|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856 |
- /**
- * \file dnn/src/x86/conv_bias/f32/algos.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
-
- #include "src/x86/conv_bias/f32/algos.h"
- #include <unordered_map>
- #include "src/common/opr_delegate.h"
- #include "src/common/utils.h"
- #include "src/fallback/convolution/img2col_helper.h"
- #include "src/x86/conv_bias/f32/do_conv_stride2.h"
- #include "src/x86/conv_bias/opr_impl.h"
- #include "src/x86/conv_bias/postprocess_helper.h"
- #include "src/x86/convolution/convolution_direct_special_cases.h"
- #include "src/x86/handle.h"
- #include "src/x86/profile.h"
-
- #include "midout.h"
-
- using namespace megdnn;
- using namespace x86;
- namespace {
- bool need_dst_copy(const fallback::ConvBiasImpl::NCBKernSizeParam& param) {
- if (param.osz[0] % 8 != 0 || param.osz[1] % 8 != 0) {
- // If the size of output is not multiples of 8, we need to copy it.
- return true;
- }
- return false;
- }
-
- bool need_src_copy(const fallback::ConvBiasImpl::NCBKernSizeParam& param) {
- if (param.filter_meta.padding[0] || param.filter_meta.padding[1]) {
- // If padding is not zero, we need to copy to eliminate padding effect.
- return true;
- }
- return need_dst_copy(param);
- }
-
- void get_rectified_size(size_t IH, size_t IW, size_t OH, size_t OW, size_t FH,
- size_t FW, size_t PH, size_t PW, size_t& IH2,
- size_t& IW2, size_t& OH2, size_t& OW2) {
- MEGDNN_MARK_USED_VAR(PH);
- MEGDNN_MARK_USED_VAR(PW);
- OH2 = (OH + 7) & ~7;
- OW2 = (OW + 7) & ~7;
- IH2 = 2 * OH2 + FH - 2;
- IW2 = 2 * OW2 + FW - 2;
- // Because stride is 2, sometimes IH/W == IH/W2 + 1
- // Do a max update to handle this case.
- IH2 = std::max(IH2, IH);
- IW2 = std::max(IW2, IW);
- }
- } // namespace
-
- #define GET_KERN \
- auto fm = param.filter_meta; \
- size_t N = param.n; \
- size_t IC = param.filter_meta.icpg; \
- size_t OC = param.filter_meta.ocpg; \
- size_t group = fm.group; \
- WorkspaceBundle bundle = get_bundle(param); \
- SmallVector<NCBKern> ret_kerns; \
- if (m_large_group) { \
- auto exec_one_group = [bundle]( \
- const NCBKernParam& kern_param, \
- const NCBKernIndex& ncb_index) mutable { \
- bundle.set(kern_param.workspace_ptr); \
- auto fm = kern_param.filter_meta; \
- size_t IC = fm.icpg; \
- size_t OC = fm.ocpg; \
- for (size_t ic = 0; ic < IC; ic++) { \
- copy_padding_kern(bundle, kern_param, ncb_index, \
- {ncb_index.thread_id, 0, ic}); \
- } \
- for (size_t oc = 0; oc < OC; oc++) { \
- do_conv_kern(bundle, kern_param, ncb_index, \
- {ncb_index.thread_id, 0, oc}); \
- } \
- }; \
- ret_kerns.push_back({exec_one_group, {group, N, 1_z}}); \
- } else { \
- auto copy_padding = [bundle](const NCBKernParam& kern_param, \
- const NCBKernIndex& ncb_index) mutable { \
- bundle.set(kern_param.workspace_ptr); \
- copy_padding_kern(bundle, kern_param, ncb_index, \
- ncb_index.ndrange_id); \
- }; \
- ret_kerns.push_back({copy_padding, {group, N, IC}}); \
- auto do_conv = [bundle](const NCBKernParam& kern_param, \
- const NCBKernIndex& ncb_index) mutable { \
- bundle.set(kern_param.workspace_ptr); \
- do_conv_kern(bundle, kern_param, ncb_index, ncb_index.ndrange_id); \
- }; \
- ret_kerns.push_back({do_conv, {group, N, OC}}); \
- } \
- return ret_kerns;
-
- /* ===================== direct algo ===================== */
-
- bool ConvBiasImpl::AlgoDirect::usable(
- const NCBKernSizeParam& param,
- AlgoSelectionStrategy algo_selection_strategy) const {
- auto&& fm = param.filter_meta;
- bool aviliable = fm.format == Param::Format::NCHW && fm.spatial_ndim == 2 &&
- param.src_type.enumv() == DTypeEnum::Float32 &&
- param.filter_type.enumv() == DTypeEnum::Float32 &&
- param.dst_type.enumv() == DTypeEnum::Float32 &&
- fm.dilation[0] == 1 && fm.dilation[1] == 1 &&
- fm.spatial[0] <= 7 && fm.stride[0] == 1 &&
- fm.stride[1] == 1;
- if (algo_selection_strategy == AlgoSelectionStrategy::HEURISTIC) {
- bool large_group = param.filter_meta.group >= param.nr_threads;
- aviliable &= (large_group == m_large_group);
- }
- return aviliable;
- }
- WorkspaceBundle ConvBiasImpl::AlgoDirect::get_bundle(
- const NCBKernSizeParam& param) const {
- auto&& fm = param.filter_meta;
- size_t nr_threads = param.nr_threads;
- size_t group = fm.group, batch = param.n;
- auto IC = fm.icpg, IH = param.isz[0], IW = param.isz[1];
- auto FH = fm.spatial[0], FW = fm.spatial[1];
- auto OH = param.osz[0], OW = param.osz[1];
- size_t OH2, OW2, IH2, IW2;
- get_rectified_img_size(IH, IW, FH, FW, OH, OW, fm.padding[0], fm.padding[1],
- IH2, IW2, OH2, OW2);
- size_t part0 = 0u, part1 = 0u;
- if (IH != IH2 || IW != IW2) {
- part0 = m_large_group ? IC * IH2 * IW2 * sizeof(float) * nr_threads
- : IC * IH2 * IW2 * sizeof(float) * group * batch;
- }
- if (OH != OH2 || OW != OW2) {
- part1 = OH2 * OW2 * sizeof(float) * nr_threads;
- }
- return {nullptr, {part0, part1}};
- }
- size_t ConvBiasImpl::AlgoDirect::get_workspace(
- const NCBKernSizeParam& param) const {
- return get_bundle(param).total_size_in_bytes();
- }
-
- //! Process one input channel copy padding
- void ConvBiasImpl::AlgoDirect::copy_padding_kern(
- const WorkspaceBundle& bundle,
- const ConvBiasImpl::NCBKernParam& kern_param,
- const ConvBiasImpl::NCBKernIndex& ncb_index,
- const CpuNDRange& workspace_ids) {
- size_t IH = kern_param.isz[0];
- size_t IW = kern_param.isz[1];
- size_t IC = kern_param.filter_meta.icpg;
- size_t OH = kern_param.osz[0];
- size_t OW = kern_param.osz[1];
- size_t PH = kern_param.filter_meta.padding[0];
- size_t PW = kern_param.filter_meta.padding[1];
- size_t FH = kern_param.filter_meta.spatial[0];
- size_t FW = kern_param.filter_meta.spatial[1];
- size_t GROUP = kern_param.filter_meta.group;
- size_t OH2, OW2, IH2, IW2;
- get_rectified_img_size(IH, IW, FH, FW, OH, OW, PH, PW, IH2, IW2, OH2, OW2);
- bool rectify_src = (IH != IH2 || IW != IW2);
- size_t padding_group_size = IH2 * IW2 * IC;
- size_t batch_id = ncb_index.ndrange_id[1];
- size_t group_id = ncb_index.ndrange_id[0];
- size_t channel_id = workspace_ids[2];
- const float* sptr = static_cast<const float*>(
- kern_param.src<float>(batch_id, group_id)) +
- channel_id * IH * IW;
-
- //! Used for get the workspace offset
- size_t workspace_group_id = workspace_ids[0],
- workspace_batch_id = workspace_ids[1],
- workspace_channel_id = workspace_ids[2];
- //! If large group, each thread has its own worspace, set group_id with
- //! thread_id
- if (rectify_src) {
- //! copy to sptr_base to eliminate padding effect
- float* sptr_base = static_cast<float*>(bundle.get(0)) +
- workspace_group_id * padding_group_size +
- workspace_batch_id * GROUP * padding_group_size +
- workspace_channel_id * IH2 * IW2;
- std::memset(sptr_base, 0, sizeof(float) * IH2 * IW2);
- rep(ih, IH) {
- std::memcpy(sptr_base + (ih + PH) * IW2 + PW, sptr + ih * IW,
- sizeof(float) * IW);
- }
- }
- };
- #define DISPATCH \
- if (is_supported(SIMDType::FMA)) { \
- DISPATCH_SIMD(fma) \
- } else if (is_supported(SIMDType::AVX)) { \
- DISPATCH_SIMD(avx) \
- } else if (is_supported(SIMDType::SSE)) { \
- DISPATCH_SIMD(sse) \
- } else { \
- megdnn_throw(megdnn_mangle("no fma/avx/sse detected")); \
- }
-
- #define DISPATCH_SIMD(simd) \
- if (is_xcorr) { \
- DISPATCH_SIMD_MODE(simd, xcorr) \
- } else { \
- DISPATCH_SIMD_MODE(simd, conv) \
- }
-
- #define DISPATCH_SIMD_MODE(simd, mode) \
- switch (FH) { \
- case 1: \
- DISPATCH_SIMD_MODE_FSIZE(simd, mode, 1); \
- break; \
- case 2: \
- DISPATCH_SIMD_MODE_FSIZE(simd, mode, 2); \
- break; \
- case 3: \
- DISPATCH_SIMD_MODE_FSIZE(simd, mode, 3); \
- break; \
- case 4: \
- DISPATCH_SIMD_MODE_FSIZE(simd, mode, 4); \
- break; \
- case 5: \
- DISPATCH_SIMD_MODE_FSIZE(simd, mode, 5); \
- break; \
- case 6: \
- DISPATCH_SIMD_MODE_FSIZE(simd, mode, 6); \
- break; \
- case 7: \
- DISPATCH_SIMD_MODE_FSIZE(simd, mode, 7); \
- break; \
- default: \
- megdnn_throw(megdnn_mangle("unsupported filter size")); \
- }
-
- #define DISPATCH_SIMD_MODE_FSIZE(simd, mode, fsize) \
- func = detail::convolution_##mode##_fh##fsize##_##simd;
-
- //! compute one output channel
- void ConvBiasImpl::AlgoDirect::do_conv_kern(const WorkspaceBundle& bundle,
- const NCBKernParam& kern_param,
- const NCBKernIndex& ncb_index,
- const CpuNDRange& workspace_ids) {
- size_t OH = kern_param.osz[0];
- size_t OW = kern_param.osz[1];
- size_t IH = kern_param.isz[0];
- size_t IW = kern_param.isz[1];
- size_t FH = kern_param.filter_meta.spatial[0];
- size_t FW = kern_param.filter_meta.spatial[1];
- size_t IC = kern_param.filter_meta.icpg;
- size_t PH = kern_param.filter_meta.padding[0];
- size_t PW = kern_param.filter_meta.padding[1];
- auto is_xcorr = !kern_param.filter_meta.should_flip;
- size_t GROUP = kern_param.filter_meta.group;
- size_t OH2, OW2, IH2, IW2;
- get_rectified_img_size(IH, IW, FH, FW, OH, OW, PH, PW, IH2, IW2, OH2, OW2);
- bool rectify_src = (IH != IH2 || IW != IW2);
- bool rectify_dst = (OH != OH2 || OW != OW2);
- size_t padding_group_size = IH2 * IW2 * IC;
- //! Choose the compute kernel
- std::function<void(const float*, const float*, float*, size_t, size_t,
- size_t, size_t, size_t)>
- func = nullptr;
- DISPATCH;
-
- size_t bias_offset = 0;
- if (kern_param.bias_mode == megdnn::BiasMode::BIAS) {
- bias_offset = OH * OW;
- } else if (kern_param.bias_mode ==
- megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) {
- bias_offset = 1_z;
- }
- size_t group_id = ncb_index.ndrange_id[0];
- size_t batch_id = ncb_index.ndrange_id[1];
- //! Used for get the workspace offset
- size_t workspace_group_id = workspace_ids[0],
- workspace_batch_id = workspace_ids[1], oc = workspace_ids[2];
- const float* sptr = kern_param.src<float>(batch_id, group_id);
- const float* filter =
- kern_param.filter<float>(group_id) + oc * FH * FW * IC;
- const float* bias_ptr =
- kern_param.bias<float>(batch_id, group_id) + oc * bias_offset;
- float* dst = kern_param.dst<float>(batch_id, group_id) + oc * OH * OW;
- if (rectify_src) {
- sptr = static_cast<float*>(bundle.get(0)) +
- workspace_group_id * padding_group_size +
- workspace_batch_id * GROUP * padding_group_size;
- }
- float* dptr = nullptr;
- if (rectify_dst) {
- dptr = static_cast<float*>(bundle.get(1)) +
- ncb_index.thread_id * OH2 * OW2;
- } else {
- dptr = dst;
- }
- std::memset(dptr, 0, sizeof(float) * OH2 * OW2);
- rep(ic, IC) {
- func(sptr + ic * IH2 * IW2, filter + ic * FH * FW, dptr, IH2, IW2, OH2,
- OW2, FW);
- }
- if (rectify_dst) {
- rep(oh, OH) {
- std::memcpy(dst + oh * OW, dptr + oh * OW2, sizeof(float) * OW);
- }
- }
- PostProcess<dt_float32>::run(dst, const_cast<float*>(bias_ptr), dst,
- kern_param.bias_mode, kern_param.nonlineMode,
- kern_param.bias_type, kern_param.dst_type, 1_z,
- 1_z, OH, OW);
- }
-
- SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoDirect::get_kimpls(
- const NCBKernSizeParam& param) const {
- GET_KERN;
- }
- /* ===================== direct-stride2 algo ===================== */
- bool ConvBiasImpl::AlgoDirectStride2::usable(
- const NCBKernSizeParam& param,
- AlgoSelectionStrategy algo_selection_strategy) const {
- auto&& fm = param.filter_meta;
- auto FH = fm.spatial[0];
- bool aviliable =
- param.filter_meta.format == param::ConvBias::Format::NCHW &&
- param.src_type.enumv() == DTypeEnum::Float32 &&
- param.filter_type.enumv() == DTypeEnum::Float32 &&
- param.dst_type.enumv() == DTypeEnum::Float32 && !fm.should_flip &&
- fm.spatial_ndim == 2 && fm.dilation[0] == 1 &&
- fm.dilation[1] == 1 && fm.stride[0] == 2 && fm.stride[1] == 2 &&
- FH == fm.spatial[1] && (FH == 2 || FH == 3 || FH == 5 || FH == 7);
- if (algo_selection_strategy == AlgoSelectionStrategy::HEURISTIC) {
- bool large_group = param.filter_meta.group >= param.nr_threads;
- aviliable &= (large_group == m_large_group);
- }
- return aviliable;
- }
-
- WorkspaceBundle ConvBiasImpl::AlgoDirectStride2::get_bundle(
- const NCBKernSizeParam& param) const {
- UNPACK_CONV_F32_NCB_KERN_SIZES(param);
- MEGDNN_MARK_USED_VAR(N);
- MEGDNN_MARK_USED_VAR(OC);
- MEGDNN_MARK_USED_VAR(SH);
- MEGDNN_MARK_USED_VAR(SW);
- size_t nr_threads = param.nr_threads;
- size_t group = param.filter_meta.group;
- size_t batch = param.n;
- size_t src_size = 0, dst_size = 0;
- size_t IH2, IW2, OH2, OW2;
- get_rectified_size(IH, IW, OH, OW, FH, FW, PH, PW, IH2, IW2, OH2, OW2);
- if (need_src_copy(param)) {
- src_size = m_large_group
- ? IC * IH2 * IW2 * sizeof(float) * nr_threads
- : IC * IH2 * IW2 * sizeof(float) * group * batch;
- }
- if (need_dst_copy(param)) {
- // we only need one dst plane
- dst_size = OH2 * OW2 * sizeof(float) * nr_threads;
- }
- return WorkspaceBundle(nullptr, {src_size, dst_size});
- }
-
- size_t ConvBiasImpl::AlgoDirectStride2::get_workspace(
- const NCBKernSizeParam& param) const {
- return get_bundle(param).total_size_in_bytes();
- }
- //! Process one input channel copy padding
- void ConvBiasImpl::AlgoDirectStride2::copy_padding_kern(
- const WorkspaceBundle& bundle,
- const ConvBiasImpl::NCBKernParam& kern_param,
- const ConvBiasImpl::NCBKernIndex& ncb_index,
- const CpuNDRange& workspace_ids) {
- size_t IH = kern_param.isz[0];
- size_t IW = kern_param.isz[1];
- size_t IC = kern_param.filter_meta.icpg;
- size_t OH = kern_param.osz[0];
- size_t OW = kern_param.osz[1];
- size_t PH = kern_param.filter_meta.padding[0];
- size_t PW = kern_param.filter_meta.padding[1];
- size_t FH = kern_param.filter_meta.spatial[0];
- size_t FW = kern_param.filter_meta.spatial[1];
- size_t GROUP = kern_param.filter_meta.group;
- size_t OH2, OW2, IH2, IW2;
- get_rectified_size(IH, IW, OH, OW, FH, FW, PH, PW, IH2, IW2, OH2, OW2);
- bool rectify_src = need_src_copy(kern_param);
- size_t padding_group_size = IH2 * IW2 * IC;
- size_t group_id = ncb_index.ndrange_id[0];
- size_t batch_id = ncb_index.ndrange_id[1];
- size_t channel_id = workspace_ids[2];
- const float* sptr = static_cast<const float*>(
- kern_param.src<float>(batch_id, group_id)) +
- channel_id * IH * IW;
- //! Used for get the workspace offset
- size_t workspace_group_id = workspace_ids[0],
- workspace_batch_id = workspace_ids[1],
- workspace_channel_id = workspace_ids[2];
- if (rectify_src) {
- //! copy to sptr_base to eliminate padding effect
- float* sptr_base = static_cast<float*>(bundle.get(0)) +
- workspace_group_id * padding_group_size +
- workspace_batch_id * GROUP * padding_group_size +
- workspace_channel_id * IH2 * IW2;
- std::memset(sptr_base, 0, sizeof(float) * IH2 * IW2);
- rep(ih, IH) {
- std::memcpy(sptr_base + (ih + PH) * IW2 + PW, sptr + ih * IW,
- sizeof(float) * IW);
- }
- }
- };
-
- //! compute one output channel
- void ConvBiasImpl::AlgoDirectStride2::do_conv_kern(
- const WorkspaceBundle& bundle, const NCBKernParam& kern_param,
- const NCBKernIndex& ncb_index, const CpuNDRange& workspace_ids) {
- size_t OH = kern_param.osz[0];
- size_t OW = kern_param.osz[1];
- size_t IH = kern_param.isz[0];
- size_t IW = kern_param.isz[1];
- size_t FH = kern_param.filter_meta.spatial[0];
- size_t FW = kern_param.filter_meta.spatial[1];
- size_t IC = kern_param.filter_meta.icpg;
- size_t PH = kern_param.filter_meta.padding[0];
- size_t PW = kern_param.filter_meta.padding[1];
- size_t GROUP = kern_param.filter_meta.group;
- size_t OH2, OW2, IH2, IW2;
- get_rectified_size(IH, IW, OH, OW, FH, FW, PH, PW, IH2, IW2, OH2, OW2);
- bool rectify_src = need_src_copy(kern_param);
- bool rectify_dst = need_dst_copy(kern_param);
- size_t padding_group_size = IH2 * IW2 * IC;
- //! Choose the compute kernel
- using Func = std::function<void(const float*, const float*, float*, size_t,
- size_t, size_t, size_t, size_t, size_t)>;
- Func func_no_add_dst = nullptr, func_add_dst = nullptr;
- if (FH == 2) {
- func_no_add_dst = conv_general_simd::do_conv_2x2_stride2<false>;
- func_add_dst = conv_general_simd::do_conv_2x2_stride2<true>;
- } else if (FH == 3) {
- func_no_add_dst = conv_general_simd::do_conv_3x3_stride2<false>;
- func_add_dst = conv_general_simd::do_conv_3x3_stride2<true>;
- } else if (FH == 5) {
- func_no_add_dst = conv_general_simd::do_conv_5x5_stride2<false>;
- func_add_dst = conv_general_simd::do_conv_5x5_stride2<true>;
- } else if (FH == 7) {
- func_no_add_dst = conv_general_simd::do_conv_7x7_stride2<false>;
- func_add_dst = conv_general_simd::do_conv_7x7_stride2<true>;
- }
-
- size_t bias_offset = 0;
- if (kern_param.bias_mode == megdnn::BiasMode::BIAS) {
- bias_offset = OH * OW;
- } else if (kern_param.bias_mode ==
- megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) {
- bias_offset = 1_z;
- }
- size_t group_id = ncb_index.ndrange_id[0];
- size_t batch_id = ncb_index.ndrange_id[1];
- //! Used for get the workspace offset
- size_t workspace_group_id = workspace_ids[0],
- workspace_batch_id = workspace_ids[1], oc = workspace_ids[2];
- const float* sptr = kern_param.src<float>(batch_id, group_id);
- const float* filter =
- kern_param.filter<float>(group_id) + oc * FH * FW * IC;
- const float* bias_ptr =
- kern_param.bias<float>(batch_id, group_id) + oc * bias_offset;
- float* dst = kern_param.dst<float>(batch_id, group_id) + oc * OH * OW;
- if (rectify_src) {
- sptr = static_cast<float*>(bundle.get(0)) +
- workspace_group_id * padding_group_size +
- workspace_batch_id * GROUP * padding_group_size;
- }
- float* dptr = nullptr;
- if (rectify_dst) {
- dptr = static_cast<float*>(bundle.get(1)) +
- ncb_index.thread_id * OH2 * OW2;
- } else {
- dptr = dst;
- }
- func_no_add_dst(sptr, filter, dptr, IH2, IW2, OH2, OW2, 0, 0);
- for (size_t ic = 1; ic < IC; ++ic) {
- func_add_dst(sptr + ic * IH2 * IW2, filter + ic * FH * FW, dptr, IH2,
- IW2, OH2, OW2, 0, 0);
- }
- if (rectify_dst) {
- rep(oh, OH) {
- std::memcpy(dst + oh * OW, dptr + oh * OW2, sizeof(float) * OW);
- }
- }
- PostProcess<dt_float32>::run(dst, const_cast<float*>(bias_ptr), dst,
- kern_param.bias_mode, kern_param.nonlineMode,
- kern_param.bias_type, kern_param.dst_type, 1_z,
- 1_z, OH, OW);
- }
-
- SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoDirectStride2::get_kimpls(
- const NCBKernSizeParam& param) const {
- GET_KERN;
- }
- /* ===================== matmul algo ===================== */
- WorkspaceBundle ConvBiasImpl::AlgoMatrixMul::get_bundle(
- const NCBKernSizeParam& param) {
- UNPACK_CONV_F32_NCB_KERN_SIZES(param);
- MEGDNN_MARK_USED_VAR(N);
- MEGDNN_MARK_USED_VAR(OC);
- auto IW2 = IH + 2 * PH;
- auto IH2 = IW + 2 * PW;
- bool can_matrix_mul_direct =
- (FH == 1 && FW == 1 && SH == 1 && SW == 1 && PH == 0 && PW == 0);
- // temp space to store padding-free src (with 4 extra floats)
- // temp space to store unrolled matrix (with 4 extra floats)
- // workspace for matrix mul opr
- size_t part0, part1, part2;
- if (can_matrix_mul_direct) {
- part0 = part1 = 0;
- } else {
- part0 = (IC * IH2 * IW2 + 4) * sizeof(float);
- part1 = (IC * FH * FW * OH * OW + 4) * sizeof(float);
- }
- {
- TensorLayout A_, B_, C_;
- A_ = TensorLayout({OC, IC * FH * FW}, dtype::Float32());
- B_ = TensorLayout({IC * FH * FW, OH * OW}, dtype::Float32());
- C_ = TensorLayout({OC, OH * OW}, dtype::Float32());
- part2 = get_matmul_opr()->get_workspace_in_bytes(A_, B_, C_);
- }
- return {nullptr, {part0, part1, part2}};
- }
-
- bool ConvBiasImpl::AlgoMatrixMul::is_preferred(
- const NCBKernSizeParam& param) const {
- auto&& fm = param.filter_meta;
- if (fm.dilation[0] != 1 || fm.dilation[1] != 1) {
- return false;
- }
-
- // single channel conv should never use matrix mul
- if (fm.ocpg == 1 || fm.icpg == 1)
- return false;
- // 1x1 conv should always use matrix mul
- if (fm.spatial[0] == 1 && fm.spatial[1] == 1)
- return true;
- // if stride is not 1x1, always use matrix mul
- if (fm.stride[0] != 1 || fm.stride[1] != 1)
- return true;
- int f = find_nearest_elem<int>(
- std::round(geometric_mean(fm.spatial[0], fm.spatial[1])),
- {2, 3, 4, 5, 6, 7});
- int oc = find_nearest_elem<int>(fm.ocpg, {4, 8, 16, 32, 64, 96, 128});
- int ic = find_nearest_elem<int>(fm.icpg, {4, 8, 16, 32, 64, 96, 128});
- int on = std::round(geometric_mean(param.osz[0], param.osz[1]));
- ProfileElement cur(f, oc, ic, on);
- auto H = static_cast<HandleImpl*>(inplace_cpu_handle().get());
- auto&& target = std::lower_bound(H->profile_cache().begin(),
- H->profile_cache().end(), cur);
- megdnn_assert_internal(target->f == cur.f);
- megdnn_assert_internal(target->oc == cur.oc);
- megdnn_assert_internal(target->ic == cur.ic);
- return on < target->on_threshold;
- }
-
- MatrixMul* ConvBiasImpl::AlgoMatrixMul::get_matmul_opr() {
- static CpuOprDelegationStorage<> storage;
- return storage.get<MatrixMul>();
- }
-
- void ConvBiasImpl::AlgoMatrixMul::kimpl(const NCBKernParam& param,
- const NCBKernIndex& ncb_index) {
- UNPACK_CONV_F32_NCB_KERN_SIZES(param);
- auto IH2 = IH + 2 * PH;
- auto IW2 = IW + 2 * PW;
- size_t group_id = ncb_index.ndrange_id[0];
- bool is_xcorr = !param.filter_meta.should_flip;
- auto bundle = get_bundle(param);
- bundle.set(param.workspace_ptr);
- // workspace = tmp..src2
-
- for (size_t n = 0; n < N; ++n) {
- float* src = const_cast<float*>(param.src<float>(n, group_id));
- float* dst = param.dst<float>(n, group_id);
- float* bias_ptr = static_cast<float*>(
- const_cast<void*>(param.bias<void>(n, group_id)));
-
- float *B, *src2;
- if (FH == 1 && FW == 1 && SH == 1 && SW == 1 && PH == 0 && PW == 0) {
- // special case: 1x1
- B = src;
- } else {
- src2 = static_cast<float*>(bundle.get(0));
- // copy src to src2;
- float* src2_ptr = src2;
- const float* src_ptr = src;
- rep(ic, IC) {
- if (PH != 0) {
- std::memset(src2_ptr, 0, sizeof(float) * PH * IW2);
- src2_ptr += PH * IW2;
- }
- rep(ih, IH) {
- if (PW != 0)
- rep(pw, PW) * (src2_ptr++) = 0.0f;
- std::memcpy(src2_ptr, src_ptr, sizeof(float) * IW);
- src2_ptr += IW;
- src_ptr += IW;
- if (PW != 0)
- rep(pw, PW) * (src2_ptr++) = 0.0f;
- }
- if (PH != 0) {
- std::memset(src2_ptr, 0, sizeof(float) * PH * IW2);
- src2_ptr += PH * IW2;
- }
- }
-
- B = static_cast<float*>(bundle.get(1));
- if (SH == 1 && SW == 1) {
- if (is_xcorr) {
- img2col<true>(src2, B, OC, OH, OW, IC, IH2, IW2, FH, FW);
- } else {
- img2col<false>(src2, B, OC, OH, OW, IC, IH2, IW2, FH, FW);
- }
- } else {
- if (is_xcorr) {
- img2col_stride<true>(src2, B, OC, OH, OW, IC, IH2, IW2, FH,
- FW, SH, SW);
- } else {
- img2col_stride<false>(src2, B, OC, OH, OW, IC, IH2, IW2, FH,
- FW, SH, SW);
- }
- }
- }
- {
- TensorND A_, B_, C_;
- A_.layout = TensorLayout({OC, IC * FH * FW}, dtype::Float32());
- A_.raw_ptr = const_cast<float*>(param.filter<float>(group_id));
- B_.layout = TensorLayout({IC * FH * FW, OH * OW}, dtype::Float32());
- B_.raw_ptr = B;
- C_.layout = TensorLayout({OC, OH * OW}, dtype::Float32());
- C_.raw_ptr = dst;
- Workspace workspace(static_cast<dt_byte*>(bundle.get(2)),
- bundle.get_size(2));
- get_matmul_opr()->exec(A_, B_, C_, workspace);
- }
- PostProcess<float>::run(dst, bias_ptr, dst, param.bias_mode,
- param.nonlineMode, param.bias_type,
- param.dst_type, 1_z, OC, OH, OW);
- }
- }
-
- #if MEGDNN_X86_WITH_MKL_DNN
- static inline void mkldnn_fp32_conv_instance(
- const ConvBiasImpl::NCBKernParam& param, const uint32_t ocpg,
- const uint32_t icpg, const uint32_t group, const uint32_t in,
- const uint32_t ic, const uint32_t oc, const uint32_t ih,
- const uint32_t iw, const uint32_t kh, const uint32_t kw,
- const uint32_t pad_h, const uint32_t pad_w, const uint32_t stride_h,
- const uint32_t stride_w, const uint32_t oh, const uint32_t ow,
- std::vector<dnnl::primitive>& net,
- std::vector<std::unordered_map<int, dnnl::memory>>& net_args,
- dnnl::engine& eng_mkldnn) {
- dnnl::memory::dims src_shape = {in, ic, ih, iw};
- dnnl::memory::dims weight_shape = {oc, ic, kh, kw};
- dnnl::memory::dims bias_shape = {oc};
- dnnl::memory::dims dst_shape = {in, oc, oh, ow};
- dnnl::memory::dims strides_shape = {stride_h, stride_w};
- dnnl::memory::dims padding_shape = {pad_h, pad_w};
-
- auto user_src_desc =
- dnnl::memory::desc({src_shape}, dnnl::memory::data_type::f32,
- dnnl::memory::format_tag::nChw8c);
- if (group == 1 && ic < 8) {
- user_src_desc =
- dnnl::memory::desc({src_shape}, dnnl::memory::data_type::f32,
- dnnl::memory::format_tag::nchw);
- }
- auto user_src_mem = dnnl::memory(user_src_desc, eng_mkldnn,
- const_cast<void*>(param.src_ptr));
-
- auto weight_tag = dnnl::memory::format_tag::OIhw8i8o;
- if (group > 1) {
- weight_shape = {group, ocpg, icpg, kh, kw};
- if (oc == group && ic == group) {
- weight_tag = dnnl::memory::format_tag::Goihw8g;
- } else {
- weight_tag = dnnl::memory::format_tag::gOIhw8i8o;
- }
- } else if (group == 1 && ic < 8) {
- weight_tag = dnnl::memory::format_tag::Ohwi8o;
- }
-
- auto user_weights_desc = dnnl::memory::desc(
- {weight_shape}, dnnl::memory::data_type::f32, weight_tag);
-
- auto user_weights_mem = dnnl::memory(user_weights_desc, eng_mkldnn,
- const_cast<void*>(param.filter_ptr));
- auto user_bias_desc = dnnl::memory::desc();
- if (param.bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) {
- user_bias_desc =
- dnnl::memory::desc({bias_shape}, dnnl::memory::data_type::f32,
- dnnl::memory::format_tag::x);
- }
- auto user_bias_mem = dnnl::memory(user_bias_desc, eng_mkldnn,
- const_cast<void*>(param.bias_ptr));
- auto user_dst_desc =
- dnnl::memory::desc({dst_shape}, dnnl::memory::data_type::f32,
- dnnl::memory::format_tag::nChw8c);
- auto user_dst_mem = dnnl::memory(user_dst_desc, eng_mkldnn,
- const_cast<void*>(param.dst_ptr));
- auto conv_desc = dnnl::convolution_forward::desc(
- dnnl::prop_kind::forward_inference,
- dnnl::algorithm::convolution_auto, user_src_mem.get_desc(),
- user_weights_mem.get_desc(), user_bias_mem.get_desc(),
- user_dst_mem.get_desc(), strides_shape, padding_shape,
- padding_shape);
-
- dnnl::primitive_attr attr;
- if ((param.nonlineMode == NonlineMode::RELU ||
- param.nonlineMode == NonlineMode::SIGMOID) &&
- (param.bias_mode == megdnn::BiasMode::NO_BIAS ||
- param.bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS)) {
- auto post_tag = dnnl::algorithm::eltwise_linear;
- switch (param.nonlineMode) {
- case NonlineMode::RELU:
- post_tag = dnnl::algorithm::eltwise_relu;
- break;
- case NonlineMode::SIGMOID:
- post_tag = dnnl::algorithm::eltwise_logistic;
- break;
- default:
- megdnn_assert(0, "not supported nonline mode %d\n",
- static_cast<int>(param.nonlineMode));
- }
- dnnl::post_ops ops;
- ops.append_eltwise(1.f, post_tag, 0.f, 0.f);
- attr.set_post_ops(ops);
- }
-
- auto conv_prim_desc = dnnl::convolution_forward::primitive_desc(
- conv_desc, attr, eng_mkldnn);
-
- net.push_back(dnnl::convolution_forward(conv_prim_desc));
- net_args.push_back({{DNNL_ARG_SRC, user_src_mem},
- {DNNL_ARG_WEIGHTS, user_weights_mem},
- {DNNL_ARG_BIAS, user_bias_mem},
- {DNNL_ARG_DST, user_dst_mem}});
- }
-
- namespace {
- struct NCBKernParamEqual {
- bool operator()(const fallback::ConvBiasImpl::NCBKernParam& x,
- const fallback::ConvBiasImpl::NCBKernParam& y) const {
- bool flag = true;
- flag = flag && (x.src_ptr == y.src_ptr);
- flag = flag && (x.dst_ptr == y.dst_ptr);
- flag = flag && (x.filter_ptr == y.filter_ptr);
- flag = flag && (x.bias_ptr == y.bias_ptr);
- flag = flag && (x.isz == y.isz);
- flag = flag && (x.osz == y.osz);
- flag = flag && (x.src_type == y.src_type);
- flag = flag && (x.dst_type == y.dst_type);
- flag = flag && (x.filter_type == y.filter_type);
- flag = flag && (x.bias_type == y.bias_type);
- flag = flag && (x.filter_meta == y.filter_meta);
- flag = flag && (x.n == y.n);
- flag = flag && (x.bias_mode == y.bias_mode);
- flag = flag && (x.nonlineMode == y.nonlineMode);
- flag = flag && (x.bias_bs == y.bias_bs);
- return flag;
- };
- };
-
- struct NCBKernParamHash {
- std::size_t operator()(
- const fallback::ConvBiasImpl::NCBKernParam& param) const {
- std::size_t result = reinterpret_cast<std::size_t>(param.filter_ptr);
- result = result ^ (reinterpret_cast<std::size_t>(param.src_ptr) << 3);
- result = result ^ (reinterpret_cast<std::size_t>(param.dst_ptr) << 7);
- result = result ^ (static_cast<std::size_t>(param.n) << 11);
- return result;
- };
- };
-
- } // namespace
-
- void ConvBiasImpl::AlgoMkldnnConv::kern_mkldnn_fp32(const NCBKernParam& param,
- const NCBKernIndex&) {
- const NCBKernParam& key = param;
- static std::unordered_map<NCBKernParam, std::vector<dnnl::primitive>,
- NCBKernParamHash, NCBKernParamEqual>
- kern_net_map;
- static std::unordered_map<
- NCBKernParam, std::vector<std::unordered_map<int, dnnl::memory>>,
- NCBKernParamHash, NCBKernParamEqual>
- kern_net_arg_map;
-
- auto x86_handle = static_cast<HandleImpl*>(inplace_cpu_handle().get());
- megdnn_assert(x86_handle != nullptr, "x86 handle can not be null");
- auto eng_mkldnn = x86_handle->mkldnn_engine();
- auto stream_mkldnn = x86_handle->mkldnn_stream();
- auto&& fm = param.filter_meta;
- const uint32_t group = fm.group;
- const uint32_t in = param.n;
- const uint32_t ic = fm.icpg * group;
- const uint32_t oc = fm.ocpg * group;
- const uint32_t ih = param.isz[0];
- const uint32_t iw = param.isz[1];
- const uint32_t kh = fm.spatial[0];
- const uint32_t kw = fm.spatial[1];
- const uint32_t pad_h = fm.padding[0];
- const uint32_t pad_w = fm.padding[1];
- const uint32_t stride_h = fm.stride[0];
- const uint32_t stride_w = fm.stride[1];
- const uint32_t oh = param.osz[0];
- const uint32_t ow = param.osz[1];
-
- if (kern_net_map.find(key) == kern_net_map.end()) {
- std::vector<dnnl::primitive> net;
- std::vector<std::unordered_map<int, dnnl::memory>> net_args;
- mkldnn_fp32_conv_instance(param, fm.ocpg, fm.icpg, group, in, ic, oc,
- ih, iw, kh, kw, pad_h, pad_w, stride_h,
- stride_w, oh, ow, net, net_args, eng_mkldnn);
- kern_net_map[key] = net;
- kern_net_arg_map[key] = net_args;
- }
-
- const auto& net = kern_net_map[key];
- const auto& net_args = kern_net_arg_map[key];
- for (size_t i = 0; i < net.size(); ++i) {
- net.at(i).execute(stream_mkldnn, net_args.at(i));
- }
- stream_mkldnn.wait();
-
- if ((param.bias_mode == megdnn::BiasMode::NO_BIAS ||
- param.bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) &&
- (param.nonlineMode != NonlineMode::IDENTITY &&
- param.nonlineMode != NonlineMode::RELU &&
- param.nonlineMode != NonlineMode::SIGMOID)) {
- /**
- *NO_BIAS and BROADCAST_CHANNEL_BIAS has be done in mkldnn conv, but
- *it is necessary to do activition function not supported by mkldnn.
- *do not need any bias op
- **/
- PostProcess<float>::run(
- param.dst_ptr, const_cast<void*>(param.bias_ptr), param.dst_ptr,
- megdnn::BiasMode::NO_BIAS, param.nonlineMode, param.bias_type,
- param.dst_type, in, oc, oh, ow);
- } else if (param.bias_mode == megdnn::BiasMode::BIAS) {
- PostProcess<float>::run(
- param.dst_ptr, const_cast<void*>(param.bias_ptr), param.dst_ptr,
- param.bias_mode, param.nonlineMode, param.bias_type,
- param.dst_type, in, oc, oh, ow);
- }
- }
- #endif
-
- // vim: syntax=cpp.doxygen
|