You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_network.cpp 51 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442
  1. /**
  2. * \file test/test_network.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "lite_build_config.h"
  12. #if LITE_BUILD_WITH_MGE
  13. #include "./test_common.h"
  14. #include "megbrain/tensor.h"
  15. #ifndef WIN32
  16. #include <dirent.h>
  17. #include <string.h>
  18. #endif
  19. #include <chrono>
  20. #include <memory>
  21. #include <random>
  22. #include <unordered_map>
  23. using namespace lite;
  24. namespace {
  25. class CheckAllocator : public lite::Allocator {
  26. public:
  27. //! allocate memory of size in the given device with the given align
  28. void* allocate(LiteDeviceType device, int, size_t size, size_t align) override {
  29. LITE_ASSERT(device == LiteDeviceType::LITE_CPU);
  30. m_nr_left++;
  31. m_nr_allocated++;
  32. #ifdef WIN32
  33. return _aligned_malloc(size, align);
  34. #elif defined(__ANDROID__) || defined(ANDROID)
  35. return memalign(align, size);
  36. #else
  37. void* ptr = nullptr;
  38. auto err = posix_memalign(&ptr, align, size);
  39. mgb_assert(!err, "failed to malloc %zubytes with align %zu", size, align);
  40. return ptr;
  41. #endif
  42. };
  43. //! free the memory pointed by ptr in the given device
  44. void free(LiteDeviceType device, int, void* ptr) override {
  45. m_nr_left--;
  46. LITE_ASSERT(device == LiteDeviceType::LITE_CPU);
  47. #ifdef WIN32
  48. _aligned_free(ptr);
  49. #else
  50. ::free(ptr);
  51. #endif
  52. };
  53. std::atomic_size_t m_nr_left{0};
  54. std::atomic_size_t m_nr_allocated{0};
  55. };
  56. } // namespace
  57. TEST(TestNetWork, Basic) {
  58. Config config;
  59. auto lite_tensor = get_input_data("./input_data.npy");
  60. std::string model_path = "./shufflenet.mge";
  61. auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor);
  62. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  63. compare_lite_tensor<float>(result_lite, result_mgb);
  64. }
  65. TEST(TestNetWork, RefCount) {
  66. Config config;
  67. ASSERT_EQ(NetworkRefCount::Instance().refcount(), 0);
  68. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  69. ASSERT_EQ(NetworkRefCount::Instance().refcount(), 1);
  70. std::shared_ptr<Network> network_s = std::make_shared<Network>(config);
  71. ASSERT_EQ(NetworkRefCount::Instance().refcount(), 2);
  72. network.reset();
  73. ASSERT_EQ(NetworkRefCount::Instance().refcount(), 1);
  74. network_s.reset();
  75. ASSERT_EQ(NetworkRefCount::Instance().refcount(), 0);
  76. }
  77. TEST(TestNetWork, SetDeviceId) {
  78. Config config;
  79. auto lite_tensor = get_input_data("./input_data.npy");
  80. std::string model_path = "./shufflenet.mge";
  81. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  82. network->set_device_id(4);
  83. network->load_model(model_path);
  84. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  85. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  86. network->forward();
  87. network->wait();
  88. ASSERT_EQ(input_tensor->get_device_id(), 4);
  89. ASSERT_EQ(output_tensor->get_device_id(), 4);
  90. }
  91. TEST(TestNetWork, GetAllName) {
  92. Config config;
  93. auto lite_tensor = get_input_data("./input_data.npy");
  94. std::string model_path = "./shufflenet.mge";
  95. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  96. network->load_model(model_path);
  97. auto input_names = network->get_all_input_name();
  98. auto output_names = network->get_all_output_name();
  99. auto output_tensor = network->get_output_tensor(0);
  100. auto out_layout = output_tensor->get_layout();
  101. ASSERT_EQ(out_layout.ndim, 2);
  102. ASSERT_EQ(out_layout.shapes[0], 1);
  103. ASSERT_EQ(out_layout.shapes[1], 1000);
  104. ASSERT_EQ(input_names.size(), 1);
  105. ASSERT_EQ(output_names.size(), 1);
  106. ASSERT_TRUE(input_names[0] == "data");
  107. ASSERT_TRUE(output_names[0] == "TRUE_DIV(EXP[12065],reduce0[12067])[12077]");
  108. }
  109. TEST(TestNetWork, GetAllIoInfoAhead) {
  110. Config config;
  111. std::string model_path = "./shufflenet.mge";
  112. auto ios = Runtime::get_model_io_info(model_path);
  113. FILE* fin = fopen(model_path.c_str(), "rb");
  114. ASSERT_TRUE(fin);
  115. fseek(fin, 0, SEEK_END);
  116. size_t size = ftell(fin);
  117. fseek(fin, 0, SEEK_SET);
  118. void* ptr = malloc(size);
  119. std::shared_ptr<void> buf{ptr, ::free};
  120. auto nr = fread(buf.get(), 1, size, fin);
  121. LITE_ASSERT(nr == size);
  122. fclose(fin);
  123. auto ios_mem = Runtime::get_model_io_info(ptr, size);
  124. ASSERT_EQ(ios.inputs.size(), ios_mem.inputs.size());
  125. ASSERT_EQ(ios.inputs.size(), 1);
  126. ASSERT_EQ(ios.outputs.size(), ios_mem.outputs.size());
  127. ASSERT_EQ(ios.outputs.size(), 1);
  128. ASSERT_TRUE(ios.inputs[0].name == "data");
  129. ASSERT_TRUE(ios.outputs[0].name == "TRUE_DIV(EXP[12065],reduce0[12067])[12077]");
  130. ASSERT_TRUE(ios_mem.inputs[0].name == "data");
  131. ASSERT_TRUE(
  132. ios_mem.outputs[0].name == "TRUE_DIV(EXP[12065],reduce0[12067])[12077]");
  133. ASSERT_EQ(ios.inputs[0].config_layout.ndim, 4);
  134. ASSERT_EQ(ios.inputs[0].config_layout.shapes[1], 3);
  135. ASSERT_EQ(ios.inputs[0].config_layout.shapes[2], 224);
  136. ASSERT_EQ(ios.outputs[0].config_layout.ndim, 2);
  137. ASSERT_EQ(ios.outputs[0].config_layout.shapes[0], 1);
  138. ASSERT_EQ(ios.outputs[0].config_layout.shapes[1], 1000);
  139. ASSERT_EQ(ios_mem.inputs[0].config_layout.ndim, 4);
  140. ASSERT_EQ(ios_mem.inputs[0].config_layout.shapes[1], 3);
  141. ASSERT_EQ(ios_mem.inputs[0].config_layout.shapes[2], 224);
  142. ASSERT_EQ(ios_mem.outputs[0].config_layout.ndim, 2);
  143. ASSERT_EQ(ios_mem.outputs[0].config_layout.shapes[0], 1);
  144. ASSERT_EQ(ios_mem.outputs[0].config_layout.shapes[1], 1000);
  145. }
  146. TEST(TestNetWork, LoadFBSModel) {
  147. Config config;
  148. std::string model_path = "./ax.mge";
  149. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  150. network->load_model(model_path);
  151. auto output_tensor = network->get_output_tensor(0);
  152. auto out_layout = output_tensor->get_layout();
  153. ASSERT_EQ(out_layout.ndim, 4);
  154. ASSERT_EQ(out_layout.shapes[0], 1);
  155. ASSERT_EQ(out_layout.shapes[1], 1);
  156. ASSERT_EQ(out_layout.shapes[2], 40);
  157. ASSERT_EQ(out_layout.shapes[3], 180);
  158. }
  159. TEST(TestNetWork, BasicInplaceAndSingleThreadAffinity) {
  160. Config config;
  161. auto lite_tensor = get_input_data("./input_data.npy");
  162. std::string model_path = "./shufflenet.mge";
  163. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  164. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  165. Runtime::set_cpu_inplace_mode(network);
  166. network->load_model(model_path);
  167. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  168. int affinity_set = false;
  169. Runtime::set_runtime_thread_affinity(network, [&affinity_set](int id) {
  170. ASSERT_EQ(id, 0);
  171. affinity_set = true;
  172. });
  173. auto src_ptr = lite_tensor->get_memory_ptr();
  174. auto src_layout = lite_tensor->get_layout();
  175. input_tensor->reset(src_ptr, src_layout);
  176. //! inplace mode not support async mode
  177. ASSERT_THROW(network->set_async_callback([]() {}), std::exception);
  178. network->forward();
  179. network->wait();
  180. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  181. ASSERT_EQ(affinity_set, true);
  182. compare_lite_tensor<float>(output_tensor, result_mgb);
  183. }
  184. TEST(TestNetWork, NetworkShareWeights) {
  185. Config config;
  186. auto lite_tensor = get_input_data("./input_data.npy");
  187. std::string model_path = "./shufflenet.mge";
  188. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  189. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  190. network->load_model(model_path);
  191. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  192. std::shared_ptr<Network> network2 = std::make_shared<Network>(config);
  193. Runtime::set_cpu_inplace_mode(network2);
  194. Runtime::shared_weight_with_network(network2, network);
  195. std::shared_ptr<Tensor> input_tensor2 = network2->get_input_tensor(0);
  196. auto src_ptr = lite_tensor->get_memory_ptr();
  197. auto src_layout = lite_tensor->get_layout();
  198. input_tensor->reset(src_ptr, src_layout);
  199. input_tensor2->reset(src_ptr, src_layout);
  200. ASSERT_NE(input_tensor, input_tensor2);
  201. network->forward();
  202. network->wait();
  203. network2->forward();
  204. network2->wait();
  205. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  206. std::shared_ptr<Tensor> output_tensor2 = network2->get_output_tensor(0);
  207. ASSERT_NE(output_tensor->get_memory_ptr(), output_tensor2->get_memory_ptr());
  208. compare_lite_tensor<float>(output_tensor, result_mgb);
  209. compare_lite_tensor<float>(output_tensor2, result_mgb);
  210. }
  211. TEST(TestNetWork, SharedRuntimeMem) {
  212. Config config;
  213. auto lite_tensor = get_input_data("./input_data.npy");
  214. std::string model_path = "./shufflenet.mge";
  215. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  216. std::shared_ptr<Network> network_src = std::make_shared<Network>(config);
  217. std::shared_ptr<Network> network_dst = std::make_shared<Network>(config);
  218. Runtime::share_runtime_memory_with(network_dst, network_src);
  219. network_src->load_model(model_path);
  220. network_dst->load_model(model_path);
  221. }
  222. TEST(TestNetWork, UserAllocator) {
  223. auto allocator = std::make_shared<CheckAllocator>();
  224. {
  225. Config config;
  226. auto lite_tensor = get_input_data("./input_data.npy");
  227. std::string model_path = "./shufflenet.mge";
  228. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  229. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  230. Runtime::set_memory_allocator(network, allocator);
  231. network->load_model(model_path);
  232. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  233. auto src_ptr = lite_tensor->get_memory_ptr();
  234. auto src_layout = lite_tensor->get_layout();
  235. input_tensor->reset(src_ptr, src_layout);
  236. network->forward();
  237. network->wait();
  238. ASSERT_GE(allocator->m_nr_allocated, 1);
  239. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  240. compare_lite_tensor<float>(output_tensor, result_mgb);
  241. }
  242. ASSERT_EQ(allocator->m_nr_left, 0);
  243. }
  244. TEST(TestNetWork, BasicMultiThread) {
  245. Config config;
  246. auto lite_tensor = get_input_data("./input_data.npy");
  247. std::string model_path = "./shufflenet.mge";
  248. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  249. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  250. Runtime::set_cpu_threads_number(network, 2);
  251. network->load_model(model_path);
  252. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  253. auto src_ptr = lite_tensor->get_memory_ptr();
  254. auto src_layout = lite_tensor->get_layout();
  255. input_tensor->reset(src_ptr, src_layout);
  256. network->forward();
  257. network->wait();
  258. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  259. compare_lite_tensor<float>(output_tensor, result_mgb);
  260. }
  261. TEST(TestNetWork, ThreadAffinity) {
  262. size_t nr_threads = 4;
  263. Config config;
  264. auto lite_tensor = get_input_data("./input_data.npy");
  265. std::string model_path = "./shufflenet.mge";
  266. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  267. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  268. Runtime::set_cpu_threads_number(network, nr_threads);
  269. ASSERT_THROW(
  270. Runtime::set_runtime_thread_affinity(network, [](int) {}), std::exception);
  271. network->load_model(model_path);
  272. std::vector<std::thread::id> thread_ids(nr_threads);
  273. auto affinity = [&](int id) { thread_ids[id] = std::this_thread::get_id(); };
  274. Runtime::set_runtime_thread_affinity(network, affinity);
  275. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  276. auto src_ptr = lite_tensor->get_memory_ptr();
  277. auto src_layout = lite_tensor->get_layout();
  278. input_tensor->reset(src_ptr, src_layout);
  279. network->forward();
  280. network->wait();
  281. for (size_t i = 0; i < nr_threads; i++) {
  282. for (size_t j = i + 1; j < nr_threads; j++) {
  283. ASSERT_NE(thread_ids[i], thread_ids[j]);
  284. }
  285. }
  286. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  287. compare_lite_tensor<float>(output_tensor, result_mgb);
  288. }
  289. TEST(TestNetWork, BasicCryptAes) {
  290. Config config;
  291. auto lite_tensor = get_input_data("./input_data.npy");
  292. std::string model_path = "./shufflenet.mge";
  293. std::string model_crypt_path = "./shufflenet_crypt_aes.mge";
  294. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  295. config.bare_model_cryption_name = "AES_default";
  296. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  297. compare_lite_tensor<float>(result_lite, result_mgb);
  298. }
  299. TEST(TestNetWork, BasicCryptRc4) {
  300. Config config;
  301. auto lite_tensor = get_input_data("./input_data.npy");
  302. std::string model_path = "./shufflenet.mge";
  303. std::string model_crypt_path = "./shufflenet_crypt_rc4.mge";
  304. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  305. config.bare_model_cryption_name = "RC4_default";
  306. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  307. compare_lite_tensor<float>(result_lite, result_mgb);
  308. }
  309. TEST(TestNetWork, PackedCryptRc4) {
  310. Config config;
  311. auto lite_tensor = get_input_data("./input_data.npy");
  312. std::string model_path = "./shufflenet.mge";
  313. std::string model_crypt_path = "./test_packed_model_rc4.lite";
  314. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  315. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  316. compare_lite_tensor<float>(result_lite, result_mgb);
  317. }
  318. TEST(TestNetWork, BasicCryptSfRc4) {
  319. Config config;
  320. auto lite_tensor = get_input_data("./input_data.npy");
  321. std::string model_path = "./shufflenet.mge";
  322. std::string model_crypt_path = "./shufflenet_crypt_sfrc4.mge";
  323. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  324. config.bare_model_cryption_name = "SIMPLE_FAST_RC4_default";
  325. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  326. compare_lite_tensor<float>(result_lite, result_mgb);
  327. }
  328. TEST(TestNetWork, ResetInput) {
  329. Config config;
  330. auto tensor = get_input_data("./input_data.npy");
  331. std::string model_path = "./shufflenet.mge";
  332. std::string input_name = "data";
  333. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  334. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  335. network->load_model(model_path);
  336. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  337. auto src_ptr = tensor->get_memory_ptr();
  338. auto src_layout = tensor->get_layout();
  339. input_tensor->reset(src_ptr, src_layout);
  340. network->forward();
  341. network->wait();
  342. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  343. compare_lite_tensor<float>(output_tensor, result_mgb);
  344. }
  345. TEST(TestNetWork, ChangeInputShape) {
  346. Config config;
  347. auto tensor = get_input_data("./input_data.npy");
  348. std::string model_path = "./shufflenet.mge";
  349. std::string input_name = "data";
  350. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  351. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  352. network->load_model(model_path);
  353. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  354. auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT};
  355. input_tensor->set_layout(src_layout);
  356. std::shared_ptr<Tensor> input_tensor2 = network->get_io_tensor(input_name);
  357. //! Check memory is equal
  358. ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr());
  359. network->forward();
  360. network->wait();
  361. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  362. auto output_layout = output_tensor->get_layout();
  363. ASSERT_EQ(output_layout.shapes[0], 2);
  364. ASSERT_EQ(output_layout.shapes[1], 1000);
  365. }
  366. TEST(TestNetWork, ResetOutput) {
  367. Config config;
  368. auto tensor = get_input_data("./input_data.npy");
  369. std::string model_path = "./shufflenet.mge";
  370. std::string input_name = "data";
  371. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  372. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  373. network->load_model(model_path);
  374. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  375. auto src_ptr = tensor->get_memory_ptr();
  376. auto src_layout = tensor->get_layout();
  377. input_tensor->reset(src_ptr, src_layout);
  378. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  379. auto result_tensor = std::make_shared<Tensor>(
  380. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  381. void* out_data = result_tensor->get_memory_ptr();
  382. output_tensor->reset(out_data, result_tensor->get_layout());
  383. network->forward();
  384. network->wait();
  385. compare_lite_tensor<float>(output_tensor, result_mgb);
  386. }
  387. namespace {
  388. void test_output_no_copy(int record) {
  389. Config config;
  390. config.options.force_output_use_user_specified_memory = true;
  391. config.options.comp_node_seq_record_level = record;
  392. auto tensor = get_input_data("./input_data.npy");
  393. std::string model_path = "./shufflenet.mge";
  394. std::string input_name = "data";
  395. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  396. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  397. network->load_model(model_path);
  398. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  399. auto src_ptr = tensor->get_memory_ptr();
  400. auto src_layout = tensor->get_layout();
  401. input_tensor->reset(src_ptr, src_layout);
  402. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  403. size_t times = 5;
  404. std::vector<std::shared_ptr<Tensor>> result_tensors;
  405. for (size_t i = 0; i < times; i++) {
  406. auto tmp = std::make_shared<Tensor>(
  407. LiteDeviceType::LITE_CPU,
  408. Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  409. result_tensors.push_back(tmp);
  410. }
  411. for (size_t i = 0; i < times; i++) {
  412. void* out_data = result_tensors[i]->get_memory_ptr();
  413. output_tensor->reset(out_data, result_tensors[i]->get_layout());
  414. network->forward();
  415. network->wait();
  416. ASSERT_EQ(output_tensor->get_memory_ptr(), out_data);
  417. compare_lite_tensor<float>(output_tensor, result_mgb);
  418. }
  419. for (size_t i = 0; i < times; i++) {
  420. compare_lite_tensor<float>(result_tensors[i], result_mgb);
  421. }
  422. }
  423. void test_input_no_copy(int record) {
  424. Config config;
  425. config.options.force_output_use_user_specified_memory = true;
  426. config.options.comp_node_seq_record_level = record;
  427. std::string model_path = "./shufflenet.mge";
  428. std::string input_name = "data";
  429. Layout layout_in{{1, 3, 224, 224}, 4};
  430. std::vector<std::shared_ptr<Tensor>> inputs;
  431. std::vector<std::shared_ptr<Tensor>> outputs;
  432. for (int i = 0; i < 3; i++) {
  433. auto tmp_in = std::make_shared<Tensor>(LiteDeviceType::LITE_CPU, layout_in);
  434. auto ptr = static_cast<float*>(tmp_in->get_memory_ptr());
  435. for (size_t id = 0; id < 2 * 224 * 224; id++) {
  436. ptr[id] = i + 1;
  437. }
  438. inputs.push_back(tmp_in);
  439. outputs.push_back(mgb_lar(model_path, config, input_name, tmp_in));
  440. }
  441. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  442. network->load_model(model_path);
  443. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  444. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  445. for (int i = 0; i < 3; i++) {
  446. auto ptr = inputs[i]->get_memory_ptr();
  447. input_tensor->reset(ptr, layout_in);
  448. auto tmp_out = std::make_shared<Tensor>(
  449. LiteDeviceType::LITE_CPU,
  450. Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  451. output_tensor->reset(tmp_out->get_memory_ptr(), output_tensor->get_layout());
  452. network->forward();
  453. network->wait();
  454. compare_lite_tensor<float>(output_tensor, outputs[i]);
  455. }
  456. }
  457. void test_io_no_copy_ax(std::string model_name, int record = 1) {
  458. std::string model_path = model_name;
  459. std::vector<std::string> input_names, output_names;
  460. std::vector<std::vector<std::shared_ptr<Tensor>>> inputs;
  461. std::vector<std::vector<std::shared_ptr<Tensor>>> outputs;
  462. Config config;
  463. config.options.graph_opt_level = 0;
  464. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  465. network->load_model(model_path);
  466. input_names = network->get_all_input_name();
  467. output_names = network->get_all_output_name();
  468. // prepare test data
  469. for (int i = 0; i < 3; i++) {
  470. std::vector<std::shared_ptr<Tensor>> net_inputs;
  471. std::vector<std::shared_ptr<Tensor>> net_outputs;
  472. for (size_t j = 0; j < input_names.size(); j++) {
  473. auto in_tesnor = network->get_io_tensor(input_names[j]);
  474. auto in_layout = in_tesnor->get_layout();
  475. auto tmp_in = std::make_shared<Tensor>(LiteDeviceType::LITE_CPU, in_layout);
  476. auto size = in_tesnor->get_tensor_total_size_in_byte() /
  477. in_layout.get_elem_size();
  478. if (in_layout.data_type == LiteDataType::LITE_INT16) {
  479. auto ptr = static_cast<short*>(tmp_in->get_memory_ptr());
  480. for (size_t id = 0; id < size; id++) {
  481. ptr[id] = i + 1;
  482. }
  483. } else if (in_layout.data_type == LiteDataType::LITE_UINT8) {
  484. auto ptr = static_cast<uint8_t*>(tmp_in->get_memory_ptr());
  485. for (size_t id = 0; id < size; id++) {
  486. ptr[id] = i + 1;
  487. }
  488. }
  489. net_inputs.push_back(tmp_in);
  490. in_tesnor->copy_from(*tmp_in);
  491. }
  492. inputs.push_back(net_inputs);
  493. network->forward();
  494. network->wait();
  495. for (size_t j = 0; j < output_names.size(); j++) {
  496. auto out_tesnor = network->get_io_tensor(output_names[j]);
  497. auto out_layout = out_tesnor->get_layout();
  498. auto tmp_out =
  499. std::make_shared<Tensor>(LiteDeviceType::LITE_CPU, out_layout);
  500. tmp_out->copy_from(*out_tesnor);
  501. net_outputs.push_back(tmp_out);
  502. }
  503. outputs.push_back(net_outputs);
  504. }
  505. config.options.force_output_use_user_specified_memory = true;
  506. config.options.comp_node_seq_record_level = record;
  507. config.options.const_shape = true;
  508. config.options.graph_opt_level = 2;
  509. std::shared_ptr<Network> network_record = std::make_shared<Network>(config);
  510. network_record->load_model(model_path);
  511. for (int i = 0; i < 3; i++) {
  512. for (size_t j = 0; j < inputs[i].size(); j++) {
  513. auto input_tensor = network_record->get_io_tensor(input_names[j]);
  514. input_tensor->reset(
  515. inputs[i][j]->get_memory_ptr(), inputs[i][j]->get_layout());
  516. }
  517. std::vector<std::shared_ptr<Tensor>> net_outputs;
  518. for (size_t j = 0; j < outputs[i].size(); j++) {
  519. auto output_tensor = network_record->get_io_tensor(output_names[j]);
  520. auto tmp_out = std::make_shared<Tensor>(
  521. LiteDeviceType::LITE_CPU, output_tensor->get_layout());
  522. output_tensor->reset(
  523. tmp_out->get_memory_ptr(), output_tensor->get_layout());
  524. net_outputs.push_back(tmp_out);
  525. }
  526. network_record->forward();
  527. network_record->wait();
  528. for (size_t j = 0; j < outputs[i].size(); j++) {
  529. auto output_tensor = network_record->get_io_tensor(output_names[j]);
  530. compare_lite_tensor<float>(output_tensor, outputs[i][j]);
  531. }
  532. }
  533. printf("profile the model %s run\n", model_path.c_str());
  534. std::vector<std::shared_ptr<Tensor>> net_outputs;
  535. for (size_t j = 0; j < outputs[0].size(); j++) {
  536. auto output_tensor = network_record->get_io_tensor(output_names[j]);
  537. auto tmp_out = std::make_shared<Tensor>(
  538. LiteDeviceType::LITE_CPU, output_tensor->get_layout());
  539. output_tensor->reset(tmp_out->get_memory_ptr(), output_tensor->get_layout());
  540. net_outputs.push_back(tmp_out);
  541. }
  542. lite::Timer timer("profile");
  543. for (int i = 0; i < 10; i++) {
  544. network_record->forward();
  545. network_record->wait();
  546. }
  547. auto sum_time = timer.get_used_time();
  548. printf("model %s used time average %f ms\n", model_path.c_str(), sum_time / 10);
  549. }
  550. } // namespace
  551. TEST(TestNetWork, OutputNoCopy) {
  552. test_output_no_copy(0);
  553. }
  554. TEST(TestNetWork, OutputNoCopyRecord) {
  555. test_output_no_copy(1);
  556. }
  557. TEST(TestNetWork, IONoCopy) {
  558. test_input_no_copy(0);
  559. }
  560. TEST(TestNetWork, IONoCopyRecord) {
  561. test_input_no_copy(1);
  562. }
  563. TEST(TestNetWork, IONoCopyRecordAx) {
  564. std::vector<std::string> file_names;
  565. #ifndef WIN32
  566. DIR* dirptr = NULL;
  567. struct dirent* dirp;
  568. std::string model_dir = "./ax_models";
  569. dirptr = opendir(model_dir.c_str());
  570. while (dirptr != NULL && (dirp = readdir(dirptr)) != NULL) {
  571. std::string file_name(dirp->d_name);
  572. if (file_name.find(".axe", 0) != std::string::npos) {
  573. file_names.push_back(model_dir + "/" + file_name);
  574. }
  575. }
  576. closedir(dirptr);
  577. #endif
  578. for (auto file_name : file_names) {
  579. printf("test model: %s\n", file_name.c_str());
  580. test_io_no_copy_ax(file_name);
  581. }
  582. }
  583. TEST(TestNetWork, OutputDynamicAlloc) {
  584. Config config;
  585. config.options.force_output_dynamic_alloc = true;
  586. auto tensor = get_input_data("./input_data.npy");
  587. std::string model_path = "./shufflenet.mge";
  588. std::string input_name = "data";
  589. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  590. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  591. network->load_model(model_path);
  592. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  593. auto src_ptr = tensor->get_memory_ptr();
  594. auto src_layout = tensor->get_layout();
  595. input_tensor->reset(src_ptr, src_layout);
  596. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  597. size_t times = 5;
  598. for (size_t i = 0; i < times; i++) {
  599. network->forward();
  600. network->wait();
  601. compare_lite_tensor<float>(output_tensor, result_mgb);
  602. }
  603. }
  604. TEST(TestNetWork, AsyncExec) {
  605. Config config;
  606. config.options.var_sanity_check_first_run = false;
  607. auto tensor = get_input_data("./input_data.npy");
  608. std::string model_path = "./shufflenet.mge";
  609. std::string input_name = "data";
  610. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  611. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  612. network->load_model(model_path);
  613. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  614. auto src_ptr = tensor->get_memory_ptr();
  615. auto src_layout = tensor->get_layout();
  616. input_tensor->reset(src_ptr, src_layout);
  617. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  618. auto result_tensor = std::make_shared<Tensor>(
  619. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  620. void* out_data = result_tensor->get_memory_ptr();
  621. output_tensor->reset(out_data, result_tensor->get_layout());
  622. //! set async mode and callback
  623. volatile bool finished = false;
  624. network->set_async_callback([&finished]() { finished = true; });
  625. network->forward();
  626. size_t count = 0;
  627. while (finished == false) {
  628. count++;
  629. }
  630. ASSERT_GT(count, 0);
  631. compare_lite_tensor<float>(output_tensor, result_mgb);
  632. }
  633. TEST(TestNetWork, CPUDeviceInput) {
  634. auto tensor = get_input_data("./input_data.npy");
  635. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  636. std::string model_path = "./shufflenet.mge";
  637. std::string input_name = "data";
  638. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  639. NetworkIO IO;
  640. bool is_host = false;
  641. IO.inputs.push_back({input_name, is_host});
  642. std::shared_ptr<Network> network = std::make_shared<Network>(IO);
  643. network->load_model(model_path);
  644. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  645. auto src_ptr = tensor->get_memory_ptr();
  646. input_tensor->reset(src_ptr, layout);
  647. network->forward();
  648. network->wait();
  649. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  650. compare_lite_tensor<float>(output_tensor, result_mgb);
  651. }
  652. TEST(TestNetWork, ShareTensorWith) {
  653. auto tensor = get_input_data("./input_data.npy");
  654. std::string model_path = "./shufflenet.mge";
  655. std::string input_name = "data";
  656. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  657. std::shared_ptr<Network> network = std::make_shared<Network>();
  658. network->load_model(model_path);
  659. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  660. input_tensor->share_memory_with(*tensor);
  661. network->forward();
  662. network->wait();
  663. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  664. compare_lite_tensor<float>(output_tensor, result_mgb);
  665. }
  666. TEST(TestNetWork, InputCallBack) {
  667. auto tensor = get_input_data("./input_data.npy");
  668. std::string model_path = "./shufflenet.mge";
  669. std::string input_name = "data";
  670. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  671. NetworkIO ios;
  672. bool is_host = false;
  673. ios.inputs.push_back({input_name, is_host});
  674. std::shared_ptr<Network> network = std::make_shared<Network>(ios);
  675. network->load_model(model_path);
  676. volatile bool finised_check_input = false;
  677. auto input_callback =
  678. [&tensor, &finised_check_input,
  679. input_name](const std::unordered_map<
  680. std::string, std::pair<IO, std::shared_ptr<Tensor>>>&
  681. input_map) {
  682. ASSERT_EQ(input_map.size(), 1);
  683. auto tensor_input = input_map.at(input_name).second;
  684. compare_lite_tensor<float>(tensor_input, tensor);
  685. finised_check_input = true;
  686. };
  687. network->set_start_callback(input_callback);
  688. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  689. input_tensor->share_memory_with(*tensor);
  690. network->forward();
  691. network->wait();
  692. ASSERT_TRUE(finised_check_input);
  693. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  694. compare_lite_tensor<float>(output_tensor, result_mgb);
  695. }
  696. TEST(TestNetWork, OutputCallBack) {
  697. auto tensor = get_input_data("./input_data.npy");
  698. std::string model_path = "./shufflenet.mge";
  699. std::string input_name = "data";
  700. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  701. std::shared_ptr<Network> network = std::make_shared<Network>();
  702. network->load_model(model_path);
  703. auto output_name = network->get_output_name(0);
  704. volatile bool finised_check_output = false;
  705. auto output_callback =
  706. [&result_mgb, &finised_check_output,
  707. output_name](const std::unordered_map<
  708. std::string, std::pair<IO, std::shared_ptr<Tensor>>>&
  709. output_map) {
  710. ASSERT_EQ(output_map.size(), 1);
  711. auto tensor_output = output_map.at(output_name).second;
  712. compare_lite_tensor<float>(tensor_output, result_mgb);
  713. finised_check_output = true;
  714. };
  715. network->set_finish_callback(output_callback);
  716. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  717. input_tensor->share_memory_with(*tensor);
  718. network->forward();
  719. network->wait();
  720. ASSERT_TRUE(finised_check_output);
  721. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  722. compare_lite_tensor<float>(output_tensor, result_mgb);
  723. }
  724. TEST(TestNetWork, OutputShapeOnly) {
  725. auto tensor = get_input_data("./input_data.npy");
  726. std::string model_path = "./shufflenet.mge";
  727. std::string input_name = "data";
  728. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  729. NetworkIO IO;
  730. bool is_host = true;
  731. IO.outputs.push_back({output_name, is_host, LiteIOType::LITE_IO_SHAPE});
  732. Config config;
  733. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  734. network->load_model(model_path);
  735. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  736. std::shared_ptr<Tensor> output_tensor = network->get_io_tensor(output_name);
  737. auto src_ptr = tensor->get_memory_ptr();
  738. auto src_layout = tensor->get_layout();
  739. input_tensor->reset(src_ptr, src_layout);
  740. network->forward();
  741. network->wait();
  742. ASSERT_EQ(output_tensor->get_tensor_total_size_in_byte() / sizeof(float), 1000);
  743. }
  744. TEST(TestNetWork, ProfileIOdump) {
  745. auto tensor = get_input_data("./input_data.npy");
  746. std::string model_path = "./shufflenet.mge";
  747. std::string input_name = "data";
  748. NetworkIO IO;
  749. Config config;
  750. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  751. network->enable_profile_performance("./profile.json");
  752. network->load_model(model_path);
  753. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  754. auto src_ptr = tensor->get_memory_ptr();
  755. auto src_layout = tensor->get_layout();
  756. input_tensor->reset(src_ptr, src_layout);
  757. network->forward();
  758. network->wait();
  759. ASSERT_TRUE(fopen("./profile.json", "r"));
  760. Runtime::enable_io_txt_dump(network, "./io_txt_dump.txt");
  761. network->forward();
  762. network->wait();
  763. ASSERT_TRUE(fopen("./io_txt_dump.txt", "r"));
  764. }
  765. TEST(TestNetWork, LoadPackedModel) {
  766. auto tensor = get_input_data("./input_data.npy");
  767. std::string model_path = "./test_packed_model.lite";
  768. std::string input_name = "data";
  769. NetworkIO IO;
  770. Config config;
  771. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  772. network->load_model(model_path);
  773. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  774. auto src_ptr = tensor->get_memory_ptr();
  775. auto src_layout = tensor->get_layout();
  776. input_tensor->reset(src_ptr, src_layout);
  777. network->forward();
  778. network->wait();
  779. }
  780. TEST(TestNetWork, LoadPackedCacheModel) {
  781. auto tensor = get_input_data("./input_data.npy");
  782. std::string model_path = "./test_pack_cache_to_model.lite";
  783. std::string input_name = "data";
  784. NetworkIO IO;
  785. Config config;
  786. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  787. network->load_model(model_path);
  788. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  789. auto src_ptr = tensor->get_memory_ptr();
  790. auto src_layout = tensor->get_layout();
  791. input_tensor->reset(src_ptr, src_layout);
  792. network->forward();
  793. network->wait();
  794. }
  795. TEST(TestNetWork, GlabalLayoutTransform) {
  796. auto tensor = get_input_data("./input_data.npy");
  797. std::string model_path = "./shufflenet.mge";
  798. std::string input_name = "data";
  799. std::string dump_model_name = "./shufflenet_after_trans.mge";
  800. NetworkIO IO;
  801. Config config;
  802. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  803. Runtime::enable_global_layout_transform(network);
  804. network->load_model(model_path);
  805. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  806. auto src_ptr = tensor->get_memory_ptr();
  807. auto src_layout = tensor->get_layout();
  808. input_tensor->reset(src_ptr, src_layout);
  809. Runtime::dump_layout_transform_model(network, dump_model_name);
  810. network->forward();
  811. network->wait();
  812. ASSERT_TRUE(fopen(dump_model_name.c_str(), "r"));
  813. remove(dump_model_name.c_str());
  814. }
  815. TEST(TestNetWork, GetDeviceType) {
  816. auto tensor = get_input_data("./input_data.npy");
  817. std::string model_path = "./shufflenet.mge";
  818. Config config;
  819. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  820. network->load_model(model_path);
  821. ASSERT_TRUE(network->get_device_type() == LiteDeviceType::LITE_CPU);
  822. }
  823. TEST(TestNetWork, GetModelExtraInfo) {
  824. std::string model_path = "./track_640_320_pack_model_rc4_with_info.lite";
  825. Config config;
  826. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  827. network->load_model(model_path);
  828. auto& extra_info = network->get_model_extra_info();
  829. ASSERT_TRUE(extra_info.size() > 0);
  830. printf("extra_info %s \n", extra_info.c_str());
  831. }
  832. #ifndef __IN_TEE_ENV__
  833. #if MGB_ENABLE_JSON
  834. TEST(TestNetWork, GetMemoryInfo) {
  835. Config config;
  836. auto lite_tensor = get_input_data("./input_data.npy");
  837. std::string model_path = "./shufflenet.mge";
  838. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  839. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  840. Runtime::set_cpu_threads_number(network, 2);
  841. network->load_model(model_path);
  842. network->get_static_memory_alloc_info();
  843. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  844. auto src_ptr = lite_tensor->get_memory_ptr();
  845. auto src_layout = lite_tensor->get_layout();
  846. input_tensor->reset(src_ptr, src_layout);
  847. network->forward();
  848. network->wait();
  849. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  850. compare_lite_tensor<float>(output_tensor, result_mgb);
  851. }
  852. #endif
  853. #endif
  854. #if LITE_WITH_CUDA
  855. TEST(TestNetWork, BasicDevice) {
  856. auto lite_tensor = get_input_data("./input_data.npy");
  857. Config config;
  858. config.device_type = LiteDeviceType::LITE_CUDA;
  859. std::string model_path = "./shufflenet.mge";
  860. auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor);
  861. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  862. compare_lite_tensor<float>(result_lite, result_mgb);
  863. }
  864. TEST(TestNetWork, DeviceInput) {
  865. auto tensor = get_input_data("./input_data.npy");
  866. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  867. std::string model_path = "./shufflenet.mge";
  868. std::string input_name = "data";
  869. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  870. NetworkIO IO;
  871. bool is_host = false;
  872. IO.inputs.push_back({input_name, is_host});
  873. Config config;
  874. config.device_type = LiteDeviceType::LITE_CUDA;
  875. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  876. network->load_model(model_path);
  877. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  878. auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout);
  879. tensor_cuda.copy_from(*tensor);
  880. auto src_ptr = tensor_cuda.get_memory_ptr();
  881. input_tensor->reset(src_ptr, layout);
  882. network->forward();
  883. network->wait();
  884. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  885. compare_lite_tensor<float>(output_tensor, result_mgb);
  886. }
  887. TEST(TestNetWork, ChangeInputShapeDevice) {
  888. Config config;
  889. auto tensor = get_input_data("./input_data.npy");
  890. std::string model_path = "./shufflenet.mge";
  891. std::string input_name = "data";
  892. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  893. config.device_type = LiteDeviceType::LITE_CUDA;
  894. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  895. network->load_model(model_path);
  896. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  897. auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT};
  898. input_tensor->set_layout(src_layout);
  899. std::shared_ptr<Tensor> input_tensor2 = network->get_io_tensor(input_name);
  900. //! Check memory is equal
  901. ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr());
  902. network->forward();
  903. network->wait();
  904. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  905. auto output_layout = output_tensor->get_layout();
  906. ASSERT_EQ(output_layout.shapes[0], 2);
  907. ASSERT_EQ(output_layout.shapes[1], 1000);
  908. }
  909. TEST(TestNetWork, DeviceOutput) {
  910. auto tensor = get_input_data("./input_data.npy");
  911. std::string model_path = "./shufflenet.mge";
  912. std::string input_name = "data";
  913. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  914. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  915. NetworkIO IO;
  916. bool is_host = false;
  917. IO.outputs.push_back({output_name, is_host});
  918. Config config;
  919. config.device_type = LiteDeviceType::LITE_CUDA;
  920. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  921. network->load_model(model_path);
  922. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  923. std::shared_ptr<Tensor> output_tensor_cuda = network->get_io_tensor(output_name);
  924. auto src_ptr = tensor->get_memory_ptr();
  925. auto src_layout = tensor->get_layout();
  926. input_tensor->reset(src_ptr, src_layout);
  927. network->forward();
  928. network->wait();
  929. auto output_tensor = std::make_shared<Tensor>();
  930. output_tensor->copy_from(*output_tensor_cuda);
  931. compare_lite_tensor<float>(output_tensor, result_mgb);
  932. }
  933. TEST(TestNetWork, WrongIONameDevice) {
  934. auto tensor = get_input_data("./input_data.npy");
  935. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  936. std::string model_path = "./shufflenet.mge";
  937. std::string input_name = "data";
  938. std::string input_name_wrong = "data0";
  939. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  940. std::string output_name_wrong = "w_TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  941. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  942. NetworkIO IO;
  943. bool is_host = false;
  944. IO.inputs.push_back({input_name, is_host});
  945. IO.outputs.push_back({output_name, is_host});
  946. IO.outputs.push_back({output_name_wrong, is_host});
  947. Config config;
  948. config.device_type = LiteDeviceType::LITE_CUDA;
  949. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  950. network->load_model(model_path);
  951. auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout);
  952. tensor_cuda.copy_from(*tensor);
  953. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  954. auto src_ptr = tensor_cuda.get_memory_ptr();
  955. auto src_layout = tensor_cuda.get_layout();
  956. input_tensor->reset(src_ptr, src_layout);
  957. std::shared_ptr<Tensor> output_tensor_cuda = network->get_io_tensor(output_name);
  958. network->forward();
  959. network->wait();
  960. auto output_tensor = std::make_shared<Tensor>();
  961. output_tensor->copy_from(*output_tensor_cuda);
  962. compare_lite_tensor<float>(output_tensor, result_mgb);
  963. }
  964. TEST(TestNetWork, ConfigIONameDevice) {
  965. std::string model_path = "./model.mgb";
  966. NetworkIO IO;
  967. bool is_host = false;
  968. IO.outputs.push_back({"clsfy", is_host});
  969. Config config;
  970. config.device_type = LiteDeviceType::LITE_CUDA;
  971. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  972. network->compute_only_configured_output();
  973. network->load_model(model_path);
  974. ASSERT_EQ(network->get_all_output_name().size(), 1);
  975. ASSERT_EQ(network->get_all_output_name()[0], "clsfy");
  976. std::shared_ptr<Network> network2 = std::make_shared<Network>(config, IO);
  977. network2->load_model(model_path);
  978. ASSERT_EQ(network2->get_all_output_name().size(), 2);
  979. }
  980. TEST(TestNetWork, SetDeviceIdDeviceTest) {
  981. #if LITE_WITH_CUDA
  982. if (get_device_count(LITE_CUDA) <= 1)
  983. return;
  984. #endif
  985. std::string model_path = "./model.mgb";
  986. NetworkIO IO;
  987. bool is_host = false;
  988. IO.inputs.push_back({"data", is_host});
  989. IO.outputs.push_back({"clsfy", is_host});
  990. Config config;
  991. config.device_type = LiteDeviceType::LITE_CUDA;
  992. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  993. network->set_device_id(1);
  994. network->load_model(model_path);
  995. auto inputs_names = network->get_all_input_name();
  996. for (auto name : inputs_names) {
  997. auto tensor = network->get_io_tensor(name);
  998. ASSERT_EQ(tensor->get_device_id(), 1);
  999. if (name == "idx") {
  1000. int* index_ptr = static_cast<int*>(tensor->get_memory_ptr());
  1001. for (int i = 0; i < 23; i++) {
  1002. index_ptr[i] = i % 3;
  1003. }
  1004. }
  1005. if (name == "landmark") {
  1006. float* landmakrk_ptr = static_cast<float*>(tensor->get_memory_ptr());
  1007. for (int i = 0; i < 23 * 18 * 2; i++) {
  1008. landmakrk_ptr[i] = 0.1f;
  1009. }
  1010. }
  1011. }
  1012. auto outputs_names = network->get_all_output_name();
  1013. for (auto name : outputs_names) {
  1014. auto tensor = network->get_io_tensor(name);
  1015. ASSERT_EQ(tensor->get_device_id(), 1);
  1016. }
  1017. network->forward();
  1018. network->wait();
  1019. }
  1020. TEST(TestNetWork, SetStreamIdDeviceTest) {
  1021. std::string model_path = "./model.mgb";
  1022. NetworkIO IO;
  1023. bool is_host = false;
  1024. IO.inputs.push_back({"data", is_host});
  1025. IO.outputs.push_back({"clsfy", is_host});
  1026. Config config;
  1027. config.device_type = LiteDeviceType::LITE_CUDA;
  1028. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  1029. network->set_stream_id(1);
  1030. network->load_model(model_path);
  1031. auto inputs_names = network->get_all_input_name();
  1032. for (auto name : inputs_names) {
  1033. auto tensor = network->get_io_tensor(name);
  1034. if (name == "idx") {
  1035. int* index_ptr = static_cast<int*>(tensor->get_memory_ptr());
  1036. for (int i = 0; i < 23; i++) {
  1037. index_ptr[i] = i % 3;
  1038. }
  1039. }
  1040. if (name == "landmark") {
  1041. float* landmakrk_ptr = static_cast<float*>(tensor->get_memory_ptr());
  1042. for (int i = 0; i < 23 * 18 * 2; i++) {
  1043. landmakrk_ptr[i] = 0.1f;
  1044. }
  1045. }
  1046. }
  1047. network->forward();
  1048. network->wait();
  1049. }
  1050. #if CUDART_VERSION >= 10000
  1051. TEST(TestNetWork, DeviceAsyncExec) {
  1052. auto tensor = get_input_data("./input_data.npy");
  1053. Config config;
  1054. config.device_type = LiteDeviceType::LITE_CUDA;
  1055. config.options.var_sanity_check_first_run = false;
  1056. std::string model_path = "./shufflenet.mge";
  1057. std::string input_name = "data";
  1058. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  1059. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  1060. network->load_model(model_path);
  1061. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  1062. auto src_ptr = tensor->get_memory_ptr();
  1063. auto src_layout = tensor->get_layout();
  1064. input_tensor->reset(src_ptr, src_layout);
  1065. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  1066. auto result_tensor = std::make_shared<Tensor>(
  1067. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  1068. void* out_data = result_tensor->get_memory_ptr();
  1069. output_tensor->reset(out_data, result_tensor->get_layout());
  1070. //! set async mode and callback
  1071. volatile bool finished = false;
  1072. network->set_async_callback([&finished]() { finished = true; });
  1073. network->forward();
  1074. size_t count = 0;
  1075. while (finished == false) {
  1076. count++;
  1077. }
  1078. ASSERT_GT(count, 0);
  1079. compare_lite_tensor<float>(output_tensor, result_mgb);
  1080. }
  1081. #endif
  1082. #endif
  1083. #if MGB_ATLAS || MGB_CAMBRICON
  1084. namespace {
  1085. void load_no_device(LiteDeviceType device_type, const std::string& model_path) {
  1086. lite::Config config;
  1087. config.device_type = device_type;
  1088. auto network = std::make_shared<lite::Network>(config);
  1089. network->load_model(model_path);
  1090. network->forward();
  1091. network->wait();
  1092. }
  1093. void load_device_input(
  1094. LiteDeviceType device_type, const std::string& model_path,
  1095. const std::vector<std::string>& inputs) {
  1096. lite::NetworkIO networkio;
  1097. lite::IO input_data_io = {};
  1098. input_data_io.name = inputs[0];
  1099. input_data_io.is_host = false;
  1100. networkio.inputs.emplace_back(input_data_io);
  1101. lite::IO input_input0_io = {};
  1102. input_input0_io.name = inputs[1];
  1103. input_input0_io.is_host = false;
  1104. networkio.inputs.emplace_back(input_input0_io);
  1105. lite::Config config;
  1106. config.device_type = device_type;
  1107. auto network = std::make_shared<lite::Network>(config, networkio);
  1108. network->load_model(model_path);
  1109. network->forward();
  1110. network->wait();
  1111. }
  1112. void load_device_id(
  1113. LiteDeviceType device_type, int device_id, const std::string& model_path) {
  1114. lite::Config config;
  1115. config.device_type = device_type;
  1116. auto network = std::make_shared<lite::Network>(config);
  1117. network->set_device_id(device_id);
  1118. network->load_model(model_path);
  1119. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  1120. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  1121. network->forward();
  1122. network->wait();
  1123. ASSERT_EQ(output_tensor->get_device_id(), device_id);
  1124. }
  1125. } // namespace
  1126. #endif
  1127. #if MGB_ATLAS
  1128. TEST(TestNetWork, AtlasLoadNoDevice) {
  1129. load_no_device(LiteDeviceType::LITE_DEVICE_DEFAULT, "./model_atlas.mgb");
  1130. }
  1131. TEST(TestNetWork, AtlasLoadDeviceInput) {
  1132. load_device_input(
  1133. LiteDeviceType::LITE_DEVICE_DEFAULT, "./model_atlas.mgb",
  1134. {"data", "input0"});
  1135. }
  1136. TEST(TestNetWork, AtlasLoadAtlas) {
  1137. load_no_device(LiteDeviceType::LITE_ATLAS, "./model_atlas.mgb");
  1138. }
  1139. TEST(TestNetWork, AtlasLoadAtlasDeviceInput) {
  1140. load_device_input(
  1141. LiteDeviceType::LITE_ATLAS, "./model_atlas.mgb", {"data", "input0"});
  1142. }
  1143. TEST(TestNetWork, AtlasDeviceID) {
  1144. load_device_id(LiteDeviceType::LITE_ATLAS, 1, "./model_atlas.mgb");
  1145. }
  1146. #endif
  1147. #if MGB_CAMBRICON
  1148. TEST(TestNetWork, CambriconLoadNoDevice) {
  1149. load_no_device(LiteDeviceType::LITE_DEVICE_DEFAULT, "./model_magicmind.mgb");
  1150. }
  1151. TEST(TestNetWork, CambriconLoadDeviceInput) {
  1152. load_device_input(
  1153. LiteDeviceType::LITE_DEVICE_DEFAULT, "./model_magicmind.mgb",
  1154. {"data", "input0"});
  1155. }
  1156. TEST(TestNetWork, CambriconLoadCambricon) {
  1157. load_no_device(LiteDeviceType::LITE_CAMBRICON, "./model_magicmind.mgb");
  1158. }
  1159. TEST(TestNetWork, CambriconLoadCambriconDeviceInput) {
  1160. load_device_input(
  1161. LiteDeviceType::LITE_CAMBRICON, "./model_magicmind.mgb",
  1162. {"data", "input0"});
  1163. }
  1164. TEST(TestNetWork, CambriconDeviceID) {
  1165. load_device_id(LiteDeviceType::LITE_CAMBRICON, 0, "./model_magicmind.mgb");
  1166. }
  1167. #endif
  1168. #endif
  1169. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}