788. opr::Convolution::Param::Format::NCHW,
  3789. find_opr<opr::ConvBias>(y_opt, "conv5").param().format);
  3790. graph->compile({{y_opt, {}}})
  3791. ->to_json()
  3792. ->writeto_fpath(
  3793. output_file("TestGoptInference.ConvertFormatNCHW44_DOT.json"));
  3794. HostTensorND host_y_opt, host_y;
  3795. auto func = graph->compile(
  3796. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3797. func->execute();
  3798. //! meybe go to winograd in x86-32, so set error 1e-1
  3799. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3800. *host_x = *gen({2, 3, 32, 32}, cn);
  3801. func->execute();
  3802. //! meybe go to winograd in x86-32, so set error 1e-1
  3803. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3804. }
  3805. TEST(TestGoptInference, ConvertFormatCD4GroupOneConv) {
  3806. // hwcd4 is only supported in naive handle
  3807. NaiveMegDNNHandleScope naive_megdnn_handle;
  3808. HostTensorGenerator<> gen;
  3809. auto cn = CompNode::load("cpu0");
  3810. auto graph = ComputingGraph::make();
  3811. graph->options().graph_opt_level = 0;
  3812. auto mkvar = [&](const char* name, const TensorShape& shp) {
  3813. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  3814. };
  3815. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3816. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  3817. };
  3818. auto x = mkvar("x", {1, 3, 128, 128});
  3819. // ConvBias
  3820. opr::ConvBias::Param param_conv_bias;
  3821. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3822. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3823. auto w1 = mkcvar("w1", {1, 16, 3, 3, 3}), b1 = mkcvar("b1", {1, 16, 1, 1});
  3824. auto conv1 = opr::ConvBias::make(x, w1, b1, param_conv_bias);
  3825. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3826. // Convolution
  3827. opr::Convolution::Param param_conv;
  3828. param_conv.pad_h = param_conv.pad_w = 1;
  3829. param_conv.sparse = opr::Convolution::Param::Sparse::GROUP;
  3830. auto w3 = mkcvar("w3", {1, 16, 16, 3, 3});
  3831. auto y = opr::Convolution::make(conv1, w3, param_conv);
  3832. SymbolVar y_opt;
  3833. {
  3834. auto options = gopt::OptimizeForInferenceOptions{};
  3835. options.enable_nhwcd4();
  3836. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3837. }
  3838. HostTensorND host_y_opt, host_y;
  3839. auto func = graph->compile(
  3840. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3841. func->execute();
  3842. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  3843. }
  3844. #if MGB_CUDA
  3845. TEST(TestGoptInference, PreProcessCase0) {
  3846. REQUIRE_GPU(1);
  3847. HostTensorGenerator<dtype::Quantized8Asymm, RandomDistribution::UNIFORM> gen(
  3848. dt_quint8(0), dt_quint8(50), 1, 128, 1234);
  3849. auto cn = CompNode::load("gpu0");
  3850. auto graph = ComputingGraph::make();
  3851. graph->options().graph_opt_level = 0;
  3852. size_t n = 1;
  3853. size_t c = 3;
  3854. size_t h = 16;
  3855. size_t w = 16;
  3856. auto host_x1 = gen({n, c, h, w}, cn);
  3857. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3858. auto x_q8 = opr::TypeCvt::make(x, dtype::QuantizedS8(1.f), cn);
  3859. auto zero = DTypeScalar(dtype::QuantizedS8(1.f));
  3860. auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
  3861. auto pad_channel_tensor = opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
  3862. auto paded_x = opr::Concat::make({x_q8, pad_channel_tensor}, 1, cn)
  3863. .reshape({n, 1, 4, h, w});
  3864. auto result = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
  3865. auto y = result;
  3866. SymbolVar y_opt;
  3867. auto options = gopt::OptimizeForInferenceOptions{};
  3868. options.enable_fuse_preprocess();
  3869. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3870. graph->compile({{y_opt, {}}})
  3871. ->to_json()
  3872. ->writeto_fpath(output_file("TestGoptInference.PreProcessCase0.json"));
  3873. HostTensorND host_y_opt, host_y;
  3874. auto func = graph->compile(
  3875. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3876. func->execute();
  3877. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  3878. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::RelayoutFormat>());
  3879. }
  3880. TEST(TestGoptInference, PreProcessCase1) {
  3881. REQUIRE_GPU(1);
  3882. HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
  3883. auto cn = CompNode::load("gpu0");
  3884. auto graph = ComputingGraph::make();
  3885. graph->options().graph_opt_level = 0;
  3886. size_t n = 1;
  3887. size_t c = 3;
  3888. size_t h = 16;
  3889. size_t w = 16;
  3890. auto host_x1 = gen({n, c, h, w}, cn);
  3891. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3892. auto x_u8 = opr::TypeCvt::make(x, dtype::Float32(), cn);
  3893. auto x_s8 = x_u8 - 128;
  3894. auto zero = DTypeScalar(dtype::Float32());
  3895. auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
  3896. auto pad_channel_tensor = opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
  3897. auto paded_x = opr::Concat::make({x_s8, pad_channel_tensor}, 1, cn)
  3898. .reshape({n, 1, 4, h, w});
  3899. auto nchw4_out = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
  3900. auto result = opr::TypeCvt::make(nchw4_out, dtype::QuantizedS8(1.f));
  3901. auto y = result;
  3902. SymbolVar y_opt;
  3903. auto options = gopt::OptimizeForInferenceOptions{};
  3904. options.enable_fuse_preprocess();
  3905. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3906. graph->compile({{y_opt, {}}})
  3907. ->to_json()
  3908. ->writeto_fpath(output_file("TestGoptInference.PreProcessCase1.json"));
  3909. HostTensorND host_y_opt, host_y;
  3910. auto func = graph->compile(
  3911. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3912. func->execute();
  3913. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  3914. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::RelayoutFormat>());
  3915. }
  3916. TEST(TestGoptInference, WarpAndPreProcessCase0) {
  3917. REQUIRE_GPU(1);
  3918. HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
  3919. auto cn = CompNode::load("gpu0");
  3920. auto graph = ComputingGraph::make();
  3921. graph->options().graph_opt_level = 0;
  3922. size_t n = 1;
  3923. size_t c = 3;
  3924. size_t h = 16;
  3925. size_t w = 16;
  3926. auto host_x1 = gen({n, h, w, c}, cn);
  3927. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3928. auto mat_host =
  3929. std::make_shared<HostTensorND>(cn, TensorShape{n, 3, 3}, dtype::Float32());
  3930. warp_perspective_mat_gen(*mat_host, n, h, w);
  3931. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  3932. opr::WarpPerspective::Param warp_param;
  3933. warp_param.format = opr::WarpPerspective::Param::Format::NHWC;
  3934. auto x_warp = opr::WarpPerspective::make(x, mat, TensorShape{h, w}, warp_param);
  3935. auto x_nchw = opr::Dimshuffle::make(x_warp, {0, 3, 1, 2}, 4, cn);
  3936. auto x_u8 = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
  3937. auto x_s8 = x_u8 - 128;
  3938. auto zero = DTypeScalar(dtype::Float32());
  3939. auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
  3940. auto pad_channel_tensor = opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
  3941. auto paded_x = opr::Concat::make({x_s8, pad_channel_tensor}, 1, cn)
  3942. .reshape({n, 1, 4, h, w});
  3943. auto nchw4_out = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
  3944. auto result = opr::TypeCvt::make(nchw4_out, dtype::QuantizedS8(1.f));
  3945. auto y = result;
  3946. SymbolVar y_opt;
  3947. auto options = gopt::OptimizeForInferenceOptions{};
  3948. options.enable_fuse_preprocess();
  3949. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3950. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::WarpPerspective>());
  3951. ASSERT_EQ(
  3952. opr::WarpPerspective::Param::Format::NHWC_NCHW4_IC_SMALL,
  3953. find_opr<opr::WarpPerspective>(y_opt).param().format);
  3954. graph->compile({{y_opt, {}}})
  3955. ->to_json()
  3956. ->writeto_fpath(
  3957. output_file("TestGoptInference.WarpAndPreProcessCase0.json"));
  3958. HostTensorND host_y_opt, host_y;
  3959. auto func = graph->compile(
  3960. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3961. func->execute();
  3962. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  3963. }
  3964. TEST(TestGoptInference, PreProcessCaseAutopadNCHW64) {
  3965. REQUIRE_GPU(1);
  3966. HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
  3967. auto cn = CompNode::load("gpu0");
  3968. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  3969. auto sm_ver = prop.major * 10 + prop.minor;
  3970. if (sm_ver < 75) {
  3971. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  3972. "expected: %d)\n",
  3973. sm_ver, 75);
  3974. return;
  3975. }
  3976. auto graph = ComputingGraph::make();
  3977. graph->options().graph_opt_level = 0;
  3978. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  3979. return opr::TypeCvt::make(
  3980. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  3981. dtype);
  3982. };
  3983. size_t n = 2;
  3984. size_t c = 3;
  3985. size_t h = 32;
  3986. size_t w = 32;
  3987. auto host_x1 = gen({n, c, h, w}, cn);
  3988. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3989. auto x_u8_fp32 = opr::TypeCvt::make(x, dtype::Float32(), cn);
  3990. auto x_s8_fp32 = x_u8_fp32 - 128;
  3991. auto x_s8 = opr::TypeCvt::make(x_s8_fp32, dtype::QuantizedS8(2.5f), cn);
  3992. auto weight = mkcvar("weight", {16, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  3993. bias = mkcvar("bias", {1, 16, 1, 1}, dtype::QuantizedS32(6.25f));
  3994. opr::ConvBias::Param param;
  3995. param.format = opr::ConvBias::Param::Format::NCHW;
  3996. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  3997. param.stride_h = param.stride_w = 2;
  3998. param.pad_h = param.pad_w = 1;
  3999. auto result = opr::ConvBias::make(
  4000. x_s8, weight, bias, param, {},
  4001. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4002. auto y = result;
  4003. SymbolVar y_opt;
  4004. auto options = gopt::OptimizeForInferenceOptions{};
  4005. options.enable_nchw64();
  4006. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  4007. graph->compile({{y_opt, {}}})
  4008. ->to_json()
  4009. ->writeto_fpath(
  4010. output_file("TestGoptInference.PreProcessCaseAutopadNCHW64.json"));
  4011. HostTensorND host_y_opt, host_y;
  4012. auto func = graph->compile(
  4013. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  4014. func->execute();
  4015. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  4016. ASSERT_TRUE(
  4017. find_opr<opr::RelayoutFormat>(y_opt).param().mode ==
  4018. opr::RelayoutFormat::Param::Mode::NCHW_NCHW4);
  4019. }
  4020. TEST(TestGoptInference, PreProcessCaseAutopadNHWC) {
  4021. REQUIRE_GPU(1);
  4022. HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
  4023. auto cn = CompNode::load("gpu0");
  4024. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  4025. auto sm_ver = prop.major * 10 + prop.minor;
  4026. if (sm_ver < 75) {
  4027. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  4028. "expected: %d)\n",
  4029. sm_ver, 75);
  4030. return;
  4031. }
  4032. auto graph = ComputingGraph::make();
  4033. graph->options().graph_opt_level = 0;
  4034. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4035. return opr::TypeCvt::make(
  4036. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  4037. dtype);
  4038. };
  4039. size_t n = 2;
  4040. size_t c = 3;
  4041. size_t h = 32;
  4042. size_t w = 32;
  4043. auto host_x1 = gen({n, c, h, w}, cn);
  4044. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  4045. auto x_u8_fp32 = opr::TypeCvt::make(x, dtype::Float32(), cn);
  4046. auto x_s8_fp32 = x_u8_fp32 - 128;
  4047. auto x_s8 = opr::TypeCvt::make(x_s8_fp32, dtype::QuantizedS8(2.5f), cn);
  4048. auto host_val = std::make_shared<HostTensorND>(cn, dtype::QuantizedS8(2.5f));
  4049. TensorShape scalar{1, 1, 1, 1};
  4050. host_val->resize(scalar);
  4051. auto ptr = host_val->raw_ptr();
  4052. size_t size_bytes =
  4053. TensorLayout{scalar, dtype::QuantizedS8(2.5f)}.span().dist_byte();
  4054. std::memset(ptr, 0, size_bytes);
  4055. auto padding = opr::ImmutableTensor::make(*graph, *host_val);
  4056. padding = opr::Broadcast::make(padding, {n, 1, h, w});
  4057. auto padded_x = opr::Concat::make({x_s8, padding}, 1);
  4058. auto nhwc_x = opr::Dimshuffle::make(padded_x, {0, 2, 3, 1});
  4059. auto weight = mkcvar("weight", {16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  4060. bias = mkcvar("bias", {1, 1, 1, 16}, dtype::QuantizedS32(6.25f));
  4061. opr::ConvBias::Param param;
  4062. param.format = opr::ConvBias::Param::Format::NHWC;
  4063. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4064. param.stride_h = param.stride_w = 2;
  4065. param.pad_h = param.pad_w = 1;
  4066. auto result = opr::ConvBias::make(
  4067. nhwc_x, weight, bias, param, {},
  4068. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4069. auto y = opr::TypeCvt::make(result, dtype::Float32());
  4070. SymbolVar y_opt;
  4071. auto options = gopt::OptimizeForInferenceOptions{};
  4072. options.enable_fuse_preprocess();
  4073. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  4074. graph->compile({{y_opt, {}}})
  4075. ->to_json()
  4076. ->writeto_fpath(
  4077. output_file("TestGoptInference.PreProcessCaseAutopadNHWC.json"));
  4078. HostTensorND host_y_opt, host_y;
  4079. auto func = graph->compile(
  4080. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  4081. func->execute();
  4082. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  4083. ASSERT_TRUE(
  4084. find_opr<opr::RelayoutFormat>(y_opt).param().mode ==
  4085. opr::RelayoutFormat::Param::Mode::NCHW_NCHW4);
  4086. }
  4087. TEST(TestGoptInference, WarpAndPreProcessCase1) {
  4088. REQUIRE_GPU(1);
  4089. HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
  4090. auto cn = CompNode::load("gpu0");
  4091. auto graph = ComputingGraph::make();
  4092. graph->options().graph_opt_level = 0;
  4093. size_t n = 1;
  4094. size_t c = 3;
  4095. size_t h = 16;
  4096. size_t w = 16;
  4097. auto host_x1 = gen({n, h, w, c}, cn);
  4098. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  4099. auto mat_host =
  4100. std::make_shared<HostTensorND>(cn, TensorShape{n, 3, 3}, dtype::Float32());
  4101. warp_perspective_mat_gen(*mat_host, n, h, w);
  4102. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  4103. opr::WarpPerspective::Param warp_param;
  4104. warp_param.format = opr::WarpPerspective::Param::Format::NHWC;
  4105. auto x_warp = opr::WarpPerspective::make(x, mat, TensorShape{h, w}, warp_param);
  4106. auto x_nchw = opr::Dimshuffle::make(x_warp, {0, 3, 1, 2}, 4, cn);
  4107. auto result = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
  4108. auto y = result;
  4109. SymbolVar y_opt;
  4110. auto options = gopt::OptimizeForInferenceOptions{};
  4111. options.enable_fuse_preprocess();
  4112. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  4113. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::WarpPerspective>());
  4114. ASSERT_EQ(
  4115. opr::WarpPerspective::Param::Format::NHWC_NCHW,
  4116. find_opr<opr::WarpPerspective>(y_opt).param().format);
  4117. graph->compile({{y_opt, {}}})
  4118. ->to_json()
  4119. ->writeto_fpath(
  4120. output_file("TestGoptInference.WarpAndPreProcessCase1.json"));
  4121. HostTensorND host_y_opt, host_y;
  4122. auto func = graph->compile(
  4123. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  4124. func->execute();
  4125. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  4126. }
  4127. #if CUDA_VERSION >= 10020
  4128. TEST(TestGoptInference, FoldingConvDimshuffle) {
  4129. REQUIRE_GPU(1);
  4130. auto cn = CompNode::load("gpu0");
  4131. cn.activate();
  4132. REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
  4133. HostTensorGenerator<dtype::Int8> gen;
  4134. auto graph = ComputingGraph::make();
  4135. graph->options().graph_opt_level = 0;
  4136. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4137. return opr::TypeCvt::make(
  4138. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  4139. };
  4140. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4141. return opr::TypeCvt::make(
  4142. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  4143. dtype);
  4144. };
  4145. auto nchw42nchw = [](SymbolVar x) {
  4146. auto xshp = opr::GetVarShape::make(x);
  4147. auto cv = [&x](int v) { return x.make_scalar(v); };
  4148. auto sub = [&xshp, &cv](int idx) {
  4149. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  4150. };
  4151. auto tshp0 = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  4152. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  4153. auto y1 = opr::Reshape::make(y0, tshp0);
  4154. return y1;
  4155. };
  4156. auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  4157. w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  4158. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  4159. opr::ConvBias::Param param;
  4160. param.format = opr::ConvBias::Param::Format::NCHW4;
  4161. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4162. param.stride_h = param.stride_w = 2;
  4163. param.pad_h = param.pad_w = 1;
  4164. auto y = opr::ConvBias::make(
  4165. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4166. y = opr::TypeCvt::make(y, dtype::Float32());
  4167. y = nchw42nchw(y);
  4168. SymbolVar y_fuse, y_non_fuse;
  4169. unpack_vector(
  4170. gopt::GraphOptimizer{}
  4171. .add_pass<gopt::ShuffleShuffleRemovePass>()
  4172. .add_pass<gopt::FoldingConvBiasDimshufflePass>()
  4173. .add_pass<gopt::ParamFusePass>()
  4174. .apply({{y}})
  4175. .endpoint_vars(),
  4176. y_fuse);
  4177. gopt::modify_opr_algo_strategy_inplace(
  4178. {y_fuse},
  4179. opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy::PROFILE);
  4180. graph->compile({{y_fuse, {}}})
  4181. ->to_json()
  4182. ->writeto_fpath(
  4183. output_file("TestGoptInference.FoldingConvDimshuffle.json"));
  4184. ASSERT_EQ(
  4185. opr::ConvBias::Param::Format::NCHW4_NCHW,
  4186. find_opr<opr::ConvBias>(y_fuse).param().format);
  4187. ASSERT_EQ(0u, find_opr_num<opr::Dimshuffle>(y_fuse));
  4188. unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(), y_non_fuse);
  4189. HostTensorND host_y_fuse, host_y_non_fuse;
  4190. auto func = graph->compile(
  4191. {make_callback_copy(y_fuse, host_y_fuse),
  4192. make_callback_copy(y_non_fuse, host_y_non_fuse)});
  4193. func->execute();
  4194. }
  4195. TEST(TestGoptInference, FoldingConvDimshuffleNCHW4NCHW32) {
  4196. REQUIRE_GPU(1);
  4197. auto cn = CompNode::load("gpu0");
  4198. cn.activate();
  4199. REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
  4200. HostTensorGenerator<dtype::Int8> gen;
  4201. auto graph = ComputingGraph::make();
  4202. graph->options().graph_opt_level = 0;
  4203. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4204. return opr::TypeCvt::make(
  4205. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  4206. };
  4207. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4208. return opr::TypeCvt::make(
  4209. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  4210. dtype);
  4211. };
  4212. auto nchw42nchw32 = [](SymbolVar x) {
  4213. auto xshp = opr::GetVarShape::make(x);
  4214. auto cv = [&x](int v) { return x.make_scalar(v); };
  4215. auto sub = [&xshp, &cv](int idx) {
  4216. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  4217. };
  4218. auto tshp0 = opr::Concat::make(
  4219. {sub(0), sub(1) / 8, cv(8), sub(2), sub(3), sub(4)}, 0),
  4220. tshp1 = opr::Concat::make(
  4221. {sub(0), sub(1) / 8, sub(2), sub(3), sub(4) * 8}, 0);
  4222. auto y0 = opr::Reshape::make(x, tshp0);
  4223. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2, 5});
  4224. auto y2 = opr::Reshape::make(y1, tshp1);
  4225. return y2;
  4226. };
  4227. auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  4228. w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  4229. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  4230. opr::ConvBias::Param param;
  4231. param.format = opr::ConvBias::Param::Format::NCHW4;
  4232. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4233. param.stride_h = param.stride_w = 2;
  4234. param.pad_h = param.pad_w = 1;
  4235. auto y = opr::ConvBias::make(
  4236. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4237. y = nchw42nchw32(y);
  4238. y = opr::TypeCvt::make(y, dtype::Float32());
  4239. SymbolVar y_fuse, y_non_fuse;
  4240. unpack_vector(
  4241. gopt::GraphOptimizer{}
  4242. .add_pass<gopt::FoldingConvBiasDimshufflePass>()
  4243. .add_pass<gopt::ParamFusePass>()
  4244. .apply({{y}})
  4245. .endpoint_vars(),
  4246. y_fuse);
  4247. gopt::modify_opr_algo_strategy_inplace(
  4248. {y_fuse},
  4249. opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy::PROFILE);
  4250. graph->compile({{y_fuse, {}}})
  4251. ->to_json()
  4252. ->writeto_fpath(output_file(
  4253. "TestGoptInference.FoldingConvDimshuffleNCHW4NCHW32.json"));
  4254. ASSERT_EQ(
  4255. opr::ConvBias::Param::Format::NCHW4_NCHW32,
  4256. find_opr<opr::ConvBias>(y_fuse).param().format);
  4257. ASSERT_EQ(0u, find_opr_num<opr::Dimshuffle>(y_fuse));
  4258. unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(), y_non_fuse);
  4259. HostTensorND host_y_fuse, host_y_non_fuse;
  4260. auto func = graph->compile(
  4261. {make_callback_copy(y_fuse, host_y_fuse),
  4262. make_callback_copy(y_non_fuse, host_y_non_fuse)});
  4263. func->execute();
  4264. MGB_ASSERT_TENSOR_EQ(host_y_fuse, host_y_non_fuse);
  4265. }
  4266. TEST(TestGoptInference, FoldingConvDimshuffleNCHW32NCHW4) {
  4267. REQUIRE_GPU(1);
  4268. auto cn = CompNode::load("gpu0");
  4269. cn.activate();
  4270. REQUIRE_CUDA_COMPUTE_CAPABILITY(7, 5);
  4271. HostTensorGenerator<dtype::Int8> gen;
  4272. auto graph = ComputingGraph::make();
  4273. graph->options().graph_opt_level = 0;
  4274. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4275. return opr::TypeCvt::make(
  4276. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  4277. };
  4278. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4279. return opr::TypeCvt::make(
  4280. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  4281. dtype);
  4282. };
  4283. auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  4284. w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  4285. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  4286. w1 = mkcvar("w1", {16, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  4287. b1 = mkcvar("b1", {1, 4, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  4288. opr::ConvBias::Param param;
  4289. param.format = opr::ConvBias::Param::Format::NCHW4;
  4290. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4291. param.stride_h = param.stride_w = 2;
  4292. param.pad_h = param.pad_w = 1;
  4293. auto y = opr::ConvBias::make(
  4294. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4295. param.stride_h = param.stride_w = 1;
  4296. y = opr::ConvBias::make(
  4297. y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4298. y = opr::TypeCvt::make(y, dtype::Float32());
  4299. SymbolVar y_fuse, y_non_fuse;
  4300. {
  4301. auto options = gopt::OptimizeForInferenceOptions{};
  4302. options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
  4303. unpack_vector(gopt::optimize_for_inference({y}, options), y_fuse);
  4304. }
  4305. graph->compile({{y_fuse, {}}})
  4306. ->to_json()
  4307. ->writeto_fpath(output_file(
  4308. "TestGoptInference.FoldingConvDimshuffleNCHW32NCHW4.json"));
  4309. ASSERT_EQ(1u, find_opr_num<opr::Dimshuffle>(y_fuse));
  4310. bool found = false;
  4311. cg::DepOprIter{[&found](cg::OperatorNodeBase* opr) {
  4312. if (!found && opr->same_type<opr::ConvBias>()) {
  4313. opr::ConvBias* cb = &opr->cast_final_safe<opr::ConvBias>();
  4314. if (cb->param().format == opr::ConvBias::Param::Format::NCHW32_NCHW4)
  4315. found = true;
  4316. }
  4317. }}.add(y_fuse.node()->owner_opr());
  4318. EXPECT_TRUE(found);
  4319. unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(), y_non_fuse);
  4320. HostTensorND host_y_fuse, host_y_non_fuse;
  4321. auto func = graph->compile(
  4322. {make_callback_copy(y_fuse, host_y_fuse),
  4323. make_callback_copy(y_non_fuse, host_y_non_fuse)});
  4324. func->execute();
  4325. MGB_ASSERT_TENSOR_EQ(host_y_fuse, host_y_non_fuse);
  4326. }
  4327. TEST(TestGoptInference, FoldingConvDimshuffleNCHW4NHWC) {
  4328. REQUIRE_GPU(1);
  4329. auto cn = CompNode::load("gpu0");
  4330. cn.activate();
  4331. REQUIRE_CUDA_COMPUTE_CAPABILITY(7, 5);
  4332. HostTensorGenerator<dtype::Int8> gen;
  4333. auto graph = ComputingGraph::make();
  4334. graph->options().graph_opt_level = 0;
  4335. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4336. return opr::TypeCvt::make(
  4337. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  4338. };
  4339. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4340. return opr::TypeCvt::make(
  4341. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  4342. dtype);
  4343. };
  4344. auto x = mkvar("x", {32, 4, 23, 40}, dtype::QuantizedS8(2.5f)),
  4345. w = mkcvar("w", {32, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  4346. b = mkcvar("b", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f)),
  4347. w1 = mkcvar("w1", {32, 32, 3, 3}, dtype::QuantizedS4(1.234f)),
  4348. b1 = mkcvar("b1", {1, 32, 1, 1}, dtype::QuantizedS32(12.34567f * 1.234f));
  4349. opr::ConvBias::Param param;
  4350. param.format = opr::ConvBias::Param::Format::NCHW;
  4351. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4352. param.stride_h = param.stride_w = 1;
  4353. param.pad_h = param.pad_w = 1;
  4354. auto y = opr::ConvBias::make(
  4355. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(12.34567f)});
  4356. y = opr::TypeCvt::make(y, dtype::QuantizedS4(12.34567f));
  4357. y = opr::ConvBias::make(
  4358. y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS4(56.71234f)});
  4359. y = opr::TypeCvt::make(y, dtype::Float32());
  4360. SymbolVar y_fuse, y_non_fuse;
  4361. {
  4362. auto options = gopt::OptimizeForInferenceOptions{};
  4363. options.enable_nchw64();
  4364. unpack_vector(gopt::optimize_for_inference({y}, options), y_fuse);
  4365. }
  4366. using S = opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy;
  4367. S strategy = S::PROFILE;
  4368. gopt::modify_opr_algo_strategy_inplace({y_fuse}, strategy);
  4369. HostTensorND host_y_fuse;
  4370. auto func1 = graph->compile({make_callback_copy(y_fuse, host_y_fuse)});
  4371. func1->execute();
  4372. graph->compile({{y_fuse, {}}})
  4373. ->to_json()
  4374. ->writeto_fpath(output_file(
  4375. "TestGoptInference.FoldingConvDimshuffleNCHW4NHWC.json"));
  4376. size_t nr_dimshuffle = find_opr_num<opr::TypeCvt>(y_fuse);
  4377. ASSERT_EQ(2u, nr_dimshuffle);
  4378. bool found = false;
  4379. cg::DepOprIter{[&found](cg::OperatorNodeBase* opr) {
  4380. if (!found && opr->same_type<opr::ConvBias>()) {
  4381. opr::ConvBias* cb = &opr->cast_final_safe<opr::ConvBias>();
  4382. if (cb->param().format == opr::ConvBias::Param::Format::NCHW4_NHWC)
  4383. found = true;
  4384. }
  4385. }}.add(y_fuse.node()->owner_opr());
  4386. EXPECT_TRUE(found);
  4387. unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(), y_non_fuse);
  4388. gopt::modify_opr_algo_strategy_inplace({y_non_fuse}, strategy);
  4389. HostTensorND host_y_non_fuse;
  4390. auto func2 = graph->compile({make_callback_copy(y_non_fuse, host_y_non_fuse)});
  4391. func2->execute();
  4392. MGB_ASSERT_TENSOR_EQ(host_y_fuse, host_y_non_fuse);
  4393. }
  4394. #endif
  4395. TEST(TestGoptInference, PaddingChannels) {
  4396. REQUIRE_GPU(1);
  4397. auto cn = CompNode::load("gpu0");
  4398. cn.activate();
  4399. REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
  4400. HostTensorGenerator<dtype::Int8> gen;
  4401. auto graph = ComputingGraph::make();
  4402. graph->options().graph_opt_level = 0;
  4403. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4404. return opr::TypeCvt::make(
  4405. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  4406. };
  4407. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4408. return opr::TypeCvt::make(
  4409. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  4410. dtype);
  4411. };
  4412. auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
  4413. w = mkcvar("w", {20, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  4414. b = mkcvar("b", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
  4415. opr::ConvBias::Param param;
  4416. param.format = opr::ConvBias::Param::Format::NCHW;
  4417. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4418. param.stride_h = param.stride_w = 1;
  4419. param.pad_h = param.pad_w = 1;
  4420. auto y = opr::ConvBias::make(
  4421. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4422. auto w1 = mkcvar("w1", {24, 20, 3, 3}, dtype::QuantizedS8(2.5f)),
  4423. b1 = mkcvar("b1", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  4424. auto y1 = opr::ConvBias::make(
  4425. y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4426. auto w2 = mkcvar("w2", {20, 24, 3, 3}, dtype::QuantizedS8(2.5f)),
  4427. b2 = mkcvar("b2", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
  4428. auto y2 = opr::ConvBias::make(
  4429. y1, w2, b2, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4430. using ElemMultiMode = opr::ElemwiseMultiType::Param::Mode;
  4431. auto y3 = opr::ElemwiseMultiType::make(
  4432. {y, y2}, {ElemMultiMode::QFUSE_ADD_RELU},
  4433. OperatorNodeConfig{dtype::QuantizedS8{1.2f}});
  4434. y3 = opr::TypeCvt::make(y3, dtype::Float32());
  4435. SymbolVar y3_pad;
  4436. unpack_vector(
  4437. gopt::GraphOptimizer{}
  4438. .add_pass(gopt::PaddingChannelPass::make(
  4439. cg::GraphCommonOptimizeOptions::LayoutTransform::NCHW64))
  4440. .apply({{y3}})
  4441. .endpoint_vars(),
  4442. y3_pad);
  4443. ASSERT_EQ(y3_pad.node()->shape()[1], y3.node()->shape()[1]);
  4444. SmallVector<cg::OperatorNodeBase*> oprs;
  4445. auto cb = [&oprs](cg::OperatorNodeBase* opr) {
  4446. if (opr->same_type<opr::ConvBias>()) {
  4447. oprs.push_back(opr);
  4448. }
  4449. };
  4450. cg::DepOprIter{cb}.add(y3_pad.node()->owner_opr());
  4451. ASSERT_EQ(oprs.size(), 3);
  4452. ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
  4453. ASSERT_EQ(oprs[1]->output(0)->shape()[1], 32);
  4454. ASSERT_EQ(oprs[2]->output(0)->shape()[1], 32);
  4455. HostTensorND t1, t2;
  4456. auto func1 = graph->compile({make_callback_copy(y3, t1)});
  4457. func1->execute();
  4458. auto func2 = graph->compile({make_callback_copy(y3_pad, t2)});
  4459. func2->execute();
  4460. MGB_ASSERT_TENSOR_EQ(t1, t2);
  4461. }
  4462. TEST(TestGoptInference, ConcatAfterPaddingChannels) {
  4463. REQUIRE_GPU(1);
  4464. auto cn = CompNode::load("gpu0");
  4465. cn.activate();
  4466. REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
  4467. HostTensorGenerator<dtype::Int8> gen;
  4468. auto graph = ComputingGraph::make();
  4469. graph->options().graph_opt_level = 0;
  4470. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4471. return opr::TypeCvt::make(
  4472. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  4473. };
  4474. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4475. return opr::TypeCvt::make(
  4476. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  4477. dtype);
  4478. };
  4479. auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
  4480. w = mkcvar("w", {18, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  4481. b = mkcvar("b", {1, 18, 1, 1}, dtype::QuantizedS32(6.25f));
  4482. opr::ConvBias::Param param;
  4483. param.format = opr::ConvBias::Param::Format::NCHW;
  4484. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4485. param.stride_h = param.stride_w = 1;
  4486. param.pad_h = param.pad_w = 1;
  4487. auto y = opr::ConvBias::make(
  4488. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4489. auto w1 = mkcvar("w1", {18, 18, 3, 3}, dtype::QuantizedS8(2.5f)),
  4490. b1 = mkcvar("b1", {1, 18, 1, 1}, dtype::QuantizedS32(6.25f));
  4491. auto y1 = opr::ConvBias::make(
  4492. y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4493. // concat at batch dim
  4494. auto y2 = opr::Concat::make({y, y1}, 0);
  4495. y2 = opr::TypeCvt::make(y2, dtype::Float32());
  4496. SymbolVar y2_pad;
  4497. unpack_vector(
  4498. gopt::GraphOptimizer{}
  4499. .add_pass(gopt::PaddingChannelPass::make(
  4500. cg::GraphCommonOptimizeOptions::LayoutTransform::NCHW64))
  4501. .apply({{y2}})
  4502. .endpoint_vars(),
  4503. y2_pad);
  4504. ASSERT_EQ(y2_pad.node()->shape()[1], y2.node()->shape()[1]);
  4505. SmallVector<cg::OperatorNodeBase*> oprs;
  4506. auto cb = [&oprs](cg::OperatorNodeBase* opr) {
  4507. if (opr->same_type<opr::ConvBias>()) {
  4508. oprs.push_back(opr);
  4509. }
  4510. };
  4511. cg::DepOprIter{cb}.add(y2_pad.node()->owner_opr());
  4512. ASSERT_EQ(oprs.size(), 2);
  4513. ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
  4514. ASSERT_EQ(oprs[1]->output(0)->shape()[1], 32);
  4515. HostTensorND t1, t2;
  4516. auto func1 = graph->compile({make_callback_copy(y2, t1)});
  4517. func1->execute();
  4518. auto func2 = graph->compile({make_callback_copy(y2_pad, t2)});
  4519. func2->execute();
  4520. MGB_ASSERT_TENSOR_EQ(t1, t2);
  4521. }
  4522. TEST(TestGoptInference, PaddingChannelsWithPooling) {
  4523. REQUIRE_GPU(1);
  4524. auto cn = CompNode::load("gpu0");
  4525. cn.activate();
  4526. REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
  4527. HostTensorGenerator<dtype::Int8> gen;
  4528. auto graph = ComputingGraph::make();
  4529. graph->options().graph_opt_level = 0;
  4530. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4531. return opr::TypeCvt::make(
  4532. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  4533. };
  4534. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4535. return opr::TypeCvt::make(
  4536. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  4537. dtype);
  4538. };
  4539. auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
  4540. w = mkcvar("w", {20, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  4541. b = mkcvar("b", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
  4542. opr::ConvBias::Param param;
  4543. param.format = opr::ConvBias::Param::Format::NCHW;
  4544. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4545. param.stride_h = param.stride_w = 1;
  4546. param.pad_h = param.pad_w = 1;
  4547. auto y = opr::ConvBias::make(
  4548. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4549. auto w1 = mkcvar("w1", {24, 20, 3, 3}, dtype::QuantizedS8(2.5f)),
  4550. b1 = mkcvar("b1", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  4551. auto y1 = opr::ConvBias::make(
  4552. y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4553. opr::Pooling::Param pool_param;
  4554. pool_param.format = opr::Pooling::Param::Format::NCHW;
  4555. y1 = opr::Pooling::make(y1, pool_param);
  4556. y1 = opr::TypeCvt::make(y1, dtype::Float32());
  4557. SymbolVar y1_pad;
  4558. unpack_vector(
  4559. gopt::GraphOptimizer{}
  4560. .add_pass(gopt::PaddingChannelPass::make(
  4561. cg::GraphCommonOptimizeOptions::LayoutTransform::NCHW64))
  4562. .apply({{y1}})
  4563. .endpoint_vars(),
  4564. y1_pad);
  4565. ASSERT_EQ(y1_pad.node()->shape()[1], y1.node()->shape()[1]);
  4566. SmallVector<cg::OperatorNodeBase*> oprs;
  4567. auto cb = [&oprs](cg::OperatorNodeBase* opr) {
  4568. if (opr->same_type<opr::Pooling>()) {
  4569. oprs.push_back(opr);
  4570. }
  4571. };
  4572. cg::DepOprIter{cb}.add(y1_pad.node()->owner_opr());
  4573. ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
  4574. HostTensorND t1, t2;
  4575. auto func1 = graph->compile({make_callback_copy(y1, t1)});
  4576. func1->execute();
  4577. auto func2 = graph->compile({make_callback_copy(y1_pad, t2)});
  4578. func2->execute();
  4579. MGB_ASSERT_TENSOR_EQ(t1, t2);
  4580. }
  4581. // FIXME replace cpu with gpu to enable gpu validation
  4582. TEST(TestGoptInference, PaddingChannelsWithWarpPerspective) {
  4583. auto cn = CompNode::load("cpu0");
  4584. HostTensorGenerator<dtype::Int8> gen;
  4585. auto graph = ComputingGraph::make();
  4586. graph->options().graph_opt_level = 0;
  4587. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4588. return opr::TypeCvt::make(
  4589. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  4590. };
  4591. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4592. return opr::TypeCvt::make(
  4593. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  4594. dtype);
  4595. };
  4596. std::shared_ptr<HostTensorND> mat =
  4597. std::make_shared<HostTensorND>(cn, TensorShape{16, 3, 3}, dtype::Float32());
  4598. warp_perspective_mat_gen(*mat, 16, 14, 14);
  4599. auto mat_var = opr::Host2DeviceCopy::make(*graph, mat).rename("mat");
  4600. auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
  4601. w = mkcvar("w", {20, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  4602. b = mkcvar("b", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
  4603. opr::ConvBias::Param param;
  4604. param.format = opr::ConvBias::Param::Format::NCHW;
  4605. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4606. param.stride_h = param.stride_w = 1;
  4607. param.pad_h = param.pad_w = 1;
  4608. auto y = opr::ConvBias::make(
  4609. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4610. auto w1 = mkcvar("w1", {24, 20, 3, 3}, dtype::QuantizedS8(2.5f)),
  4611. b1 = mkcvar("b1", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  4612. auto y1 = opr::ConvBias::make(
  4613. y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4614. opr::WarpPerspective::Param warp_param;
  4615. warp_param.format = opr::WarpPerspective::Param::Format::NCHW;
  4616. y1 = opr::WarpPerspective::make(y1, mat_var, TensorShape{14, 14}, warp_param);
  4617. y1 = opr::TypeCvt::make(y1, dtype::Float32());
  4618. SymbolVar y1_pad;
  4619. unpack_vector(
  4620. gopt::GraphOptimizer{}
  4621. .add_pass(gopt::PaddingChannelPass::make(
  4622. cg::GraphCommonOptimizeOptions::LayoutTransform::NCHW64))
  4623. .apply({{y1}})
  4624. .endpoint_vars(),
  4625. y1_pad);
  4626. ASSERT_EQ(y1_pad.node()->shape()[1], y1.node()->shape()[1]);
  4627. SmallVector<cg::OperatorNodeBase*> oprs;
  4628. auto cb = [&oprs](cg::OperatorNodeBase* opr) {
  4629. if (opr->same_type<opr::WarpPerspective>()) {
  4630. oprs.push_back(opr);
  4631. }
  4632. };
  4633. cg::DepOprIter{cb}.add(y1_pad.node()->owner_opr());
  4634. ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
  4635. HostTensorND t1, t2;
  4636. auto func1 = graph->compile({make_callback_copy(y1, t1)});
  4637. func1->execute();
  4638. auto func2 = graph->compile({make_callback_copy(y1_pad, t2)});
  4639. func2->execute();
  4640. MGB_ASSERT_TENSOR_EQ(t1, t2);
  4641. }
  4642. #endif
  4643. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}