You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

inference.cpp 194 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770
  1. /**
  2. * \file src/gopt/test/inference.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #include "megbrain/opr/dnn/local.h"
  13. #include "megbrain/test/helper.h"
  14. #include "megbrain/gopt/basic_arith.h"
  15. #include "megbrain/gopt/gtrans.h"
  16. #include "megbrain/gopt/inference.h"
  17. #include "megbrain/opr/basic_arith_wrapper.h"
  18. #include "megbrain/opr/blas.h"
  19. #include "megbrain/opr/dnn/batch_norm.h"
  20. #include "megbrain/opr/dnn/convolution.h"
  21. #include "megbrain/opr/dnn/pooling.h"
  22. #include "megbrain/opr/imgproc.h"
  23. #include "megbrain/opr/io.h"
  24. #include "megbrain/opr/nn_int.h"
  25. #include "megbrain/opr/tensor_gen.h"
  26. #include "megbrain/opr/tensor_manip.h"
  27. #include "megbrain/opr/utility.h"
  28. #include "./helper.h"
  29. #include "megbrain/comp_node_env.h"
  30. #include "megdnn/tensor_format.h"
  31. #include <random>
  32. #if MGB_CUDA
  33. #include <cudnn.h>
  34. #endif
  35. using namespace mgb;
  36. namespace {
  37. //! find first the operator of specific type; raise exception if not found
  38. template <typename T>
  39. T& find_opr(SymbolVar endpoint) {
  40. T* found = nullptr;
  41. auto cb = [&found](cg::OperatorNodeBase* opr) {
  42. if (!found && opr->same_type<T>()) {
  43. found = &opr->cast_final_safe<T>();
  44. }
  45. };
  46. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  47. mgb_assert(found, "not found opr from %s", endpoint.node()->name().c_str());
  48. return *found;
  49. }
  50. template <typename T>
  51. T& find_opr(SymbolVar endpoint, const std::string& node_name) {
  52. T* found = nullptr;
  53. auto cb = [&found, &node_name](cg::OperatorNodeBase* opr) {
  54. if (!found && opr->same_type<T>() && opr->name() == node_name) {
  55. found = &opr->cast_final_safe<T>();
  56. }
  57. };
  58. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  59. mgb_assert(found, "not found opr %s from %s", node_name.c_str(),
  60. endpoint.node()->name().c_str());
  61. return *found;
  62. }
  63. template <typename T>
  64. size_t find_opr_num(SymbolVar endpoint) {
  65. size_t opr_num = 0;
  66. auto cb = [&opr_num](cg::OperatorNodeBase* opr) {
  67. if (opr->same_type<T>()) {
  68. opr_num++;
  69. }
  70. };
  71. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  72. return opr_num;
  73. }
  74. class NaiveMegDNNHandleScope {
  75. int m_orig_level;
  76. public:
  77. NaiveMegDNNHandleScope()
  78. : m_orig_level{MegDNNHandle::exchange_default_dbg_level(2)} {
  79. CompNode::finalize();
  80. }
  81. ~NaiveMegDNNHandleScope() {
  82. auto set = MegDNNHandle::exchange_default_dbg_level(m_orig_level);
  83. mgb_assert(set == 2);
  84. CompNode::finalize();
  85. }
  86. };
  87. #if MGB_CUDA
  88. //! this function is only used in TestGoptInference.EnableCHWN4...
  89. void warp_perspective_mat_gen(HostTensorND& mat, size_t N, size_t INP_H,
  90. size_t INP_W) {
  91. static std::mt19937 rng(next_rand_seed());
  92. auto rand_real = [&](double lo, double hi) {
  93. return rng() / (std::mt19937::max() + 1.0) * (hi - lo) + lo;
  94. };
  95. auto rand_real2 = [&](double range) { return rand_real(-range, range); };
  96. auto ptr = mat.ptr<float>();
  97. for (size_t i = 0; i < N; ++i) {
  98. auto rot = rand_real(0, M_PI * 2), scale = rand_real(0.8, 1.2),
  99. sheer = rand_real(0.9, 1.1), dy = rand_real2(INP_H * 0.5),
  100. dx = rand_real2(INP_W * 0.5), ky = rand_real2(0.1 / INP_H),
  101. kx = rand_real2(0.1 / INP_W), kb = rand_real2(0.1) + 1;
  102. ptr[0] = ptr[4] = cos(rot) * scale;
  103. ptr[1] = -(ptr[3] = sin(rot) * scale);
  104. ptr[3] *= sheer;
  105. ptr[4] *= sheer;
  106. ptr[2] = dx;
  107. ptr[5] = dy;
  108. ptr[6] = kx;
  109. ptr[7] = ky;
  110. ptr[8] = kb;
  111. ptr += 9;
  112. }
  113. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  114. }
  115. #endif
  116. } // namespace
  117. TEST(TestGoptInference, ParamFuseConstEndPoint) {
  118. constexpr size_t SIZE = 23;
  119. HostTensorGenerator<> gen;
  120. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  121. auto graph = ComputingGraph::make();
  122. graph->options().graph_opt_level = 0;
  123. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  124. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  125. p = opr::Host2DeviceCopy::make(*graph, host_p), q = p + x, a = y + 3,
  126. z0 = a + q, z1 = a + 4;
  127. HostTensorND host_z0, host_z1;
  128. SymbolVar z0_1, z1_1;
  129. unpack_vector(gopt::GraphOptimizer{}
  130. .add_pass<gopt::ParamFusePass>()
  131. .apply({{z1, z0}})
  132. .endpoint_vars(),
  133. z1_1, z0_1);
  134. auto func = graph->compile({make_callback_copy(z0_1, host_z0),
  135. make_callback_copy(z1_1, host_z1)});
  136. func->to_json()->writeto_fpath(
  137. output_file("TestGoptInference.ParamFuseEndPoint.json"));
  138. func->execute();
  139. int nr_opr = 0;
  140. func->iter_opr_seq([&](cg::OperatorNodeBase*) {
  141. ++nr_opr;
  142. return true;
  143. });
  144. ASSERT_EQ(8, nr_opr);
  145. auto px = host_x->ptr<float>(), pz0 = host_z0.ptr<float>();
  146. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0],
  147. pz1 = host_z1.ptr<float>()[0];
  148. for (size_t i = 0; i < SIZE; ++i) {
  149. MGB_ASSERT_FLOAT_EQ(px[i] + yv + 3 + pv, pz0[i]);
  150. }
  151. MGB_ASSERT_FLOAT_EQ(yv + 7, pz1);
  152. }
  153. TEST(TestGoptInference, ParamFuse) {
  154. constexpr size_t SIZE = 23;
  155. HostTensorGenerator<> gen;
  156. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  157. auto graph = ComputingGraph::make();
  158. graph->options().graph_opt_level = 0;
  159. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  160. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  161. p = opr::Host2DeviceCopy::make(*graph, host_p),
  162. z = x + y, // endpoint
  163. q = x * y + p; // middle point
  164. SymbolVar z1, q1;
  165. unpack_vector(gopt::GraphOptimizer{}
  166. .add_pass<gopt::ParamFusePass>()
  167. .apply({{z, q}})
  168. .endpoint_vars(),
  169. z1, q1);
  170. ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
  171. ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
  172. ASSERT_EQ(q1.node()->owner_opr()->dyn_typeinfo(),
  173. q.node()->owner_opr()->dyn_typeinfo());
  174. HostTensorND host_z, host_q;
  175. auto func = graph->compile(
  176. {make_callback_copy(z1, host_z), make_callback_copy(q1, host_q)});
  177. func->execute();
  178. int nr_opr = 0;
  179. func->iter_opr_seq([&](cg::OperatorNodeBase*) {
  180. ++nr_opr;
  181. return true;
  182. });
  183. ASSERT_EQ(6, nr_opr);
  184. auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(),
  185. pq = host_q.ptr<float>();
  186. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
  187. for (size_t i = 0; i < SIZE; ++i) {
  188. MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
  189. MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
  190. }
  191. }
  192. TEST(TestGoptInference, ParamFuseMultiDeviceTensorHolder) {
  193. constexpr size_t SIZE = 23;
  194. HostTensorGenerator<> gen;
  195. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  196. auto graph = ComputingGraph::make();
  197. graph->options().graph_opt_level = 0;
  198. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  199. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  200. p = opr::Host2DeviceCopy::make(*graph, host_p),
  201. z = x + y, //! endpoint
  202. q = x * y + p; //! middle point
  203. SymbolVar z1, q1;
  204. unpack_vector(gopt::GraphOptimizer{}
  205. .add_pass<gopt::ParamMergePass>()
  206. .apply({{z}})
  207. .endpoint_vars(),
  208. z1);
  209. ASSERT_TRUE(z1.node()
  210. ->owner_opr()
  211. ->input(0)
  212. ->owner_opr()
  213. ->same_type<opr::MultipleDeviceTensorHolder>());
  214. unpack_vector(gopt::GraphOptimizer{}
  215. .add_pass<gopt::ParamMergePass>()
  216. .add_pass<gopt::ParamFusePass>()
  217. .apply({{z, q}})
  218. .endpoint_vars(),
  219. z1, q1);
  220. ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
  221. ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
  222. ASSERT_EQ(q1.node()->owner_opr()->dyn_typeinfo(),
  223. q.node()->owner_opr()->dyn_typeinfo());
  224. HostTensorND host_z, host_q;
  225. auto func = graph->compile(
  226. {make_callback_copy(z1, host_z), make_callback_copy(q1, host_q)});
  227. func->execute();
  228. int nr_opr = 0;
  229. func->iter_opr_seq([&](cg::OperatorNodeBase* op) {
  230. ++nr_opr;
  231. return true;
  232. });
  233. ASSERT_EQ(6, nr_opr);
  234. auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(),
  235. pq = host_q.ptr<float>();
  236. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
  237. for (size_t i = 0; i < SIZE; ++i) {
  238. MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
  239. MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
  240. }
  241. }
  242. TEST(TestGoptInference, ParamFuseMultiRead) {
  243. HostTensorGenerator<> gen;
  244. auto graph = ComputingGraph::make();
  245. graph->options().graph_opt_level = 0;
  246. auto mkvar = [&](const char* name, const TensorShape& shp) {
  247. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  248. };
  249. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  250. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  251. };
  252. auto x = mkvar("x", {23}), p0 = mkcvar("p0", {1}), p1 = mkcvar("p1", {1}),
  253. z0 = x * (p0 + p1) + x / (p0 + p1);
  254. SymbolVar z1;
  255. unpack_vector(gopt::GraphOptimizer{}
  256. .add_pass<gopt::ParamFusePass>()
  257. .apply({{z0}})
  258. .endpoint_vars(),
  259. z1);
  260. ASSERT_NE(z0.node(), z1.node());
  261. ASSERT_TRUE(z1.node()
  262. ->owner_opr()
  263. ->input(0)
  264. ->owner_opr()
  265. ->input(1)
  266. ->owner_opr()
  267. ->same_type<opr::SharedDeviceTensor>());
  268. ASSERT_TRUE(z1.node()
  269. ->owner_opr()
  270. ->input(1)
  271. ->owner_opr()
  272. ->input(1)
  273. ->owner_opr()
  274. ->same_type<opr::SharedDeviceTensor>());
  275. HostTensorND host_z0, host_z1;
  276. graph->compile({make_callback_copy(z0, host_z0),
  277. make_callback_copy(z1, host_z1)})
  278. ->execute();
  279. MGB_ASSERT_TENSOR_EQ(host_z0, host_z1);
  280. }
  281. TEST(TestGoptInference, ParamFuseStaticInfer) {
  282. HostTensorGenerator<> gen;
  283. auto graph = ComputingGraph::make();
  284. auto mkvar = [&](const char* name, const TensorShape& shp) {
  285. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  286. };
  287. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  288. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  289. };
  290. auto a = mkvar("x", {4}),
  291. b = a.reshape(opr::GetVarShape::make(mkcvar("tshp", {2, 2})));
  292. SymbolVar b1;
  293. unpack_vector(gopt::GraphOptimizer{}
  294. .add_pass<gopt::ParamFusePass>()
  295. .apply({{b}})
  296. .endpoint_vars(),
  297. b1);
  298. ASSERT_EQ(b1, a.reshape({2, 2}));
  299. }
  300. TEST(TestGoptInference, ParamRedistributeConvMul) {
  301. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  302. HostTensorGenerator<> gen;
  303. auto host_x = gen({N, IC, IH, IW}), host_k = gen({IC}),
  304. host_w = gen({OC, IC, KH, KW});
  305. auto graph = ComputingGraph::make();
  306. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  307. k = opr::Dimshuffle::make(
  308. opr::SharedDeviceTensor::make(*graph, *host_k),
  309. {-1, 0, -1, -1}),
  310. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  311. y0 = opr::Convolution::make(x * k, w);
  312. SymbolVar y1;
  313. unpack_vector(gopt::GraphOptimizer{}
  314. .add_pass<gopt::ParamRedistributePass>()
  315. .apply({{y0}})
  316. .endpoint_vars(),
  317. y1);
  318. ASSERT_NE(y0.node(), y1.node());
  319. HostTensorND host_y0, host_y1;
  320. auto func = graph->compile(
  321. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  322. func->execute();
  323. MGB_ASSERT_TENSOR_EQ(host_y0, host_y1);
  324. }
  325. TEST(TestGoptInference, ParamRedistributeConvMulUniqReader) {
  326. constexpr size_t N = 4, C = 3, IH = 5, IW = 4, KH = 1, KW = 1;
  327. HostTensorGenerator<> gen;
  328. auto host_x = gen({N, C, IH, IW}), host_k = gen({C}),
  329. host_w = gen({C, C, KH, KW});
  330. auto graph = ComputingGraph::make();
  331. graph->options().graph_opt_level = 0;
  332. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  333. k = opr::Dimshuffle::make(
  334. opr::SharedDeviceTensor::make(*graph, *host_k) + 2,
  335. {-1, 0, -1, -1}),
  336. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  337. // y0 should be replaced
  338. y0 = opr::powf(opr::Convolution::make(x * k, w).rename("y0") + 2,
  339. 2),
  340. y0k = (y0 * k).rename("y0k"),
  341. // y0k is accessed twice, so it should not be replaced
  342. y1 = opr::Convolution::make(y0k, w).rename("y1"), z0 = y1 / y0k;
  343. SymbolVar z1;
  344. unpack_vector(gopt::GraphOptimizer{}
  345. .add_pass<gopt::ParamRedistributePass>()
  346. .apply({{z0}})
  347. .endpoint_vars(),
  348. z1);
  349. ASSERT_NE(z0.node(), z1.node());
  350. auto y1_repl = z1.node()->owner_opr()->input(0)->owner_opr();
  351. ASSERT_TRUE(y1_repl->same_type<opr::Convolution>());
  352. ASSERT_EQ(y1_repl->input(0), z1.node()->owner_opr()->input(1));
  353. HostTensorND host_z0, host_z1;
  354. auto func = graph->compile(
  355. {make_callback_copy(z0, host_z0), make_callback_copy(z1, host_z1)});
  356. func->execute();
  357. MGB_ASSERT_TENSOR_NEAR(host_z0, host_z1, 5e-5);
  358. }
  359. TEST(TestGoptInference, ParamRedistributeMulConvMul) {
  360. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  361. HostTensorGenerator<> gen;
  362. auto host_x = gen({N, IC, IH, IW}), host_k1 = gen({IC}),
  363. host_k2 = gen({1, OC, 1, 1}), host_w = gen({OC, IC, KH, KW});
  364. auto graph = ComputingGraph::make();
  365. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  366. k1 = opr::Dimshuffle::make(
  367. opr::SharedDeviceTensor::make(*graph, *host_k1),
  368. {-1, 0, -1, -1}),
  369. k2 = opr::SharedDeviceTensor::make(*graph, *host_k2),
  370. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  371. y0 = opr::Convolution::make(x * k1, w) * k2;
  372. SymbolVar y1;
  373. unpack_vector(gopt::GraphOptimizer{}
  374. .add_pass<gopt::ParamRedistributePass>()
  375. .add_pass<gopt::ParamFusePass>()
  376. .apply({{y0}})
  377. .endpoint_vars(),
  378. y1);
  379. auto y1opr = y1.node()->owner_opr();
  380. ASSERT_TRUE(y1opr->same_type<opr::Convolution>());
  381. ASSERT_EQ(y1opr->input(0), x.node());
  382. HostTensorND host_y0, host_y1;
  383. auto func = graph->compile(
  384. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  385. func->execute();
  386. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 5e-6);
  387. }
  388. TEST(TestGoptInference, ParamRedistributeConvAdd) {
  389. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  390. HostTensorGenerator<> gen;
  391. auto host_x = gen({N, IC, IH, IW}), host_b = gen({IC}),
  392. host_w = gen({OC, IC, KH, KW});
  393. auto graph = ComputingGraph::make();
  394. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  395. b = opr::Dimshuffle::make(
  396. opr::SharedDeviceTensor::make(*graph, *host_b),
  397. {-1, 0, -1, -1}),
  398. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  399. y0 = opr::Convolution::make(x + b, w);
  400. SymbolVar y1;
  401. unpack_vector(gopt::GraphOptimizer{}
  402. .add_pass<gopt::ParamRedistributePass>()
  403. .add_pass<gopt::ParamFusePass>()
  404. .apply({{y0}})
  405. .endpoint_vars(),
  406. y1);
  407. ASSERT_NE(y0.node(), y1.node());
  408. HostTensorND host_y0, host_y1;
  409. auto func = graph->compile(
  410. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  411. func->execute();
  412. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  413. }
  414. TEST(TestGoptInference, ParamRedistributeDistThenReasso) {
  415. constexpr size_t N = 4, IC0 = 3, IC1 = 6, IH = 5, IW = 4, OC = 4, KH = 3,
  416. KW = 2;
  417. HostTensorGenerator<> gen;
  418. auto graph = ComputingGraph::make();
  419. auto mkvar = [&](const char* name, const TensorShape& shp) {
  420. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  421. };
  422. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  423. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  424. };
  425. auto x0 = mkvar("x0", {N, IC0, IH, IW}), x1 = mkvar("x1", {N, IC1, IH, IW}),
  426. k0 = opr::Dimshuffle::make(mkcvar("x1_", {IC0}), {-1, 0, -1, -1})
  427. .rename("x1"),
  428. w0 = mkcvar("w0", {OC, IC0, KH, KW}),
  429. k1 = mkcvar("k1", {1, IC1, 1, 1}),
  430. w1 = mkcvar("w1", {OC, IC1, KH, KW}), b0 = mkvar("b0", {1, OC, 1, 1}),
  431. b1 = mkcvar("b1", {1}), k2 = mkcvar("k2", {1}),
  432. y0 = (opr::Convolution::make(x0 * k0, w0) +
  433. opr::Convolution::make(x1 + k1, w1) + b0 + b1) *
  434. k2;
  435. SymbolVar y1;
  436. unpack_vector(gopt::GraphOptimizer{}
  437. .add_pass<gopt::ParamRedistributePass>()
  438. .add_pass<gopt::ReorderArithChainPass>(
  439. gopt::ConstVarType::IMMUTABLE_AND_PARAM)
  440. .add_pass<gopt::ParamFusePass>()
  441. .apply({{y0}})
  442. .endpoint_vars(),
  443. y1);
  444. ASSERT_NE(y0.node(), y1.node());
  445. HostTensorND host_y0, host_y1;
  446. auto func = graph->compile(
  447. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  448. func->execute();
  449. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  450. auto chain =
  451. gopt::extract_opr_leaves(y1.node(), [](cg::OperatorNodeBase* opr) {
  452. return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
  453. });
  454. size_t nr_conv = 0;
  455. for (auto i : chain) {
  456. auto opr = i->owner_opr();
  457. if (opr->same_type<opr::Convolution>()) {
  458. ++nr_conv;
  459. ASSERT_TRUE(opr->input(0)
  460. ->owner_opr()
  461. ->same_type<opr::Host2DeviceCopy>());
  462. ASSERT_TRUE(opr->input(1)
  463. ->owner_opr()
  464. ->same_type<opr::SharedDeviceTensor>());
  465. }
  466. }
  467. ASSERT_EQ(2u, nr_conv);
  468. ASSERT_EQ(4u, chain.size());
  469. }
  470. TEST(TestGoptInference, ParamRedistributeMultiChange) {
  471. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  472. HostTensorGenerator<> gen;
  473. auto graph = ComputingGraph::make();
  474. graph->options().graph_opt_level = 0;
  475. auto mkvar = [&](const char* name, const TensorShape& shp) {
  476. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  477. };
  478. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  479. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  480. };
  481. auto x = mkvar("x", {N, IC, IH, IW}), k0 = mkcvar("k0", {1, IC, 1, 1}),
  482. b0 = mkcvar("b0", {1, IC, 1, 1}), k1 = mkcvar("k0", {1}),
  483. b1 = mkcvar("b0", {1}), w = mkcvar("w", {OC, IC, KH, KW}),
  484. y0 = (opr::Convolution::make(x * k0 + b0, w) + b1) * k1;
  485. SymbolVar y1;
  486. unpack_vector(gopt::GraphOptimizer{}
  487. .add_pass<gopt::ParamRedistributePass>()
  488. .add_pass<gopt::ParamFusePass>()
  489. .apply({{y0}})
  490. .endpoint_vars(),
  491. y1);
  492. ASSERT_NE(y0.node(), y1.node());
  493. HostTensorND host_y0, host_y1;
  494. auto func = graph->compile(
  495. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  496. func->execute();
  497. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  498. auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
  499. ASSERT_TRUE(y1elem);
  500. auto yconv = y1elem->input(0)->owner_opr();
  501. if (!yconv->same_type<opr::Convolution>())
  502. yconv = y1elem->input(1)->owner_opr();
  503. ASSERT_TRUE(yconv->same_type<opr::Convolution>());
  504. ASSERT_EQ(x.node(), yconv->input(0));
  505. }
  506. TEST(TestGoptInference, ParamRedistributeMultiReader) {
  507. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  508. HostTensorGenerator<> gen;
  509. auto graph = ComputingGraph::make();
  510. graph->options().graph_opt_level = 0;
  511. auto mkvar = [&](const char* name, const TensorShape& shp) {
  512. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  513. };
  514. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  515. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  516. };
  517. auto x = mkvar("x", {N, IC, IH, IW}), k = mkcvar("k", {1, OC, 1, 1}),
  518. w = mkcvar("w", {OC, IC, KH, KW});
  519. auto conv = opr::Convolution::make(x, w);
  520. auto t = conv * k;
  521. auto y0 = t * 4.2f + t * 2.4f;
  522. SymbolVar y1;
  523. unpack_vector(gopt::GraphOptimizer{}
  524. .add_pass<gopt::ParamRedistributePass>()
  525. .add_pass<gopt::ParamFusePass>()
  526. .apply({{y0}})
  527. .endpoint_vars(),
  528. y1);
  529. ASSERT_NE(y0.node(), y1.node());
  530. HostTensorND host_y0, host_y1;
  531. auto func = graph->compile(
  532. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  533. func->execute();
  534. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  535. auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
  536. ASSERT_TRUE(y1elem);
  537. auto ymul0 = gopt::as_elem_opr(y1elem->input(0), opr::Elemwise::Mode::MUL),
  538. ymul1 = gopt::as_elem_opr(y1elem->input(1), opr::Elemwise::Mode::MUL);
  539. ASSERT_TRUE(ymul0);
  540. ASSERT_TRUE(ymul1);
  541. auto yconv = ymul0->input(0)->owner_opr();
  542. if (!yconv->same_type<opr::Convolution>()) {
  543. yconv = ymul0->input(1)->owner_opr();
  544. }
  545. ASSERT_TRUE(yconv->same_type<opr::Convolution>());
  546. if (ymul1->input(0) != yconv->output(0)) {
  547. ASSERT_EQ(yconv->output(0), ymul1->input(1));
  548. }
  549. ASSERT_EQ(x.node(), yconv->input(0));
  550. }
  551. TEST(TestGoptInference, ParamFuseBiasMerge) {
  552. HostTensorGenerator<> gen;
  553. auto graph = ComputingGraph::make();
  554. graph->options().graph_opt_level = 0;
  555. auto mkvar = [&](const char* name, const TensorShape& shp) {
  556. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  557. };
  558. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  559. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  560. };
  561. auto x = mkvar("x", {6, 3, 8, 8}), w1 = mkcvar("w1", {4, 3, 3, 3}),
  562. w2 = mkcvar("w2", {4, 3, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
  563. b2 = mkcvar("b2", {1, 4, 1, 1}),
  564. y1 = opr::Convolution::make(x, w1) + b1,
  565. y2 = opr::Convolution::make(x, w2) + b2, y = y1 + y2;
  566. SymbolVar y_opt;
  567. unpack_vector(gopt::optimize_for_inference({y}), y_opt);
  568. HostTensorND host_y, host_y_opt;
  569. auto func = graph->compile({make_callback_copy(y, host_y),
  570. make_callback_copy(y_opt, host_y_opt)});
  571. func->execute();
  572. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  573. graph->compile({{y_opt, {}}})
  574. ->to_json()
  575. ->writeto_fpath(
  576. output_file("TestGoptInference.ParamFuseConvMerge.json"));
  577. auto chain = gopt::extract_opr_leaves(
  578. y_opt.node(), [](cg::OperatorNodeBase* opr) {
  579. return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
  580. });
  581. ASSERT_EQ(3u, chain.size());
  582. }
  583. TEST(TestGoptInference, Float16IOFloat32Compute) {
  584. constexpr size_t INP_H = 10, INP_W = 10;
  585. HostTensorGenerator<> gen;
  586. auto graph = ComputingGraph::make();
  587. auto mkvar = [&](const char* name, const TensorShape& shp) {
  588. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  589. };
  590. graph->options().graph_opt_level = 0;
  591. auto a = mkvar("a", {1, 4, INP_H, INP_W}),
  592. s0 = mkvar("s0", {20, 3, INP_H, INP_W}),
  593. s1 = mkvar("s1", {4, 3, 1, 1});
  594. auto b = opr::Convolution::make(s0, s1, {}, {});
  595. auto y = a + b;
  596. y = opr::Concat::make({y, -y}, 0);
  597. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  598. SymbolVar y_opt;
  599. auto options = gopt::OptimizeForInferenceOptions{};
  600. options.enable_f16_io_f32_comp();
  601. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  602. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  603. HostTensorND host_y, host_y_opt;
  604. auto func = graph->compile({make_callback_copy(y, host_y),
  605. make_callback_copy(y_opt, host_y_opt)});
  606. func->execute();
  607. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  608. }
  609. TEST(TestGoptInference, Float16IOFloat32ComputeDeConv) {
  610. constexpr size_t INP_H = 10, INP_W = 10;
  611. HostTensorGenerator<> gen;
  612. auto graph = ComputingGraph::make();
  613. auto mkvar = [&](const char* name, const TensorShape& shp) {
  614. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  615. };
  616. graph->options().graph_opt_level = 0;
  617. auto s0 = mkvar("s0", {5, 5, 3, 3}), s1 = mkvar("s1", {1, 5, INP_H, INP_W});
  618. auto y = opr::ConvolutionBackwardData::make(s0, s1, {}, {});
  619. SymbolVar y_opt;
  620. auto options = gopt::OptimizeForInferenceOptions{};
  621. options.enable_f16_io_f32_comp();
  622. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  623. ASSERT_EQ(
  624. find_opr<opr::ConvolutionBackwardData>(y_opt).param().compute_mode,
  625. opr::ConvBias::Param::ConvBias::ComputeMode::FLOAT32);
  626. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  627. HostTensorND host_y, host_y_opt;
  628. auto func = graph->compile({make_callback_copy(y, host_y),
  629. make_callback_copy(y_opt, host_y_opt)});
  630. func->execute();
  631. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-2);
  632. }
  633. TEST(TestGoptInference, Float16IOFloat32ComputeWarpPerspective) {
  634. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  635. HostTensorGenerator<> gen;
  636. auto graph = ComputingGraph::make();
  637. auto mkvar = [&](const char* name, const TensorShape& shp) {
  638. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  639. };
  640. graph->options().graph_opt_level = 0;
  641. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  642. float value1 = M_PI, value2 = 0.6;
  643. auto gen_mat = [&](HostTensorND& mat) {
  644. auto ptr = mat.ptr<float>();
  645. for (size_t i = 0; i < N; ++i) {
  646. auto rot = value1, scale = value2, sheer = value1, dy = value2,
  647. dx = value2, ky = value2, kx = value2, kb = value2;
  648. ptr[0] = ptr[4] = cos(rot) * scale;
  649. ptr[1] = -(ptr[3] = sin(rot) * scale);
  650. ptr[3] *= sheer;
  651. ptr[4] *= sheer;
  652. ptr[2] = dx;
  653. ptr[5] = dy;
  654. ptr[6] = kx;
  655. ptr[7] = ky;
  656. ptr[8] = kb;
  657. ptr += 9;
  658. }
  659. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  660. };
  661. auto mat_host = std::make_shared<HostTensorND>(
  662. a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
  663. gen_mat(*mat_host);
  664. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  665. TensorShape out_shp{20, 20};
  666. auto y = opr::WarpPerspective::make(a, mat, out_shp);
  667. SymbolVar y_opt;
  668. auto options = gopt::OptimizeForInferenceOptions{};
  669. options.enable_f16_io_f32_comp();
  670. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  671. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  672. HostTensorND host_y, host_y_opt;
  673. auto func = graph->compile({make_callback_copy(y, host_y),
  674. make_callback_copy(y_opt, host_y_opt)});
  675. func->execute();
  676. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  677. }
  678. TEST(TestGoptInference, Float16IOFloat32ComputeRemap) {
  679. auto cn = CompNode::load("cpu1");
  680. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  681. HostTensorGenerator<> gen;
  682. auto graph = ComputingGraph::make();
  683. auto mkvar = [&](const char* name, const TensorShape& shp) {
  684. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  685. };
  686. graph->options().graph_opt_level = 0;
  687. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  688. auto gen_map = [&](HostTensorND& mat) {
  689. auto ptr = mat.ptr<float>();
  690. for (size_t n = 0; n < N; ++n) {
  691. for (int h = 0; h < 5; ++h) {
  692. for (int w = 0; w < 5; ++w) {
  693. *ptr++ = (h * 5 * 2) + 5 * 2 + 0;
  694. *ptr++ = (h * 5 * 2) + 5 * 2 + 1;
  695. }
  696. }
  697. }
  698. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  699. };
  700. auto map_host = std::make_shared<HostTensorND>(
  701. a.node()->comp_node(), TensorShape{N, 5, 5, 2}, dtype::Float32());
  702. gen_map(*map_host);
  703. auto map = opr::Host2DeviceCopy::make(*graph, map_host).rename("map");
  704. auto y = opr::Remap::make(a, map);
  705. SymbolVar y_opt;
  706. auto options = gopt::OptimizeForInferenceOptions{};
  707. options.enable_f16_io_f32_comp();
  708. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  709. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  710. HostTensorND host_y, host_y_opt;
  711. auto func = graph->compile({make_callback_copy(y, host_y),
  712. make_callback_copy(y_opt, host_y_opt)});
  713. func->execute();
  714. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  715. }
  716. TEST(TestGoptInference, Uint8IOFloat16ComputeWarpPerspective) {
  717. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  718. HostTensorGenerator<dtype::Uint8> gen_uint8;
  719. auto graph = ComputingGraph::make();
  720. auto mkvar = [&](const char* name, const TensorShape& shp) {
  721. return opr::Host2DeviceCopy::make(*graph, gen_uint8(shp)).rename(name);
  722. };
  723. graph->options().graph_opt_level = 0;
  724. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  725. float value1 = M_PI, value2 = 0.6;
  726. auto gen_mat = [&](HostTensorND& mat) {
  727. auto ptr = mat.ptr<float>();
  728. for (size_t i = 0; i < N; ++i) {
  729. auto rot = value1, scale = value2, sheer = value1, dy = value2,
  730. dx = value2, ky = value2, kx = value2, kb = value2;
  731. ptr[0] = ptr[4] = cos(rot) * scale;
  732. ptr[1] = -(ptr[3] = sin(rot) * scale);
  733. ptr[3] *= sheer;
  734. ptr[4] *= sheer;
  735. ptr[2] = dx;
  736. ptr[5] = dy;
  737. ptr[6] = kx;
  738. ptr[7] = ky;
  739. ptr[8] = kb;
  740. ptr += 9;
  741. }
  742. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  743. };
  744. auto mat_host = std::make_shared<HostTensorND>(
  745. a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
  746. gen_mat(*mat_host);
  747. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  748. TensorShape out_shp{20, 20};
  749. auto y = opr::WarpPerspective::make(a, mat, out_shp);
  750. SymbolVar y_opt;
  751. auto options = gopt::OptimizeForInferenceOptions{};
  752. options.enable_f16_io_comp();
  753. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  754. ASSERT_EQ(y_opt.dtype(), dtype::Uint8());
  755. HostTensorND host_y, host_y_opt;
  756. auto func = graph->compile({make_callback_copy(y, host_y),
  757. make_callback_copy(y_opt, host_y_opt)});
  758. func->execute();
  759. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  760. }
  761. TEST(TestGoptInference, Float32TOFloat16) {
  762. CompNode cn = CompNode::load("cpu0");
  763. HostTensorGenerator<> gen(0, 1, 0);
  764. auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  765. host_x2 = gen({4, 3, 1, 1}, cn);
  766. auto graph = ComputingGraph::make();
  767. auto make_f32_to_f16_graph = [&]() {
  768. graph->options().graph_opt_level = 0;
  769. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  770. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  771. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  772. auto b = opr::Convolution::make(d1, d2, {}, {});
  773. auto y = d0 + b;
  774. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  775. SymbolVar y_opt;
  776. auto options = gopt::OptimizeForInferenceOptions{};
  777. options.enable_f16_io_comp();
  778. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  779. return y_opt;
  780. };
  781. auto make_f16_graph = [&]() {
  782. auto d0 = opr::TypeCvt::make(
  783. opr::Host2DeviceCopy::make(*graph, host_x0),
  784. dtype::Float16{}),
  785. d1 = opr::TypeCvt::make(
  786. opr::Host2DeviceCopy::make(*graph, host_x1),
  787. dtype::Float16{}),
  788. d2 = opr::TypeCvt::make(
  789. opr::SharedDeviceTensor::make(*graph, *host_x2),
  790. dtype::Float16{});
  791. auto b = opr::Convolution::make(d1, d2, {}, {});
  792. SymbolVar y = d0 + b;
  793. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  794. y = opr::TypeCvt::make(y, dtype::Float32{});
  795. return y;
  796. };
  797. auto y_opt = make_f32_to_f16_graph();
  798. auto y = make_f16_graph();
  799. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  800. ASSERT_EQ(y.dtype(), dtype::Float32{});
  801. HostTensorND host_y_opt, host_y;
  802. auto func = graph->compile({make_callback_copy(y, host_y),
  803. make_callback_copy(y_opt, host_y_opt)});
  804. func->execute();
  805. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  806. }
  807. TEST(TestGoptInference, Float32TOFloat16C32) {
  808. CompNode cn = CompNode::load("cpu0");
  809. HostTensorGenerator<> gen(0, 1, 0);
  810. auto host_x0 = gen({1, 4, 1, 1}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  811. host_x2 = gen({4, 3, 1, 1}, cn);
  812. auto graph = ComputingGraph::make();
  813. auto make_f32_to_f16_graph = [&]() {
  814. graph->options().graph_opt_level = 0;
  815. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  816. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  817. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  818. auto y = opr::ConvBias::make(d1, d2, d0);
  819. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  820. SymbolVar y_opt;
  821. auto options = gopt::OptimizeForInferenceOptions{};
  822. options.enable_f16_io_f32_comp();
  823. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  824. return y_opt;
  825. };
  826. auto make_f16_graph = [&]() {
  827. auto d0 = opr::TypeCvt::make(
  828. opr::TypeCvt::make(
  829. opr::Host2DeviceCopy::make(*graph, host_x0),
  830. dtype::Float16{}),
  831. dtype::Float32{}),
  832. d1 = opr::TypeCvt::make(
  833. opr::TypeCvt::make(
  834. opr::Host2DeviceCopy::make(*graph, host_x1),
  835. dtype::Float16{}),
  836. dtype::Float32{}),
  837. d2 = opr::TypeCvt::make(
  838. opr::TypeCvt::make(
  839. opr::SharedDeviceTensor::make(*graph, *host_x2),
  840. dtype::Float16{}),
  841. dtype::Float32{});
  842. auto y = opr::ConvBias::make(d1, d2, d0);
  843. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  844. y = opr::TypeCvt::make(opr::TypeCvt::make(y, dtype::Float16{}),
  845. dtype::Float32{});
  846. return y;
  847. };
  848. auto y_opt = make_f32_to_f16_graph();
  849. auto y = make_f16_graph();
  850. ASSERT_EQ(find_opr<opr::ConvBias>(y_opt).param().compute_mode,
  851. opr::ConvBias::Param::ConvBias::ComputeMode::FLOAT32);
  852. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  853. ASSERT_EQ(y.dtype(), dtype::Float32{});
  854. HostTensorND host_y_opt, host_y;
  855. auto func = graph->compile({make_callback_copy(y, host_y),
  856. make_callback_copy(y_opt, host_y_opt)});
  857. func->execute();
  858. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  859. }
  860. TEST(TestGoptInference, Float32TOFloat16EndpointElemwise) {
  861. CompNode cn = CompNode::load("cpu0");
  862. HostTensorGenerator<> gen(0, 1, 0);
  863. auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  864. host_x2 = gen({4, 3, 1, 1}, cn);
  865. auto graph = ComputingGraph::make();
  866. auto make_f32_to_f16_graph = [&]() {
  867. graph->options().graph_opt_level = 0;
  868. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  869. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  870. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  871. auto b = opr::Convolution::make(d1, d2, {}, {});
  872. auto y = d0 + b;
  873. SymbolVar y_opt;
  874. auto options = gopt::OptimizeForInferenceOptions{};
  875. options.enable_f16_io_comp();
  876. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  877. return y_opt;
  878. };
  879. auto make_f16_graph = [&]() {
  880. auto d0 = opr::TypeCvt::make(
  881. opr::Host2DeviceCopy::make(*graph, host_x0),
  882. dtype::Float16{}),
  883. d1 = opr::TypeCvt::make(
  884. opr::Host2DeviceCopy::make(*graph, host_x1),
  885. dtype::Float16{}),
  886. d2 = opr::TypeCvt::make(
  887. opr::SharedDeviceTensor::make(*graph, *host_x2),
  888. dtype::Float16{});
  889. auto b = opr::Convolution::make(d1, d2, {}, {});
  890. SymbolVar y = d0 + b;
  891. y = opr::TypeCvt::make(y, dtype::Float32{});
  892. return y;
  893. };
  894. auto y_opt = make_f32_to_f16_graph();
  895. auto y = make_f16_graph();
  896. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  897. ASSERT_EQ(y.dtype(), dtype::Float32{});
  898. HostTensorND host_y_opt, host_y;
  899. auto func = graph->compile({make_callback_copy(y, host_y),
  900. make_callback_copy(y_opt, host_y_opt)});
  901. func->execute();
  902. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  903. }
  904. TEST(TestGoptInference, Float32TOFloat16Linspace) {
  905. CompNode cn = CompNode::load("cpu0");
  906. HostTensorGenerator<> gen(0, 1, 0);
  907. auto host_x = gen({3, 1}, cn);
  908. auto graph = ComputingGraph::make();
  909. auto make_f32_to_f16_graph = [&]() {
  910. graph->options().graph_opt_level = 0;
  911. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  912. auto xshp = opr::GetVarShape::make(x);
  913. auto cv = [&x](int v) { return x.make_scalar(v); };
  914. auto sub = [&xshp, &cv](int idx) {
  915. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  916. };
  917. auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
  918. auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
  919. auto y = opr::Reshape::make(lin, shp);
  920. auto mm = opr::MatrixMul::make(x, y);
  921. SymbolVar mm_opt;
  922. auto options = gopt::OptimizeForInferenceOptions{};
  923. options.enable_f16_io_comp();
  924. unpack_vector(gopt::optimize_for_inference({mm}, options), mm_opt);
  925. return mm_opt;
  926. };
  927. auto make_f16_graph = [&]() {
  928. auto x = opr::TypeCvt::make(opr::Host2DeviceCopy::make(*graph, host_x),
  929. dtype::Float16());
  930. auto xshp = opr::GetVarShape::make(x);
  931. auto cv = [&x](int v) { return x.make_scalar(v); };
  932. auto sub = [&xshp, &cv](int idx) {
  933. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  934. };
  935. auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
  936. lin = opr::TypeCvt::make(lin, dtype::Float16());
  937. auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
  938. auto y = opr::Reshape::make(lin, shp);
  939. auto mm = opr::MatrixMul::make(x, y);
  940. mm = opr::TypeCvt::make(mm, dtype::Float32{});
  941. return mm;
  942. };
  943. auto y_opt = make_f32_to_f16_graph();
  944. auto y = make_f16_graph();
  945. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  946. ASSERT_EQ(y.dtype(), dtype::Float32{});
  947. HostTensorND host_y_opt, host_y;
  948. auto func = graph->compile({make_callback_copy(y, host_y),
  949. make_callback_copy(y_opt, host_y_opt)});
  950. func->execute();
  951. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  952. }
  953. TEST(TestGoptInference, Float32TOFloat16Endpoints) {
  954. HostTensorGenerator<> gen;
  955. auto graph = ComputingGraph::make();
  956. auto mkvar = [&](const char* name, const TensorShape& shp) {
  957. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  958. };
  959. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  960. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  961. };
  962. graph->options().graph_opt_level = 0;
  963. opr::Convolution::Param param;
  964. param.pad_h = param.pad_w = 0;
  965. auto x = mkvar("x", {8, 8, 8, 8}), y = mkvar("y", {8, 8, 8, 8}),
  966. w = mkcvar("w", {4, 8, 3, 3}),
  967. z = opr::Convolution::make(x + y, w, param);
  968. auto options = gopt::OptimizeForInferenceOptions{};
  969. options.enable_f16_io_f32_comp();
  970. SymbolVarArray out = gopt::optimize_for_inference({x + y, z}, options);
  971. ASSERT_EQ(out[0].dtype(), dtype::Float32());
  972. ASSERT_EQ(out[1].dtype(), dtype::Float32());
  973. ASSERT_EQ(out[0].node()->owner_opr()->input(0)->dtype(), dtype::Float16());
  974. ASSERT_EQ(out[1].node()->owner_opr()->input(0)->dtype(), dtype::Float16());
  975. }
  976. TEST(TestGoptInference, ConvertFormatNHWCD4) {
  977. // hwcd4 is only supported in naive handle
  978. NaiveMegDNNHandleScope naive_megdnn_handle;
  979. HostTensorGenerator<> gen;
  980. auto cn = CompNode::load("cpu0");
  981. auto graph = ComputingGraph::make();
  982. graph->options().graph_opt_level = 0;
  983. auto mkvar = [&](const char* name, const TensorShape& shp) {
  984. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  985. };
  986. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  987. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  988. .rename(name);
  989. };
  990. auto host_x = gen({8, 8, 8, 8}, cn);
  991. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  992. opr::Convolution::Param param;
  993. param.pad_h = param.pad_w = 0;
  994. auto w1 = mkcvar("w1", {4, 8, 3, 3}),
  995. conv = opr::Convolution::make(x, w1, param);
  996. auto shape_of = opr::GetVarShape::make(conv);
  997. auto subtensor = opr::Subtensor::make(
  998. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  999. 0, x.make_scalar(2), None, x.make_scalar(1))});
  1000. opr::Resize::Param param_resize;
  1001. param_resize.format = opr::Resize::Param::Format::NCHW;
  1002. auto resize = opr::ResizeForward::make(conv, subtensor * 2, param_resize);
  1003. auto mat = mkcvar("mat", {8, 3, 3}),
  1004. warp = opr::WarpPerspectiveForward::make(
  1005. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  1006. auto b = mkvar("b", {1, 4, 1, 1}),
  1007. elem = opr::Elemwise::make({warp + b},
  1008. opr::Elemwise::Param::Mode::RELU);
  1009. param.pad_h = param.pad_w = 1;
  1010. auto w2 = mkcvar("w2", {4, 4, 3, 3}),
  1011. y = opr::Convolution::make(elem, w2, param),
  1012. z = opr::AxisAddRemove::make(
  1013. y, {opr::AxisAddRemove::AxisDesc::make_add(0)});
  1014. SymbolVar y_opt, z_opt;
  1015. auto options = gopt::OptimizeForInferenceOptions{};
  1016. options.enable_nhwcd4();
  1017. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1018. unpack_vector(gopt::optimize_for_inference({z}, options), z_opt);
  1019. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  1020. find_opr<opr::Convolution>(y_opt).param().format);
  1021. ASSERT_EQ(TensorFormat::Type::DEFAULT,
  1022. find_opr<opr::AxisAddRemove>(z_opt).input(0)->format().type());
  1023. ASSERT_EQ(4, find_opr<opr::AxisAddRemove>(z_opt).input(0)->shape().ndim);
  1024. graph->compile({{y_opt, {}}})
  1025. ->to_json()
  1026. ->writeto_fpath(
  1027. output_file("TestGoptInference.ConvertFormatNHWCD4.json"));
  1028. HostTensorND host_y_opt, host_y;
  1029. auto func = graph->compile({make_callback_copy(y, host_y),
  1030. make_callback_copy(y_opt, host_y_opt)});
  1031. func->execute();
  1032. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1033. *host_x = *gen({8, 8, 16, 16}, cn);
  1034. func->execute();
  1035. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1036. }
  1037. #if MGB_OPENCL
  1038. #include "megcore_opencl.h"
  1039. #define REQUIRE_OPENCL() \
  1040. do { \
  1041. if (!CompNode::get_device_count(CompNode::DeviceType::OPENCL)) { \
  1042. return; \
  1043. } \
  1044. } while (0)
  1045. TEST(TestGoptInference, ConvertFormatNHWCD4OpenCL) {
  1046. REQUIRE_OPENCL();
  1047. HostTensorGenerator<> gen;
  1048. auto cn = CompNode::load("openclx");
  1049. auto graph = ComputingGraph::make();
  1050. graph->options().graph_opt_level = 0;
  1051. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1052. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1053. };
  1054. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1055. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1056. .rename(name);
  1057. };
  1058. auto host_x = gen({8, 8, 8, 8}, cn);
  1059. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1060. opr::Convolution::Param param;
  1061. param.pad_h = param.pad_w = 0;
  1062. auto w1 = mkcvar("w1", {4, 8, 3, 3}),
  1063. conv = opr::Convolution::make(x, w1, param);
  1064. auto shape_of = opr::GetVarShape::make(conv);
  1065. auto subtensor = opr::Subtensor::make(
  1066. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  1067. 0, x.make_scalar(2), None, x.make_scalar(1))});
  1068. opr::Resize::Param param_resize;
  1069. param_resize.format = opr::Resize::Param::Format::NCHW;
  1070. auto resize = opr::ResizeForward::make(conv, subtensor * 2, param_resize);
  1071. auto mat = mkcvar("mat", {8, 3, 3}),
  1072. warp = opr::WarpPerspectiveForward::make(
  1073. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  1074. auto b = mkvar("b", {1, 4, 1, 1}),
  1075. elem = opr::Elemwise::make({warp + b},
  1076. opr::Elemwise::Param::Mode::RELU);
  1077. param.pad_h = param.pad_w = 1;
  1078. auto w2 = mkcvar("w2", {4, 4, 3, 3}),
  1079. y = opr::Convolution::make(elem, w2, param),
  1080. z = opr::AxisAddRemove::make(
  1081. y, {opr::AxisAddRemove::AxisDesc::make_add(0)});
  1082. SymbolVar y_opt, z_opt;
  1083. auto options = gopt::OptimizeForInferenceOptions{};
  1084. options.enable_nhwcd4();
  1085. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1086. unpack_vector(gopt::optimize_for_inference({z}, options), z_opt);
  1087. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  1088. find_opr<opr::Convolution>(y_opt).param().format);
  1089. ASSERT_EQ(TensorFormat::Type::DEFAULT,
  1090. find_opr<opr::AxisAddRemove>(z_opt).input(0)->format().type());
  1091. ASSERT_EQ(4, find_opr<opr::AxisAddRemove>(z_opt).input(0)->shape().ndim);
  1092. HostTensorND host_y_opt, host_y;
  1093. auto func = graph->compile({make_callback_copy(y, host_y),
  1094. make_callback_copy(y_opt, host_y_opt)});
  1095. func->execute();
  1096. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1097. *host_x = *gen({8, 8, 16, 16}, cn);
  1098. func->execute();
  1099. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1100. }
  1101. #undef REQUIRE_OPENCL
  1102. #endif
  1103. TEST(TestGoptInference, ConvertFormatNHWCD4Elemwise) {
  1104. // hwcd4 is only supported in naive handle
  1105. NaiveMegDNNHandleScope naive_megdnn_handle;
  1106. HostTensorGenerator<> gen;
  1107. auto cn = CompNode::load("cpu0");
  1108. auto graph = ComputingGraph::make();
  1109. graph->options().graph_opt_level = 0;
  1110. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1111. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1112. };
  1113. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1114. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1115. .rename(name);
  1116. };
  1117. auto host_x = gen({8, 8, 8, 8}, cn);
  1118. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1119. opr::Convolution::Param param;
  1120. param.pad_h = param.pad_w = 0;
  1121. auto w1 = mkcvar("w1", {8, 8, 3, 3}),
  1122. conv = opr::Convolution::make(x, w1, param);
  1123. auto b = mkvar("b", {1, 1, 1, 1}),
  1124. elem = opr::Elemwise::make({conv + b},
  1125. opr::Elemwise::Param::Mode::RELU);
  1126. param.pad_h = param.pad_w = 1;
  1127. auto w2 = mkcvar("w2", {8, 8, 3, 3}),
  1128. conv2 = opr::Convolution::make(elem, w2, param);
  1129. auto b_scaler = mkvar("b", {1}), elem2 = conv2 + b_scaler;
  1130. param.pad_h = param.pad_w = 1;
  1131. auto w3 = mkcvar("w2", {8, 8, 3, 3}),
  1132. y = opr::Convolution::make(elem2, w3, param);
  1133. SymbolVar y_opt;
  1134. auto options = gopt::OptimizeForInferenceOptions{};
  1135. options.enable_nhwcd4();
  1136. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1137. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  1138. find_opr<opr::Convolution>(y_opt).param().format);
  1139. graph->compile({{y_opt, {}}})
  1140. ->to_json()
  1141. ->writeto_fpath(output_file(
  1142. "TestGoptInference.ConvertFormatNHWCD4Elemwise.json"));
  1143. HostTensorND host_y_opt, host_y;
  1144. auto func = graph->compile({make_callback_copy(y, host_y),
  1145. make_callback_copy(y_opt, host_y_opt)});
  1146. func->execute();
  1147. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1148. *host_x = *gen({8, 8, 16, 16}, cn);
  1149. func->execute();
  1150. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1151. }
  1152. TEST(TestGoptInference, ConvertFormatNHWCD4TypeCvt) {
  1153. NaiveMegDNNHandleScope naive_megdnn_handle;
  1154. HostTensorGenerator<> gen;
  1155. auto cn = CompNode::load("cpu0");
  1156. auto graph = ComputingGraph::make();
  1157. graph->options().graph_opt_level = 0;
  1158. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1159. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1160. .rename(name);
  1161. };
  1162. auto host_x = gen({8, 8, 8, 8}, cn);
  1163. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1164. opr::Convolution::Param param;
  1165. param.pad_h = param.pad_w = 0;
  1166. auto w1 = mkcvar("w1", {8, 8, 3, 3}),
  1167. conv1 = opr::Convolution::make(x, w1, param),
  1168. tcvt1 = opr::TypeCvt::make(conv1, dtype::Float16());
  1169. auto w2 = mkcvar("w2", {8, 8, 3, 3}),
  1170. conv2 = opr::Convolution::make(x, w2, param),
  1171. tcvt2 = opr::TypeCvt::make(conv2, dtype::Float16());
  1172. auto y = opr::Elemwise::make({tcvt1, tcvt2}, opr::Elemwise::Param::Mode::ADD);
  1173. SymbolVar y_opt;
  1174. auto options = gopt::OptimizeForInferenceOptions{};
  1175. options.enable_nhwcd4();
  1176. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1177. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  1178. find_opr<opr::Convolution>(y_opt).param().format);
  1179. graph->compile({{y_opt, {}}})
  1180. ->to_json()
  1181. ->writeto_fpath(output_file(
  1182. "TestGoptInference.ConvertFormatNHWCD4TypeCvt.json"));
  1183. HostTensorND host_y_opt, host_y;
  1184. auto func = graph->compile({make_callback_copy(y, host_y),
  1185. make_callback_copy(y_opt, host_y_opt)});
  1186. func->execute();
  1187. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1188. *host_x = *gen({8, 8, 16, 16}, cn);
  1189. func->execute();
  1190. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1191. }
  1192. TEST(TestGoptInference, ConvertFormatNHWCD4LOCAL) {
  1193. // hwcd4 is only supported in naive handle
  1194. NaiveMegDNNHandleScope naive_megdnn_handle;
  1195. HostTensorGenerator<> gen;
  1196. auto cn = CompNode::load("cpu0");
  1197. auto graph = ComputingGraph::make();
  1198. graph->options().graph_opt_level = 0;
  1199. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1200. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1201. .rename(name);
  1202. };
  1203. auto host_x = gen({2, 8, 8, 16}, cn);
  1204. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1205. opr::Convolution::Param param;
  1206. param.pad_h = param.pad_w = 1;
  1207. auto w1 = mkcvar("w1", {4, 8, 3, 3}),
  1208. conv1 = opr::Convolution::make(x, w1, param);
  1209. auto w2 = mkcvar("w2", {8, 16, 4, 3, 3, 4}),
  1210. local = opr::Local::make(conv1, w2, param);
  1211. auto w3 = mkcvar("w3", {4, 4, 3, 3}),
  1212. conv2 = opr::Convolution::make(local, w3, param);
  1213. opr::GroupLocal::Param param_group_local;
  1214. param_group_local.pad_h = param_group_local.pad_w = 1;
  1215. auto w4 = mkcvar("w4", {2, 8, 16, 2, 3, 3, 2}),
  1216. group_local = opr::GroupLocal::make(conv2, w4, param_group_local);
  1217. auto w5 = mkcvar("w5", {4, 4, 3, 3}),
  1218. y = opr::Convolution::make(group_local, w5, param);
  1219. SymbolVar y_opt;
  1220. auto options = gopt::OptimizeForInferenceOptions{};
  1221. options.enable_nhwcd4();
  1222. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1223. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  1224. find_opr<opr::Convolution>(y_opt).param().format);
  1225. ASSERT_EQ(opr::Local::Param::Format::NCHW,
  1226. find_opr<opr::Local>(y_opt).param().format);
  1227. ASSERT_EQ(opr::GroupLocal::Param::Format::NCHW,
  1228. find_opr<opr::GroupLocal>(y_opt).param().format);
  1229. graph->compile({{y_opt, {}}})
  1230. ->to_json()
  1231. ->writeto_fpath(output_file(
  1232. "TestGoptInference.ConvertFormatNHWCD4LOCAL.json"));
  1233. HostTensorND host_y_opt, host_y;
  1234. auto func = graph->compile({make_callback_copy(y, host_y),
  1235. make_callback_copy(y_opt, host_y_opt)});
  1236. func->execute();
  1237. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1238. }
  1239. TEST(TestGoptInference, ConvertFormatNHWCD4Deconv) {
  1240. // hwcd4 is only supported in naive handle
  1241. NaiveMegDNNHandleScope naive_megdnn_handle;
  1242. HostTensorGenerator<> gen;
  1243. auto cn = CompNode::load("cpu0");
  1244. auto graph = ComputingGraph::make();
  1245. graph->options().graph_opt_level = 0;
  1246. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1247. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1248. .rename(name);
  1249. };
  1250. auto host_x = gen({8, 8, 8, 8}, cn);
  1251. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1252. opr::Convolution::Param param;
  1253. param.pad_h = param.pad_w = 0;
  1254. auto w0 = mkcvar("w1", {4, 8, 2, 2}),
  1255. conv = opr::Convolution::make(x, w0, param);
  1256. auto w1 = mkcvar("w1", {4, 1, 2, 2}),
  1257. y = opr::ConvolutionBackwardData::make(w1, conv, param, {}, {});
  1258. SymbolVar y_opt;
  1259. auto options = gopt::OptimizeForInferenceOptions{};
  1260. options.enable_nhwcd4();
  1261. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1262. ASSERT_EQ(opr::Convolution::Param::Format::NCHW,
  1263. find_opr<opr::ConvolutionBackwardData>(y_opt).param().format);
  1264. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  1265. find_opr<opr::Convolution>(y_opt).param().format);
  1266. HostTensorND host_y_opt, host_y;
  1267. auto func = graph->compile({make_callback_copy(y, host_y),
  1268. make_callback_copy(y_opt, host_y_opt)});
  1269. func->execute();
  1270. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1271. }
  1272. TEST(TestGoptInference, ConvertFormatNHWCD4Qint8) {
  1273. // hwcd4 is only supported in naive handle
  1274. NaiveMegDNNHandleScope naive_megdnn_handle;
  1275. HostTensorGenerator<> gen;
  1276. auto cn = CompNode::load("cpu0");
  1277. auto graph = ComputingGraph::make();
  1278. graph->options().graph_opt_level = 0;
  1279. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1280. const DType& dtype) {
  1281. return opr::TypeCvt::make(
  1282. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1283. .rename(name),
  1284. dtype);
  1285. };
  1286. auto host_x = gen({8, 8, 8, 8}, cn);
  1287. auto _x = opr::Host2DeviceCopy::make(*graph, host_x),
  1288. x = opr::TypeCvt::make(_x, dtype::QuantizedS8(0.2f));
  1289. opr::ConvBias::Param param;
  1290. param.pad_h = param.pad_w = 0;
  1291. auto w = mkcvar("w", {4, 8, 3, 3}, dtype::QuantizedS8(0.1f)),
  1292. b = mkcvar("b", {1, 4, 1, 1}, dtype::QuantizedS32(0.02f)),
  1293. y = opr::ConvBias::make(x, w, b, param, {},
  1294. OperatorNodeConfig{dtype::QuantizedS8(0.2f)});
  1295. SymbolVar y_opt;
  1296. auto options = gopt::OptimizeForInferenceOptions{};
  1297. options.enable_nhwcd4();
  1298. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1299. ASSERT_EQ(opr::ConvBias::Param::Format::NHWCD4,
  1300. find_opr<opr::ConvBias>(y_opt).param().format);
  1301. graph->compile({{y_opt, {}}})
  1302. ->to_json()
  1303. ->writeto_fpath(output_file(
  1304. "TestGoptInference.ConvertFormatNHWCD4Qint8.json"));
  1305. auto float_y = opr::TypeCvt::make(y, dtype::Float32()),
  1306. float_y_opt = opr::TypeCvt::make(y_opt, dtype::Float32());
  1307. HostTensorND host_y_opt, host_y;
  1308. auto func = graph->compile({make_callback_copy(float_y, host_y),
  1309. make_callback_copy(float_y_opt, host_y_opt)});
  1310. func->execute();
  1311. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1312. }
  1313. TEST(TestGoptInference, ConvertFormatPadIC) {
  1314. // hwcd4 is only supported in naive handle
  1315. NaiveMegDNNHandleScope naive_megdnn_handle;
  1316. HostTensorGenerator<> gen;
  1317. auto cn = CompNode::load("cpu0");
  1318. auto graph = ComputingGraph::make();
  1319. graph->options().graph_opt_level = 0;
  1320. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1321. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1322. .rename(name);
  1323. };
  1324. auto host_inp1 = gen({1, 6, 128, 128}, cn),
  1325. host_inp2 = gen({1, 6, 256, 256}, cn);
  1326. auto inp1 = opr::Host2DeviceCopy::make(*graph, host_inp1),
  1327. inp2 = opr::Host2DeviceCopy::make(*graph, host_inp2);
  1328. auto shape_tmp = mkcvar("tmp", {256, 256});
  1329. auto shape_of = opr::GetVarShape::make(shape_tmp);
  1330. opr::Resize::Param param_resize;
  1331. param_resize.format = opr::Resize::Param::Format::NCHW;
  1332. auto resize = opr::ResizeForward::make(inp1, shape_of, param_resize);
  1333. auto concat = opr::Concat::make({inp2, resize}, 1);
  1334. opr::Convolution::Param param;
  1335. param.pad_h = param.pad_w = 1;
  1336. param.sparse = opr::Convolution::Param::Sparse::DENSE;
  1337. auto w1 = mkcvar("w1", {12, 12, 3, 3});
  1338. auto y = opr::Convolution::make(concat, w1, param);
  1339. SymbolVar y_opt;
  1340. auto options = gopt::OptimizeForInferenceOptions{};
  1341. options.enable_nhwcd4();
  1342. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1343. HostTensorND host_y_opt, host_y;
  1344. auto func = graph->compile({make_callback_copy(y, host_y),
  1345. make_callback_copy(y_opt, host_y_opt)});
  1346. func->execute();
  1347. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1348. }
  1349. TEST(TestGoptInference, ConvertBatchNormPass) {
  1350. auto cn = CompNode::load("cpu0");
  1351. HostTensorGenerator<> gen(0, 1, 0);
  1352. auto graph = ComputingGraph::make();
  1353. graph->options().graph_opt_level = 0;
  1354. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1355. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1356. };
  1357. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1358. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1359. .rename(name);
  1360. };
  1361. using Param = opr::BatchNorm::Param;
  1362. Param param(Param::ParamDim::DIM_1C11, Param::FwdMode::INFERENCE);
  1363. TensorShape shp = {1, 3, 1, 1};
  1364. auto x = mkvar("x", {2, 3, 16, 24}), scale = mkcvar("scale", shp),
  1365. bias = mkcvar("bias", shp), mean = mkcvar("mean", shp);
  1366. auto host_variance = gen(shp, cn);
  1367. for (size_t i = 0; i < shp.total_nr_elems(); ++i) {
  1368. host_variance->ptr<float>()[i] =
  1369. std::abs(host_variance->ptr<float>()[i]);
  1370. }
  1371. auto variance = opr::SharedDeviceTensor::make(*graph, *host_variance)
  1372. .rename("variance");
  1373. auto y = opr::BatchNorm::make(x, scale, bias, mean, variance, param)[4];
  1374. SymbolVar y_opt;
  1375. unpack_vector(gopt::optimize_for_inference(
  1376. {y}, gopt::OptimizeForInferenceOptions{}),
  1377. y_opt);
  1378. ASSERT_EQ(0u, find_opr_num<opr::BatchNorm>(y_opt));
  1379. graph->compile({{y_opt, {}}})
  1380. ->to_json()
  1381. ->writeto_fpath(
  1382. output_file("TestGoptInference.ConvertBatchNormPass.json"));
  1383. HostTensorND host_y, host_y_opt;
  1384. auto func = graph->compile({make_callback_copy(y, host_y),
  1385. make_callback_copy(y_opt, host_y_opt)});
  1386. func->execute();
  1387. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  1388. }
  1389. TEST(TestGoptInference, ConvBiasNonlinearityFusePass) {
  1390. // hwcd4 is only supported in naive handle
  1391. NaiveMegDNNHandleScope naive_megdnn_handle;
  1392. auto cn = CompNode::load("cpu0");
  1393. HostTensorGenerator<> gen;
  1394. auto graph = ComputingGraph::make();
  1395. graph->options().graph_opt_level = 0;
  1396. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1397. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1398. };
  1399. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1400. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1401. .rename(name);
  1402. };
  1403. opr::Convolution::Param param;
  1404. auto x = mkvar("x", {5, 8, 16, 24}), w1 = mkcvar("w1", {4, 8, 1, 1}),
  1405. w2 = mkcvar("w2", {4, 4, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
  1406. b2 = mkcvar("b2", {1, 4, 1, 1}), w3 = mkcvar("w3", {8, 4, 1, 1}),
  1407. y_cut = opr::Convolution::make(x, w1, param),
  1408. y1 = opr::Elemwise::make({y_cut + b1},
  1409. opr::Elemwise::Param::Mode::RELU);
  1410. param.pad_w = param.pad_h = 1;
  1411. auto y2 = opr::Elemwise::make({opr::Convolution::make(y1, w2, param) + b2},
  1412. opr::Elemwise::Param::Mode::SIGMOID);
  1413. param.pad_w = param.pad_h = 0;
  1414. auto y3 = opr::Convolution::make(y2, w3, param), y_tmp = y3 + x,
  1415. y_expand =
  1416. opr::Elemwise::make({y_cut}, opr::Elemwise::Param::Mode::RELU),
  1417. y_y = opr::Convolution::make(y_expand, w3, param), y = y_y + y_tmp;
  1418. SymbolVar y_opt;
  1419. auto options = gopt::OptimizeForInferenceOptions{};
  1420. options.enable_nhwcd4().enable_fuse_conv_bias_nonlinearity();
  1421. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1422. ASSERT_EQ(3u, find_opr<opr::ConvBias>(y_opt).input().size());
  1423. graph->compile({{y_opt, {}}})
  1424. ->to_json()
  1425. ->writeto_fpath(output_file(
  1426. "TestGoptInference.FuseConvBiasNonlinPass.json"));
  1427. HostTensorND host_y, host_y_opt;
  1428. auto func = graph->compile({make_callback_copy(y, host_y),
  1429. make_callback_copy(y_opt, host_y_opt)});
  1430. func->execute();
  1431. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  1432. }
  1433. TEST(TestGoptInference, ConvBiasNonlinearityFusePass_FullBias) {
  1434. NaiveMegDNNHandleScope naive_megdnn_handle;
  1435. for (int i = 0; i < 2; i++) {
  1436. auto graph = ComputingGraph::make();
  1437. auto cn = CompNode::load("cpu0");
  1438. HostTensorGenerator<> gen;
  1439. auto mkImvar = [&](const char* name, const TensorShape& shp) {
  1440. return opr::ImmutableTensor::make(*graph, *gen(shp, cn))
  1441. .rename(name);
  1442. };
  1443. graph->options().graph_opt_level = 0;
  1444. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1445. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1446. .rename(name);
  1447. };
  1448. opr::Convolution::Param param;
  1449. auto host_x = gen({1, 8, 16, 24}, cn);
  1450. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1451. w1 = mkcvar("w1", {4, 8, 1, 1}), w2 = mkcvar("w2", {4, 8, 3, 3}),
  1452. w3 = mkcvar("w3", {4, 4, 1, 1}),
  1453. b = i == 0 ? mkcvar("b", {1, 4, 16, 24})
  1454. : mkImvar("bias", {1, 4, 16, 24}),
  1455. y_cut0 = opr::Convolution::make(x, w1, param);
  1456. param.pad_w = param.pad_h = 1;
  1457. auto y_cut1 = opr::Convolution::make(x, w2, param);
  1458. auto y1 = opr::Elemwise::make({y_cut0 + y_cut1},
  1459. opr::Elemwise::Param::Mode::RELU);
  1460. param.pad_w = param.pad_h = 0;
  1461. auto y2 = opr::Convolution::make(y1, w3, param);
  1462. auto y =
  1463. opr::Elemwise::make({y2 + b}, opr::Elemwise::Param::Mode::RELU);
  1464. SymbolVar y_opt;
  1465. auto options = gopt::OptimizeForInferenceOptions{};
  1466. options.enable_fuse_conv_bias_nonlinearity();
  1467. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1468. ASSERT_EQ(3u, find_opr<opr::ConvBias>(y_opt).input().size());
  1469. graph->compile({{y_opt, {}}})
  1470. ->to_json()
  1471. ->writeto_fpath(
  1472. output_file("TestGoptInference.FuseConvBiasNonlinPass_"
  1473. "FulBias.json"));
  1474. HostTensorND host_y, host_y_opt;
  1475. auto func = graph->compile({make_callback_copy(y, host_y),
  1476. make_callback_copy(y_opt, host_y_opt)});
  1477. func->execute();
  1478. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  1479. *host_x = *gen({4, 8, 16, 24}, cn);
  1480. func->execute();
  1481. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  1482. }
  1483. }
  1484. TEST(TestGoptInference, ParamMerge) {
  1485. auto cns = load_multiple_xpus(2);
  1486. HostTensorGenerator<> gen;
  1487. auto graph = ComputingGraph::make();
  1488. auto var0 = opr::SharedDeviceTensor::make(*graph, *gen({2, 3}, cns[0])),
  1489. var1 = opr::SharedDeviceTensor::make(*graph, *gen({1, 3}, cns[1])),
  1490. y = var0 + opr::Copy::make(var1, {cns[0]});
  1491. HostTensorND y_expected_val;
  1492. graph->compile({make_callback_copy(y, y_expected_val)})->execute();
  1493. SymbolVar y_opt;
  1494. unpack_vector(gopt::GraphOptimizer{}
  1495. .add_pass<gopt::ParamMergePass>()
  1496. .apply({{y}})
  1497. .endpoint_vars(),
  1498. y_opt);
  1499. auto opr = y_opt.node()->owner_opr();
  1500. ASSERT_EQ(2u, opr->input().size());
  1501. ASSERT_EQ(2u,
  1502. find_opr<opr::MultipleDeviceTensorHolder>(y_opt).output().size());
  1503. HostTensorND y_got_val;
  1504. graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
  1505. MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
  1506. }
  1507. TEST(TestGoptInference, ParamMergeFormat) {
  1508. auto cns = load_multiple_xpus(2);
  1509. auto make_dv = [](const HostTensorND& hv) {
  1510. TensorLayout layout{hv.layout(), hv.layout().dtype,
  1511. megdnn::Image2DPack4TensorFormat::make_raw(1, 64)};
  1512. auto ret = std::make_shared<DeviceTensorND>(hv.comp_node(), layout);
  1513. ret->copy_from_fixlayout(hv).sync();
  1514. return ret;
  1515. };
  1516. HostTensorGenerator<> gen;
  1517. auto graph = ComputingGraph::make();
  1518. auto var0 = opr::SharedDeviceTensorWithFormat::make(
  1519. *graph, make_dv(*gen({2, 32}, cns[0]))),
  1520. var1 = opr::SharedDeviceTensorWithFormat::make(
  1521. *graph, make_dv(*gen({1, 32}, cns[1]))),
  1522. y = var0 + opr::Copy::make(var1, {cns[0]});
  1523. HostTensorND y_expected_val;
  1524. graph->compile({make_callback_copy(y, y_expected_val)})->execute();
  1525. SymbolVar y_opt;
  1526. unpack_vector(gopt::GraphOptimizer{}
  1527. .add_pass<gopt::ParamMergePass>()
  1528. .apply({{y}})
  1529. .endpoint_vars(),
  1530. y_opt);
  1531. auto opr = y_opt.node()->owner_opr();
  1532. ASSERT_EQ(2u, opr->input().size());
  1533. ASSERT_EQ(2u, find_opr<opr::MultipleDeviceTensorWithFormatHolder>(y_opt)
  1534. .output()
  1535. .size());
  1536. HostTensorND y_got_val;
  1537. graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
  1538. MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
  1539. }
  1540. #if MGB_ENABLE_FASTRUN
  1541. TEST(TestGoptInference, AlgoProfile) {
  1542. HostTensorGenerator<> gen;
  1543. auto graph = ComputingGraph::make();
  1544. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1545. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1546. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1547. z = opr::Convolution::make(x, y);
  1548. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1549. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1550. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1551. gopt::enable_opr_algo_profiling_inplace({z + 2.3f});
  1552. ASSERT_EQ(S::PROFILE, conv.execution_policy().strategy);
  1553. }
  1554. #endif
  1555. TEST(TestGoptInference, ProfileCache) {
  1556. HostTensorGenerator<> gen;
  1557. auto graph = ComputingGraph::make();
  1558. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1559. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1560. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1561. z = opr::Convolution::make(x, y);
  1562. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1563. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1564. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1565. gopt::enable_opr_use_profiling_cache_inplace({z + 2.3f});
  1566. ASSERT_EQ(S::PROFILE | S::HEURISTIC, conv.execution_policy().strategy);
  1567. }
  1568. TEST(TestGoptInference, FastProfileCache) {
  1569. HostTensorGenerator<> gen;
  1570. auto graph = ComputingGraph::make();
  1571. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1572. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1573. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1574. z = opr::Convolution::make(x, y);
  1575. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1576. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1577. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1578. gopt::modify_opr_algo_strategy_inplace({z + 2.3f},
  1579. S::PROFILE | S::OPTIMIZED);
  1580. ASSERT_EQ(S::PROFILE | S::OPTIMIZED, conv.execution_policy().strategy);
  1581. }
  1582. TEST(TestGoptInference, AlgoWorkspaceLimit) {
  1583. HostTensorGenerator<> gen;
  1584. auto graph = ComputingGraph::make();
  1585. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1586. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1587. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1588. z = opr::Convolution::make(x, y);
  1589. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1590. ASSERT_EQ(std::numeric_limits<uint64_t>::max(),
  1591. conv.execution_policy_transient().workspace_limit);
  1592. gopt::set_opr_algo_workspace_limit_inplace({z + 2.3f}, 10000u);
  1593. ASSERT_EQ(10000u, conv.execution_policy().workspace_limit);
  1594. }
  1595. TEST_PASS(FuseConvBiasNonlinPass, Basic) {
  1596. auto cn = CompNode::load("xpux");
  1597. HostTensorGenerator<dtype::Int8> gen;
  1598. auto graph = ComputingGraph::make();
  1599. graph->options().graph_opt_level = 0;
  1600. auto mkvar = [&](const char* name, const TensorShape& shp,
  1601. const DType& dtype) {
  1602. return opr::TypeCvt::make(
  1603. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1604. dtype);
  1605. };
  1606. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1607. const DType& dtype) {
  1608. return opr::TypeCvt::make(
  1609. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1610. .rename(name),
  1611. dtype);
  1612. };
  1613. for (auto format : {opr::Convolution::Param::Format::NCHW,
  1614. opr::Convolution::Param::Format::NHWC,
  1615. opr::Convolution::Param::Format::NCHW4}) {
  1616. opr::Convolution::Param param;
  1617. param.format = format;
  1618. SymbolVar x, w, b;
  1619. if (format == opr::Convolution::Param::Format::NHWC) {
  1620. x = mkvar("x", {20, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
  1621. w = mkcvar("w1", {24, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
  1622. b = mkcvar("b", {1, 1, 1, 24}, dtype::QuantizedS32(6.25f));
  1623. } else if (format == opr::Convolution::Param::Format::NCHW) {
  1624. x = mkvar("x", {20, 4, 20, 20}, dtype::QuantizedS8(2.5f)),
  1625. w = mkcvar("w1", {24, 4, 1, 1}, dtype::QuantizedS8(2.5f)),
  1626. b = mkcvar("b", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  1627. } else {
  1628. mgb_assert(format == opr::Convolution::Param::Format::NCHW4);
  1629. x = mkvar("x", {20, 1, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
  1630. w = mkcvar("w1", {24, 1, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
  1631. b = mkcvar("b", {1, 6, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  1632. }
  1633. auto y = opr::Convolution::make(x, w, param);
  1634. y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
  1635. y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
  1636. opr::ConvBias::Param conv_bias_param;
  1637. conv_bias_param.format = format;
  1638. conv_bias_param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1639. auto concret_y = opr::ConvBias::make(
  1640. x, w, b, conv_bias_param, {},
  1641. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1642. check(concret_y, y);
  1643. }
  1644. }
  1645. #if MGB_CUDA
  1646. TEST(TestEnableTensorCore, SmallInputShape) {
  1647. REQUIRE_GPU(1);
  1648. auto cn = CompNode::load("gpu0");
  1649. cn.activate();
  1650. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1651. auto sm_ver = prop.major * 10 + prop.minor;
  1652. if (sm_ver < 75) {
  1653. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1654. "expected: %d)\n",
  1655. sm_ver, 75);
  1656. return;
  1657. }
  1658. HostTensorGenerator<dtype::Int8> gen;
  1659. auto graph = ComputingGraph::make();
  1660. graph->options().graph_opt_level = 0;
  1661. auto mkvar = [&](const char* name, const TensorShape& shp,
  1662. const DType& dtype) {
  1663. return opr::TypeCvt::make(
  1664. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1665. dtype);
  1666. };
  1667. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1668. const DType& dtype) {
  1669. return opr::TypeCvt::make(
  1670. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1671. .rename(name),
  1672. dtype);
  1673. };
  1674. auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  1675. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1676. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1677. z = mkcvar("b1", {32, 16, 2, 4, 4}, dtype::QuantizedS8(2.5f));
  1678. opr::ConvBias::Param param;
  1679. param.format = opr::ConvBias::Param::Format::NCHW4;
  1680. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1681. param.stride_h = param.stride_w = 2;
  1682. param.pad_h = param.pad_w = 1;
  1683. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1684. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1685. y = opr::ConvBias::make(y, w, b, param, {},
  1686. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1687. y = opr::TypeCvt::make(y, dtype::Float32());
  1688. SymbolVar y_opt;
  1689. SymbolVar y_no_tc;
  1690. {
  1691. auto options = gopt::OptimizeForInferenceOptions{};
  1692. options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
  1693. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1694. }
  1695. {
  1696. auto options = gopt::OptimizeForInferenceOptions{};
  1697. options.enable_fuse_conv_bias_nonlinearity();
  1698. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  1699. }
  1700. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1701. ASSERT_EQ(2u, nr_dimshuffle);
  1702. HostTensorND host_y, host_y_opt;
  1703. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1704. make_callback_copy(y_opt, host_y_opt)});
  1705. func->execute();
  1706. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1707. }
  1708. TEST(TestEnableTensorCore, Nchw4Nchw) {
  1709. REQUIRE_GPU(1);
  1710. auto cn = CompNode::load("gpu0");
  1711. cn.activate();
  1712. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1713. auto sm_ver = prop.major * 10 + prop.minor;
  1714. if (sm_ver < 75) {
  1715. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1716. "expected: %d)\n",
  1717. sm_ver, 75);
  1718. return;
  1719. }
  1720. HostTensorGenerator<dtype::Int8> gen;
  1721. auto graph = ComputingGraph::make();
  1722. graph->options().graph_opt_level = 0;
  1723. auto mkvar = [&](const char* name, const TensorShape& shp,
  1724. const DType& dtype) {
  1725. return opr::TypeCvt::make(
  1726. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1727. dtype);
  1728. };
  1729. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1730. const DType& dtype) {
  1731. return opr::TypeCvt::make(
  1732. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1733. .rename(name),
  1734. dtype);
  1735. };
  1736. auto mkshape = [](opr::ConvBias::Param::Format format, size_t N, size_t C,
  1737. size_t H, size_t W) -> TensorShape {
  1738. mgb_assert(C % 4 == 0);
  1739. if (format == opr::ConvBias::Param::Format::NCHW4) {
  1740. return {N, C / 4, H, W, 4};
  1741. } else {
  1742. mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
  1743. return {N, C, H, W};
  1744. }
  1745. };
  1746. for (auto format : {opr::ConvBias::Param::Format::NCHW,
  1747. opr::ConvBias::Param::Format::NCHW4}) {
  1748. auto x = mkvar("x", mkshape(format, 32, 64, 16, 16),
  1749. dtype::QuantizedS8(2.5f)),
  1750. w = mkcvar("w1", mkshape(format, 64, 64, 3, 3),
  1751. dtype::QuantizedS8(2.5f)),
  1752. b = mkcvar("b", mkshape(format, 1, 64, 1, 1),
  1753. dtype::QuantizedS32(6.25f)),
  1754. z = mkcvar("b1", mkshape(format, 32, 64, 8, 8),
  1755. dtype::QuantizedS8(2.5f));
  1756. opr::ConvBias::Param param;
  1757. param.format = format;
  1758. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1759. param.stride_h = param.stride_w = 2;
  1760. param.pad_h = param.pad_w = 1;
  1761. auto y = opr::ConvBias::make(
  1762. x, w, b, z, param, {},
  1763. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1764. y = opr::ConvBias::make(y, w, b, param, {},
  1765. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1766. y = opr::TypeCvt::make(y, dtype::Float32());
  1767. SymbolVar y_opt;
  1768. SymbolVar y_no_tc;
  1769. {
  1770. auto options = gopt::OptimizeForInferenceOptions{};
  1771. options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
  1772. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1773. }
  1774. {
  1775. auto options = gopt::OptimizeForInferenceOptions{};
  1776. options.enable_fuse_conv_bias_nonlinearity();
  1777. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  1778. }
  1779. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1780. if (format == opr::ConvBias::Param::Format::NCHW4) {
  1781. #if CUDA_VERSION >= 10020
  1782. //! try_conv_reformat_nchw322nchw4 used when cuda_version >= 10020
  1783. ASSERT_EQ(1u, nr_dimshuffle);
  1784. #else
  1785. ASSERT_EQ(2u, nr_dimshuffle);
  1786. #endif
  1787. } else {
  1788. ASSERT_EQ(2u, nr_dimshuffle);
  1789. }
  1790. std::string json_name;
  1791. if (format == opr::ConvBias::Param::Format::NCHW4) {
  1792. json_name = "TestGoptInference.Nchw4Nchw.NCHW4.json";
  1793. } else {
  1794. mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
  1795. json_name = "TestGoptInference.Nchw4Nchw.NCHW.json";
  1796. }
  1797. graph->compile({{y_opt, {}}})
  1798. ->to_json()
  1799. ->writeto_fpath(output_file(json_name.c_str()));
  1800. HostTensorND host_y, host_y_opt;
  1801. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1802. make_callback_copy(y_opt, host_y_opt)});
  1803. func->execute();
  1804. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1805. }
  1806. }
  1807. TEST(TestEnableTensorCore, ConvBiasWithZ) {
  1808. REQUIRE_GPU(1);
  1809. auto cn = CompNode::load("gpu0");
  1810. cn.activate();
  1811. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1812. auto sm_ver = prop.major * 10 + prop.minor;
  1813. if (sm_ver < 75) {
  1814. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1815. "expected: %d)\n",
  1816. sm_ver, 75);
  1817. return;
  1818. }
  1819. HostTensorGenerator<dtype::Int8> gen;
  1820. auto graph = ComputingGraph::make();
  1821. graph->options().graph_opt_level = 0;
  1822. auto mkvar = [&](const char* name, const TensorShape& shp,
  1823. const DType& dtype) {
  1824. return opr::TypeCvt::make(
  1825. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1826. dtype);
  1827. };
  1828. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1829. const DType& dtype) {
  1830. return opr::TypeCvt::make(
  1831. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1832. .rename(name),
  1833. dtype);
  1834. };
  1835. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1836. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1837. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1838. z = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1839. opr::ConvBias::Param param;
  1840. param.format = opr::ConvBias::Param::Format::NCHW4;
  1841. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1842. param.stride_h = param.stride_w = 1;
  1843. param.pad_h = param.pad_w = 1;
  1844. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1845. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1846. y = opr::TypeCvt::make(y, dtype::Float32());
  1847. SymbolVar y_opt;
  1848. SymbolVar y_no_tc;
  1849. {
  1850. auto options = gopt::OptimizeForInferenceOptions{};
  1851. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  1852. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1853. }
  1854. {
  1855. auto options = gopt::OptimizeForInferenceOptions{};
  1856. options.enable_fuse_conv_bias_nonlinearity();
  1857. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  1858. }
  1859. HostTensorND host_y, host_y_opt;
  1860. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1861. make_callback_copy(y_opt, host_y_opt)});
  1862. func->execute();
  1863. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1864. }
  1865. TEST(TestEnableTensorCore, Pooling) {
  1866. REQUIRE_GPU(1);
  1867. auto cn = CompNode::load("gpu0");
  1868. cn.activate();
  1869. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1870. auto sm_ver = prop.major * 10 + prop.minor;
  1871. if (sm_ver < 75) {
  1872. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1873. "expected: %d)\n",
  1874. sm_ver, 75);
  1875. return;
  1876. }
  1877. HostTensorGenerator<dtype::Int8> gen;
  1878. auto graph = ComputingGraph::make();
  1879. graph->options().graph_opt_level = 0;
  1880. auto mkvar = [&](const char* name, const TensorShape& shp,
  1881. const DType& dtype) {
  1882. return opr::TypeCvt::make(
  1883. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1884. dtype);
  1885. };
  1886. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1887. const DType& dtype) {
  1888. return opr::TypeCvt::make(
  1889. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1890. .rename(name),
  1891. dtype);
  1892. };
  1893. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1894. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1895. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1896. z = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1897. opr::ConvBias::Param param;
  1898. param.format = opr::ConvBias::Param::Format::NCHW4;
  1899. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1900. param.stride_h = param.stride_w = 1;
  1901. param.pad_h = param.pad_w = 1;
  1902. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1903. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1904. opr::Pooling::Param pool_param;
  1905. pool_param.format = opr::Pooling::Param::Format::NCHW4;
  1906. y = opr::Pooling::make(y, pool_param);
  1907. y = opr::TypeCvt::make(y, dtype::Float32());
  1908. SymbolVar y_opt;
  1909. SymbolVar y_no_tc;
  1910. {
  1911. auto options = gopt::OptimizeForInferenceOptions{};
  1912. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  1913. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1914. }
  1915. ASSERT_EQ(opr::Pooling::Param::Format::NCHW32,
  1916. find_opr<opr::Pooling>(y_opt).param().format);
  1917. {
  1918. auto options = gopt::OptimizeForInferenceOptions{};
  1919. options.enable_fuse_conv_bias_nonlinearity();
  1920. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  1921. }
  1922. HostTensorND host_y, host_y_opt;
  1923. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1924. make_callback_copy(y_opt, host_y_opt)});
  1925. func->execute();
  1926. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1927. }
  1928. TEST(TestGoptInference, EnableTensorCore) {
  1929. REQUIRE_GPU(1);
  1930. auto cn = CompNode::load("gpu0");
  1931. cn.activate();
  1932. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1933. auto sm_ver = prop.major * 10 + prop.minor;
  1934. if (sm_ver < 75) {
  1935. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1936. "expected: %d)\n",
  1937. sm_ver, 75);
  1938. return;
  1939. }
  1940. HostTensorGenerator<dtype::Int8> gen;
  1941. auto graph = ComputingGraph::make();
  1942. graph->options().graph_opt_level = 0;
  1943. auto mkvar = [&](const char* name, const TensorShape& shp,
  1944. const DType& dtype) {
  1945. return opr::TypeCvt::make(
  1946. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1947. dtype);
  1948. };
  1949. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1950. const DType& dtype) {
  1951. return opr::TypeCvt::make(
  1952. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1953. .rename(name),
  1954. dtype);
  1955. };
  1956. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1957. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1958. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1959. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1960. opr::Convolution::Param param;
  1961. param.format = opr::Convolution::Param::Format::NCHW4;
  1962. param.stride_h = param.stride_w = 1;
  1963. param.pad_h = param.pad_w = 1;
  1964. auto y = opr::Convolution::make(x, w, param);
  1965. y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
  1966. y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
  1967. auto y1 = y + b1, y2 = opr::Convolution::make(y, w, param),
  1968. y3 = opr::Elemwise::make({y - b1}, opr::Elemwise::Param::Mode::RELU);
  1969. y2 = opr::Elemwise::make({y2 + b}, opr::Elemwise::Param::Mode::RELU),
  1970. y2 = opr::TypeCvt::make(y2, dtype::QuantizedS8(2.5f));
  1971. auto y4 = y1 + y2 + y3;
  1972. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  1973. SymbolVar y_opt;
  1974. SymbolVar y_no_tc;
  1975. {
  1976. auto options = gopt::OptimizeForInferenceOptions{};
  1977. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  1978. unpack_vector(gopt::optimize_for_inference({y4}, options), y_opt);
  1979. }
  1980. {
  1981. auto options = gopt::OptimizeForInferenceOptions{};
  1982. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  1983. unpack_vector(gopt::optimize_for_inference({y4}, options), y_no_tc);
  1984. }
  1985. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1986. ASSERT_EQ(3u, nr_dimshuffle);
  1987. graph->compile({{y_opt, {}}})
  1988. ->to_json()
  1989. ->writeto_fpath(
  1990. output_file("TestGoptInference.EnableTensorCorePass.json"));
  1991. HostTensorND host_y, host_y_opt;
  1992. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1993. make_callback_copy(y_opt, host_y_opt)});
  1994. func->execute();
  1995. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1996. }
  1997. TEST(FuseConvBiasZPass, BlockFuse) {
  1998. REQUIRE_GPU(1);
  1999. auto cn = CompNode::load("gpu0");
  2000. cn.activate();
  2001. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2002. auto sm_ver = prop.major * 10 + prop.minor;
  2003. if (sm_ver < 61) {
  2004. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2005. "expected: %d)\n",
  2006. sm_ver, 61);
  2007. return;
  2008. }
  2009. HostTensorGenerator<dtype::Int8> gen;
  2010. auto graph = ComputingGraph::make();
  2011. graph->options().graph_opt_level = 0;
  2012. auto mkvar = [&](const char* name, const TensorShape& shp,
  2013. const DType& dtype) {
  2014. return opr::TypeCvt::make(
  2015. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2016. dtype);
  2017. };
  2018. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2019. const DType& dtype) {
  2020. return opr::TypeCvt::make(
  2021. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2022. .rename(name),
  2023. dtype);
  2024. };
  2025. using ElemMultiMode = opr::ElemwiseMultiType::Param::Mode;
  2026. using NonlineMode = opr::ConvBias::Param::NonlineMode;
  2027. for (auto mode :
  2028. {ElemMultiMode::QFUSE_ADD_RELU, ElemMultiMode::QFUSE_ADD_H_SWISH}) {
  2029. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2030. w1 = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2031. b1 = mkcvar("b1", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2032. w2 = mkcvar("w2", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2033. b2 = mkcvar("b2", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2034. w3 = mkcvar("w3", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2035. b3 = mkcvar("b3", {1, 16, 1, 1, 4}, dtype::QuantizedS32(3.0f));
  2036. NonlineMode nonline_mode = NonlineMode::RELU;
  2037. if (mode == ElemMultiMode::QFUSE_ADD_H_SWISH) {
  2038. nonline_mode = NonlineMode::H_SWISH;
  2039. }
  2040. opr::ConvBias::Param param;
  2041. param.format = opr::Convolution::Param::Format::NCHW4;
  2042. param.nonlineMode = nonline_mode;
  2043. param.stride_h = param.stride_w = 1;
  2044. param.pad_h = param.pad_w = 1;
  2045. auto y1 = opr::ConvBias::make(
  2046. x, w1, b1, param, {},
  2047. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2048. param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY;
  2049. auto y2 = opr::ConvBias::make(
  2050. y1, w2, b2, param, {},
  2051. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  2052. y3 = opr::ElemwiseMultiType::make(
  2053. {y1, y2}, {mode},
  2054. OperatorNodeConfig{dtype::QuantizedS8(1.2f)});
  2055. param.nonlineMode = nonline_mode;
  2056. auto y4 = opr::ConvBias::make(
  2057. y3, w3, b3, param, {},
  2058. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  2059. z = opr::ElemwiseMultiType::make(
  2060. {y3, y4}, {opr::ElemwiseMultiType::Param::Mode::QADD},
  2061. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2062. z = opr::TypeCvt::make(z, dtype::Float32());
  2063. SymbolVar z_fuse;
  2064. {
  2065. auto options = gopt::OptimizeForInferenceOptions{};
  2066. options.enable_fuse_conv_bias_nonlinearity()
  2067. .enable_fuse_conv_bias_with_z();
  2068. unpack_vector(gopt::optimize_for_inference({z}, options), z_fuse);
  2069. }
  2070. graph->compile({{z_fuse, {}}})
  2071. ->to_json()
  2072. ->writeto_fpath(
  2073. output_file("FuseConvBiasZPass.BlockFuse_fuse.json"));
  2074. auto nr_elem_multi_type =
  2075. find_opr_num<mgb::opr::ElemwiseMultiType>(z_fuse);
  2076. MGB_MARK_USED_VAR(nr_elem_multi_type);
  2077. #if MGB_CUDA && (CUDNN_MAJOR == 8)
  2078. ASSERT_EQ(2u, nr_elem_multi_type);
  2079. #else
  2080. ASSERT_EQ(1u, nr_elem_multi_type);
  2081. //! fuse z mannually
  2082. auto z0 = opr::ConvBias::make(
  2083. x, w1, b1, param, {},
  2084. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2085. auto z1 = opr::ConvBias::make(
  2086. z0, w2, b2, z0, param, {},
  2087. OperatorNodeConfig{dtype::QuantizedS8(1.2f)}),
  2088. z2 = opr::ConvBias::make(
  2089. z1, w3, b3, param, {},
  2090. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  2091. z4 = opr::ElemwiseMultiType::make(
  2092. {z1, z2}, {opr::ElemwiseMultiType::Mode::QADD},
  2093. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2094. z4 = opr::TypeCvt::make(z4, dtype::Float32());
  2095. SymbolVar z_nonfuse;
  2096. {
  2097. auto options = gopt::OptimizeForInferenceOptions{};
  2098. options.enable_fuse_conv_bias_nonlinearity();
  2099. unpack_vector(gopt::optimize_for_inference({z4}, options),
  2100. z_nonfuse);
  2101. }
  2102. graph->compile({{z_nonfuse, {}}})
  2103. ->to_json()
  2104. ->writeto_fpath(output_file(
  2105. "FuseConvBiasZPass.BlockFuse_nonfuse.json"));
  2106. HostTensorND host_z_fuse, host_z_nonfuse;
  2107. auto func =
  2108. graph->compile({make_callback_copy(z_nonfuse, host_z_nonfuse),
  2109. make_callback_copy(z_fuse, host_z_fuse)});
  2110. func->execute();
  2111. MGB_ASSERT_TENSOR_EQ(host_z_fuse, host_z_nonfuse);
  2112. #endif
  2113. }
  2114. }
  2115. TEST(TestEnableTensorCore, ShuffleMerge) {
  2116. REQUIRE_GPU(1);
  2117. auto cn = CompNode::load("gpu0");
  2118. cn.activate();
  2119. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2120. auto sm_ver = prop.major * 10 + prop.minor;
  2121. if (sm_ver < 75) {
  2122. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2123. "expected: %d)\n",
  2124. sm_ver, 75);
  2125. return;
  2126. }
  2127. HostTensorGenerator<dtype::Int8> gen;
  2128. auto graph = ComputingGraph::make();
  2129. graph->options().graph_opt_level = 0;
  2130. auto mkvar = [&](const char* name, const TensorShape& shp,
  2131. const DType& dtype) {
  2132. return opr::TypeCvt::make(
  2133. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2134. dtype);
  2135. };
  2136. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2137. const DType& dtype) {
  2138. return opr::TypeCvt::make(
  2139. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2140. .rename(name),
  2141. dtype);
  2142. };
  2143. auto nchw2nchw4 = [](SymbolVar x) {
  2144. auto xshp = opr::GetVarShape::make(x);
  2145. auto cv = [&x](int v) { return x.make_scalar(v); };
  2146. auto sub = [&xshp, &cv](int idx) {
  2147. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2148. };
  2149. auto tshp = opr::Concat::make(
  2150. {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
  2151. auto y0 = opr::Reshape::make(x, tshp);
  2152. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
  2153. return y1;
  2154. };
  2155. auto nchw42nchw = [](SymbolVar x) {
  2156. auto xshp = opr::GetVarShape::make(x);
  2157. auto cv = [&x](int v) { return x.make_scalar(v); };
  2158. auto sub = [&xshp, &cv](int idx) {
  2159. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2160. };
  2161. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2162. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2163. auto y1 = opr::Reshape::make(y0, tshp);
  2164. return y1;
  2165. };
  2166. auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
  2167. w = mkcvar("w1", {64, 64, 3, 3}, dtype::QuantizedS8(2.5f)),
  2168. b = mkcvar("b", {1, 64, 1, 1}, dtype::QuantizedS32(6.25f)),
  2169. z = mkvar("b1", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f));
  2170. x = nchw2nchw4(x), w = nchw2nchw4(w), b = nchw2nchw4(b), z = nchw2nchw4(z);
  2171. opr::ConvBias::Param param;
  2172. param.format = opr::ConvBias::Param::Format::NCHW4;
  2173. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2174. param.stride_h = param.stride_w = 1;
  2175. param.pad_h = param.pad_w = 1;
  2176. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  2177. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2178. y = nchw42nchw(y);
  2179. y = opr::TypeCvt::make(y, dtype::Float32());
  2180. SymbolVar y_opt;
  2181. SymbolVar y_no_tc;
  2182. {
  2183. auto options = gopt::OptimizeForInferenceOptions{};
  2184. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  2185. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2186. }
  2187. {
  2188. auto options = gopt::OptimizeForInferenceOptions{};
  2189. options.enable_fuse_conv_bias_nonlinearity();
  2190. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  2191. }
  2192. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2193. ASSERT_EQ(3u, nr_dimshuffle);
  2194. HostTensorND host_y, host_y_opt;
  2195. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  2196. make_callback_copy(y_opt, host_y_opt)});
  2197. func->execute();
  2198. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2199. }
  2200. #endif
  2201. TEST(FuseConvBiasZPass, Basic) {
  2202. REQUIRE_GPU(1);
  2203. auto cn = CompNode::load("gpu0");
  2204. HostTensorGenerator<dtype::Int8> gen;
  2205. auto graph = ComputingGraph::make();
  2206. graph->options().graph_opt_level = 0;
  2207. auto mkvar = [&](const char* name, const TensorShape& shp,
  2208. const DType& dtype) {
  2209. return opr::TypeCvt::make(
  2210. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2211. dtype);
  2212. };
  2213. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2214. const DType& dtype) {
  2215. return opr::TypeCvt::make(
  2216. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2217. .rename(name),
  2218. dtype);
  2219. };
  2220. auto format = opr::Convolution::Param::Format::NCHW4;
  2221. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2222. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2223. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2224. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2225. b2 = mkvar("b2", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  2226. opr::ConvBias::Param conv_bias_param;
  2227. conv_bias_param.format = format;
  2228. conv_bias_param.stride_h = conv_bias_param.stride_w = 1;
  2229. conv_bias_param.pad_h = conv_bias_param.pad_w = 1;
  2230. auto y = opr::ConvBias::make(x, w, b, conv_bias_param, {},
  2231. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2232. SymbolVar y_opt;
  2233. // check fuse mode
  2234. for (auto mode : {opr::ElemwiseMultiType::Param::Mode::QADD,
  2235. opr::ElemwiseMultiType::Param::Mode::QMUL,
  2236. opr::ElemwiseMultiType::Param::Mode::QFUSE_ADD_RELU}) {
  2237. auto y1 = opr::ElemwiseMultiType::make(
  2238. {y, b1}, {mode}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2239. {
  2240. auto options = gopt::OptimizeForInferenceOptions{};
  2241. options.enable_fuse_conv_bias_nonlinearity()
  2242. .enable_fuse_conv_bias_with_z()
  2243. .enable_nchw32();
  2244. unpack_vector(gopt::optimize_for_inference({y1}, options), y_opt);
  2245. }
  2246. auto nr_elemwisemultitype = find_opr_num<opr::ElemwiseMultiType>(y_opt);
  2247. if (mode == opr::ElemwiseMultiType::Param::Mode::QMUL) {
  2248. ASSERT_NE(0u, nr_elemwisemultitype);
  2249. } else
  2250. ASSERT_EQ(0u, nr_elemwisemultitype);
  2251. // fuse convbiasz and z
  2252. if (mode == opr::ElemwiseMultiType::Param::Mode::QADD) {
  2253. auto y2 = opr::ElemwiseMultiType::make(
  2254. {y1, b2}, {mode},
  2255. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2256. {
  2257. auto options = gopt::OptimizeForInferenceOptions{};
  2258. options.enable_fuse_conv_bias_nonlinearity()
  2259. .enable_fuse_conv_bias_with_z()
  2260. .enable_nchw32();
  2261. unpack_vector(gopt::optimize_for_inference({y2}, options),
  2262. y_opt);
  2263. }
  2264. auto nr_elemwisemultitype =
  2265. find_opr_num<opr::ElemwiseMultiType>(y_opt);
  2266. ASSERT_NE(0u, nr_elemwisemultitype);
  2267. }
  2268. }
  2269. }
  2270. #if MGB_CUDA
  2271. //! close for cu111 ci, reopen it when bug fixed
  2272. #if CUDA_VERSION < 11000
  2273. TEST(TestGoptInference, EnableCHWN4) {
  2274. REQUIRE_GPU(1);
  2275. auto cn = CompNode::load("gpu0");
  2276. cn.activate();
  2277. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2278. auto sm_ver = prop.major * 10 + prop.minor;
  2279. if (sm_ver < 61) {
  2280. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2281. "expected: %d)\n",
  2282. sm_ver, 61);
  2283. return;
  2284. }
  2285. HostTensorGenerator<dtype::Int8> gen;
  2286. auto graph = ComputingGraph::make();
  2287. graph->options().graph_opt_level = 0;
  2288. auto mkvar = [&](const char* name, const TensorShape& shp,
  2289. const DType& dtype) {
  2290. return opr::TypeCvt::make(
  2291. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2292. dtype);
  2293. };
  2294. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2295. const DType& dtype) {
  2296. return opr::TypeCvt::make(
  2297. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2298. .rename(name),
  2299. dtype);
  2300. };
  2301. auto mkshape = [](opr::ConvBias::Param::Format format, size_t N, size_t C,
  2302. size_t H, size_t W) -> TensorShape {
  2303. mgb_assert(C % 4 == 0);
  2304. if (format == opr::ConvBias::Param::Format::NCHW4) {
  2305. return {N, C / 4, H, W, 4};
  2306. } else {
  2307. mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
  2308. return {N, C, H, W};
  2309. }
  2310. };
  2311. for (auto format : {opr::ConvBias::Param::Format::NCHW,
  2312. opr::ConvBias::Param::Format::NCHW4}) {
  2313. auto x = mkvar("x", mkshape(format, 32, 64, 16, 16),
  2314. dtype::QuantizedS8(2.5f)),
  2315. w = mkcvar("w1", mkshape(format, 64, 64, 3, 3),
  2316. dtype::QuantizedS8(2.5f)),
  2317. b = mkcvar("b", mkshape(format, 1, 64, 1, 1),
  2318. dtype::QuantizedS32(6.25f)),
  2319. b1 = mkvar("b1", mkshape(format, 32, 64, 16, 16),
  2320. dtype::QuantizedS8(2.5f));
  2321. opr::ConvBias::Param param;
  2322. param.format = format;
  2323. param.stride_h = param.stride_w = 1;
  2324. param.pad_h = param.pad_w = 1;
  2325. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2326. auto y = opr::ConvBiasForward::make(
  2327. x, w, b, param, {},
  2328. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2329. auto y1 = opr::ElemwiseMultiType::make(
  2330. {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
  2331. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2332. auto y2 = opr::ConvBiasForward::make(
  2333. y, w, b, param, {},
  2334. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2335. auto y3 = opr::ElemwiseMultiType::make(
  2336. {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
  2337. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2338. auto y4 = opr::ElemwiseMultiType::make(
  2339. {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2340. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2341. y4 = opr::ElemwiseMultiType::make(
  2342. {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2343. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2344. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  2345. SymbolVar y_opt;
  2346. SymbolVar y_cudnn;
  2347. {
  2348. auto options = gopt::OptimizeForInferenceOptions{};
  2349. options.enable_chwn4();
  2350. unpack_vector(gopt::optimize_for_inference({y4}, options), y_opt);
  2351. }
  2352. unpack_vector(gopt::GraphOptimizer{}
  2353. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2354. .add_pass<gopt::FuseConvBiasZPass>()
  2355. .apply({{y4}})
  2356. .endpoint_vars(),
  2357. y_cudnn);
  2358. ASSERT_EQ(opr::ConvBias::Param::Format::CHWN4,
  2359. find_opr<opr::ConvBias>(y_opt).param().format);
  2360. HostTensorND host_y, host_y_opt;
  2361. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  2362. make_callback_copy(y_opt, host_y_opt)});
  2363. func->execute();
  2364. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2365. }
  2366. }
  2367. #endif
  2368. TEST(TestGoptInference, EnableCHWN4WarpPespective) {
  2369. REQUIRE_GPU(1);
  2370. auto cn = CompNode::load("gpu0");
  2371. cn.activate();
  2372. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2373. auto sm_ver = prop.major * 10 + prop.minor;
  2374. if (sm_ver < 61) {
  2375. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2376. "expected: %d)\n",
  2377. sm_ver, 61);
  2378. return;
  2379. }
  2380. HostTensorGenerator<dtype::Int8> gen;
  2381. auto graph = ComputingGraph::make();
  2382. graph->options().graph_opt_level = 0;
  2383. auto mkvar = [&](const char* name, const TensorShape& shp,
  2384. const DType& dtype) {
  2385. return opr::TypeCvt::make(
  2386. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2387. dtype);
  2388. };
  2389. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2390. const DType& dtype) {
  2391. return opr::TypeCvt::make(
  2392. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2393. .rename(name),
  2394. dtype);
  2395. };
  2396. std::shared_ptr<HostTensorND> mat = std::make_shared<HostTensorND>(
  2397. cn, TensorShape{32, 3, 3}, dtype::Float32());
  2398. warp_perspective_mat_gen(*mat, 32, 16, 16);
  2399. auto mat_var = opr::Host2DeviceCopy::make(*graph, mat).rename("mat");
  2400. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2401. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2402. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  2403. opr::ConvBias::Param param;
  2404. param.format = opr::ConvBias::Param::Format::NCHW4;
  2405. param.stride_h = param.stride_w = 1;
  2406. param.pad_h = param.pad_w = 1;
  2407. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2408. auto y = opr::ConvBiasForward::make(
  2409. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2410. opr::WarpPerspective::Param warp_param;
  2411. warp_param.format = opr::WarpPerspective::Param::Format::NCHW4;
  2412. auto y1 = opr::WarpPerspective::make(y, mat_var, TensorShape{16, 16},
  2413. warp_param);
  2414. y1 = opr::TypeCvt::make(y1, dtype::Float32());
  2415. auto nchw42nchw = [](SymbolVar x) {
  2416. auto xshp = opr::GetVarShape::make(x);
  2417. auto cv = [&x](int v) { return x.make_scalar(v); };
  2418. auto sub = [&xshp, &cv](int idx) {
  2419. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2420. };
  2421. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2422. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2423. auto y1 = opr::Reshape::make(y0, tshp);
  2424. return y1;
  2425. };
  2426. y1 = nchw42nchw(y1);
  2427. warp_param.format = opr::WarpPerspective::Param::Format::NCHW;
  2428. auto y2 = opr::WarpPerspective::make(y1, mat_var, TensorShape{16, 16},
  2429. warp_param);
  2430. SymbolVar y_opt;
  2431. SymbolVar y_cudnn;
  2432. {
  2433. auto options = gopt::OptimizeForInferenceOptions{};
  2434. options.enable_chwn4();
  2435. unpack_vector(gopt::optimize_for_inference({y2}, options), y_opt);
  2436. }
  2437. unpack_vector(gopt::GraphOptimizer{}
  2438. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2439. .add_pass<gopt::FuseConvBiasZPass>()
  2440. .apply({{y2}})
  2441. .endpoint_vars(),
  2442. y_cudnn);
  2443. HostTensorND host_y, host_y_opt;
  2444. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  2445. make_callback_copy(y_opt, host_y_opt)});
  2446. func->execute();
  2447. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2448. }
  2449. TEST(TestGoptInference, EnableCHWN4Pooling) {
  2450. REQUIRE_GPU(1);
  2451. auto cn = CompNode::load("gpu0");
  2452. cn.activate();
  2453. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2454. auto sm_ver = prop.major * 10 + prop.minor;
  2455. if (sm_ver < 61) {
  2456. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2457. "expected: %d)\n",
  2458. sm_ver, 61);
  2459. return;
  2460. }
  2461. HostTensorGenerator<dtype::Int8> gen;
  2462. auto graph = ComputingGraph::make();
  2463. graph->options().graph_opt_level = 0;
  2464. auto mkvar = [&](const char* name, const TensorShape& shp,
  2465. const DType& dtype) {
  2466. return opr::TypeCvt::make(
  2467. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2468. dtype);
  2469. };
  2470. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2471. const DType& dtype) {
  2472. return opr::TypeCvt::make(
  2473. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2474. .rename(name),
  2475. dtype);
  2476. };
  2477. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2478. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2479. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  2480. opr::ConvBias::Param param;
  2481. param.format = opr::ConvBias::Param::Format::NCHW4;
  2482. param.stride_h = param.stride_w = 1;
  2483. param.pad_h = param.pad_w = 1;
  2484. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2485. auto y = opr::ConvBiasForward::make(
  2486. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2487. opr::Pooling::Param pool_param;
  2488. pool_param.format = opr::Pooling::Param::Format::NCHW4;
  2489. y = opr::Pooling::make(y, pool_param);
  2490. y = opr::TypeCvt::make(y, dtype::Float32());
  2491. auto nchw42nchw = [](SymbolVar x) {
  2492. auto xshp = opr::GetVarShape::make(x);
  2493. auto cv = [&x](int v) { return x.make_scalar(v); };
  2494. auto sub = [&xshp, &cv](int idx) {
  2495. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2496. };
  2497. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2498. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2499. auto y1 = opr::Reshape::make(y0, tshp);
  2500. return y1;
  2501. };
  2502. y = nchw42nchw(y);
  2503. pool_param.format = opr::Pooling::Param::Format::NCHW;
  2504. auto y1 = opr::Pooling::make(y, pool_param);
  2505. SymbolVar y_opt;
  2506. SymbolVar y_cudnn;
  2507. unpack_vector(
  2508. gopt::GraphOptimizer{}
  2509. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2510. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  2511. .add_pass<gopt::FuseConvBiasZPass>()
  2512. .apply({{y1}})
  2513. .endpoint_vars(),
  2514. y_opt);
  2515. unpack_vector(gopt::GraphOptimizer{}
  2516. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2517. .add_pass<gopt::FuseConvBiasZPass>()
  2518. .apply({{y1}})
  2519. .endpoint_vars(),
  2520. y_cudnn);
  2521. HostTensorND host_y, host_y_opt;
  2522. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  2523. make_callback_copy(y_opt, host_y_opt)});
  2524. func->execute();
  2525. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2526. }
  2527. TEST(TestGoptInference, EnableCHWN4ShuffleRemove) {
  2528. REQUIRE_GPU(1);
  2529. auto cn = CompNode::load("gpu0");
  2530. cn.activate();
  2531. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2532. auto sm_ver = prop.major * 10 + prop.minor;
  2533. if (sm_ver < 61) {
  2534. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2535. "expected: %d)\n",
  2536. sm_ver, 61);
  2537. return;
  2538. }
  2539. HostTensorGenerator<dtype::Int8> gen;
  2540. auto graph = ComputingGraph::make();
  2541. graph->options().graph_opt_level = 0;
  2542. auto mkvar = [&](const char* name, const TensorShape& shp,
  2543. const DType& dtype) {
  2544. return opr::TypeCvt::make(
  2545. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2546. dtype);
  2547. };
  2548. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2549. const DType& dtype) {
  2550. return opr::TypeCvt::make(
  2551. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2552. .rename(name),
  2553. dtype);
  2554. };
  2555. auto nchw2nchw4 = [](SymbolVar x) {
  2556. auto xshp = opr::GetVarShape::make(x);
  2557. auto cv = [&x](int v) { return x.make_scalar(v); };
  2558. auto sub = [&xshp, &cv](int idx) {
  2559. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2560. };
  2561. auto tshp = opr::Concat::make(
  2562. {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
  2563. auto y0 = opr::Reshape::make(x, tshp);
  2564. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
  2565. return y1;
  2566. };
  2567. auto nchw42nchw = [](SymbolVar x) {
  2568. auto xshp = opr::GetVarShape::make(x);
  2569. auto cv = [&x](int v) { return x.make_scalar(v); };
  2570. auto sub = [&xshp, &cv](int idx) {
  2571. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2572. };
  2573. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2574. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2575. auto y1 = opr::Reshape::make(y0, tshp);
  2576. return y1;
  2577. };
  2578. auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
  2579. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2580. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2581. b1 = mkcvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8{2.5f});
  2582. x = nchw2nchw4(x);
  2583. opr::ConvBias::Param param;
  2584. param.format = opr::ConvBias::Param::Format::NCHW4;
  2585. param.stride_h = param.stride_w = 1;
  2586. param.pad_h = param.pad_w = 1;
  2587. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2588. auto y = opr::ConvBiasForward::make(
  2589. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2590. auto y1 = opr::ElemwiseMultiType::make(
  2591. {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
  2592. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2593. auto y2 = opr::ConvBiasForward::make(
  2594. y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2595. auto y3 = opr::ElemwiseMultiType::make(
  2596. {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
  2597. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2598. auto y4 = opr::ElemwiseMultiType::make(
  2599. {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2600. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2601. y4 = opr::ElemwiseMultiType::make(
  2602. {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2603. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2604. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  2605. y4 = nchw42nchw(y4);
  2606. SymbolVar y_opt;
  2607. SymbolVar y_cudnn;
  2608. unpack_vector(
  2609. gopt::GraphOptimizer{}
  2610. .add_pass<gopt::ParamRedistributePass>()
  2611. .add_pass<gopt::ParamFusePass>()
  2612. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2613. .add_pass<gopt::FuseConvBiasZPass>()
  2614. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  2615. .add_pass<gopt::ShuffleShuffleRemovePass>()
  2616. .add_pass<gopt::ParamFusePass>()
  2617. .apply({{y4}})
  2618. .endpoint_vars(),
  2619. y_opt);
  2620. graph->compile({{y_opt, {}}})
  2621. ->to_json()
  2622. ->writeto_fpath(output_file(
  2623. "TestGoptInference.EnableCHWN4ShuffleRemove.json"));
  2624. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2625. ASSERT_EQ(2u, nr_dimshuffle);
  2626. auto nr_reformat = find_opr_num<mgb::opr::RelayoutFormat>(y_opt);
  2627. ASSERT_EQ(0u, nr_reformat);
  2628. unpack_vector(gopt::GraphOptimizer{}
  2629. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2630. .add_pass<gopt::FuseConvBiasZPass>()
  2631. .apply({{y4}})
  2632. .endpoint_vars(),
  2633. y_cudnn);
  2634. HostTensorND host_y, host_y_opt;
  2635. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  2636. make_callback_copy(y_opt, host_y_opt)});
  2637. func->execute();
  2638. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2639. }
  2640. TEST(TestGoptInference, ConvertFormatNCHW4GPU) {
  2641. REQUIRE_GPU(1);
  2642. auto cn = CompNode::load("gpu0");
  2643. cn.activate();
  2644. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2645. auto sm_ver = prop.major * 10 + prop.minor;
  2646. if (sm_ver < 61) {
  2647. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2648. "expected: %d)\n",
  2649. sm_ver, 61);
  2650. return;
  2651. }
  2652. HostTensorGenerator<dtype::Int8> gen;
  2653. auto graph = ComputingGraph::make();
  2654. graph->options().graph_opt_level = 0;
  2655. auto mkvar = [&](const char* name, const TensorShape& shp,
  2656. const DType& dtype) {
  2657. return opr::TypeCvt::make(
  2658. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2659. dtype);
  2660. };
  2661. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2662. const DType& dtype) {
  2663. return opr::TypeCvt::make(
  2664. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2665. .rename(name),
  2666. dtype);
  2667. };
  2668. auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(2.5f));
  2669. opr::ConvBias::Param param_conv_bias;
  2670. param_conv_bias.format = opr::ConvBias::Param::Format::NCHW;
  2671. param_conv_bias.stride_h = param_conv_bias.stride_w = 1;
  2672. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2673. param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2674. // dense
  2675. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2676. auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  2677. b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2678. auto conv1 = opr::ConvBiasForward::make(
  2679. x, w1, b1, param_conv_bias, {},
  2680. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2681. // group
  2682. // icpg != 1 && ocpg != 1
  2683. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2684. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  2685. b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2686. auto conv2 = opr::ConvBiasForward::make(
  2687. conv1, w2, b2, param_conv_bias, {},
  2688. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2689. opr::Convolution::Param param_deconv;
  2690. param_deconv.format = opr::Convolution::Param::Format::NCHW;
  2691. param_deconv.stride_h = param_deconv.stride_w = 2;
  2692. param_deconv.pad_h = param_deconv.pad_w = 2;
  2693. // dense
  2694. param_deconv.sparse = opr::Convolution::Param::Sparse::DENSE;
  2695. auto w3 = mkcvar("w3", {8, 8, 4, 4}, dtype::QuantizedS8(2.5f));
  2696. auto deconv1 = opr::ConvolutionBackwardData::make_deconv(
  2697. conv2, w3, param_deconv, {},
  2698. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2699. auto deconv1_fp32 = opr::TypeCvt::make(deconv1, dtype::Float32());
  2700. auto y = deconv1_fp32 + opr::TypeCvt::make(b2, dtype::Float32());
  2701. SymbolVar y_opt;
  2702. {
  2703. auto options = gopt::OptimizeForInferenceOptions{};
  2704. options.enable_nchw4();
  2705. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2706. }
  2707. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4,
  2708. find_opr<opr::ConvBias>(y_opt).param().format);
  2709. ASSERT_EQ(opr::ConvolutionBackwardData::Param::Format::NCHW4,
  2710. find_opr<opr::ConvolutionBackwardData>(y_opt).param().format);
  2711. auto nr_reshape = find_opr_num<mgb::opr::Reshape>(y_opt);
  2712. ASSERT_EQ(2u, nr_reshape);
  2713. graph->compile({{y_opt, {}}})
  2714. ->to_json()
  2715. ->writeto_fpath(output_file(
  2716. "TestGoptInference.ConvertFormatNCHW4GPU.json"));
  2717. HostTensorND host_y, host_y_opt;
  2718. auto func = graph->compile({make_callback_copy(y, host_y),
  2719. make_callback_copy(y_opt, host_y_opt)});
  2720. func->execute();
  2721. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2722. }
  2723. TEST(TestGoptInference, ConvertFormatNCHW4FloatGPU) {
  2724. REQUIRE_GPU(1);
  2725. auto cn = CompNode::load("gpu0");
  2726. cn.activate();
  2727. REQUIRE_CUDA_COMPUTE_CAPABILITY_EQ(6, 1);
  2728. HostTensorGenerator<> gen;
  2729. auto graph = ComputingGraph::make();
  2730. graph->options().graph_opt_level = 0;
  2731. auto mkvar = [&](const char* name, const TensorShape& shp,
  2732. const DType& dtype) {
  2733. return opr::TypeCvt::make(
  2734. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2735. dtype);
  2736. };
  2737. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2738. const DType& dtype) {
  2739. return opr::TypeCvt::make(
  2740. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2741. .rename(name),
  2742. dtype);
  2743. };
  2744. auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(1.2f));
  2745. opr::ConvBias::Param param_conv_bias;
  2746. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2747. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2748. // conv1, with bias
  2749. auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(1.3f)),
  2750. b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::Float32());
  2751. auto conv1 = opr::ConvBias::make(x, w1, b1, param_conv_bias, {},
  2752. OperatorNodeConfig{dtype::Float32()});
  2753. // conv2, with bias and z
  2754. auto w2 = mkcvar("w2", {8, 4, 3, 3}, dtype::QuantizedS8(1.3f)),
  2755. b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::Float32()),
  2756. z2 = mkcvar("z2", {2, 8, 16, 16}, dtype::Float32());
  2757. auto conv2 = opr::ConvBias::make(x, w2, b2, z2, param_conv_bias, {},
  2758. OperatorNodeConfig{dtype::Float32()});
  2759. // conv3, relu
  2760. param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2761. auto w3 = mkcvar("w3", {8, 4, 3, 3}, dtype::QuantizedS8(1.3f)),
  2762. b3 = mkcvar("b3", {1, 8, 1, 1}, dtype::Float32()),
  2763. z3 = mkcvar("z3", {2, 8, 16, 16}, dtype::Float32());
  2764. auto conv3 = opr::ConvBias::make(x, w3, b3, z3, param_conv_bias, {},
  2765. OperatorNodeConfig{dtype::Float32()});
  2766. auto y = conv1 + conv2 + conv3;
  2767. SymbolVar y_opt;
  2768. {
  2769. auto options = gopt::OptimizeForInferenceOptions{};
  2770. options.enable_nchw4();
  2771. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2772. }
  2773. bool succ = true;
  2774. auto cb = [&succ](cg::OperatorNodeBase* opr) {
  2775. if (opr->same_type<opr::ConvBias>()) {
  2776. auto& conv_bias = opr->cast_final_safe<opr::ConvBias>();
  2777. if (conv_bias.param().format !=
  2778. opr::ConvBias::Param::Format::NCHW4_NCHW) {
  2779. succ = false;
  2780. }
  2781. }
  2782. };
  2783. cg::DepOprIter{cb}.add(y_opt);
  2784. ASSERT_TRUE(succ);
  2785. HostTensorND host_y, host_y_opt;
  2786. auto func = graph->compile({make_callback_copy(y, host_y),
  2787. make_callback_copy(y_opt, host_y_opt)});
  2788. func->execute();
  2789. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  2790. }
  2791. #endif
  2792. TEST(TestGoptInference, ConvertFormatNCHW4NonConvOpr) {
  2793. auto cn = CompNode::load("xpu0");
  2794. HostTensorGenerator<dtype::Int8> gen;
  2795. auto graph = ComputingGraph::make();
  2796. graph->options().graph_opt_level = 0;
  2797. auto mkvar = [&](const char* name, const TensorShape& shp,
  2798. const DType& dtype) {
  2799. return opr::TypeCvt::make(
  2800. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2801. dtype);
  2802. };
  2803. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2804. const DType& dtype) {
  2805. return opr::TypeCvt::make(
  2806. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2807. .rename(name),
  2808. dtype);
  2809. };
  2810. auto mkcvarf32 = [&](const char* name, const TensorShape& shp) {
  2811. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2812. .rename(name);
  2813. };
  2814. auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(2.5f));
  2815. opr::ConvBias::Param param_conv_bias;
  2816. param_conv_bias.format = opr::ConvBias::Param::Format::NCHW;
  2817. param_conv_bias.stride_h = param_conv_bias.stride_w = 1;
  2818. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2819. param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2820. // dense
  2821. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2822. auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  2823. b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2824. auto conv1 = opr::ConvBiasForward::make(
  2825. x, w1, b1, param_conv_bias, {},
  2826. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2827. // test Resize
  2828. auto shape_of = opr::GetVarShape::make(x);
  2829. auto subtensor = opr::Subtensor::make(
  2830. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  2831. 0, x.make_scalar(2), None, x.make_scalar(1))});
  2832. opr::Resize::Param param_resize;
  2833. param_resize.format = opr::Resize::Param::Format::NCHW;
  2834. auto resize = opr::ResizeForward::make(conv1, subtensor * 2, param_resize);
  2835. // test WarpPerspective
  2836. auto mat = mkcvarf32("mat", {2, 3, 3}),
  2837. warp = opr::WarpPerspectiveForward::make(
  2838. resize, mat, nullptr, cg::var_from_tensor_shape(x, {32, 32}));
  2839. opr::Pooling::Param pool_param;
  2840. pool_param.format = opr::Pooling::Param::Format::NCHW;
  2841. // test Pooling
  2842. auto pool = opr::Pooling::make(warp, pool_param);
  2843. // group
  2844. // icpg != 1 && ocpg != 1
  2845. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2846. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  2847. b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2848. auto conv2 = opr::ConvBiasForward::make(
  2849. pool, w2, b2, param_conv_bias, {},
  2850. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2851. auto add = opr::ElemwiseMultiType::make(
  2852. {conv1, conv2}, {opr::ElemwiseMultiType::Param::Mode::QADD},
  2853. OperatorNodeConfig{dtype::QuantizedS8{1.2f}});
  2854. auto y = opr::TypeCvt::make(add, dtype::Float32());
  2855. SymbolVar y_opt;
  2856. {
  2857. auto options = gopt::OptimizeForInferenceOptions{};
  2858. options.enable_nchw4();
  2859. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2860. }
  2861. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2862. ASSERT_EQ(2u, nr_dimshuffle);
  2863. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4,
  2864. find_opr<opr::ConvBias>(y_opt).param().format);
  2865. ASSERT_EQ(opr::ResizeForward::Param::Format::NCHW4,
  2866. find_opr<opr::ResizeForward>(y_opt).param().format);
  2867. ASSERT_EQ(opr::WarpPerspectiveForward::Param::Format::NCHW4,
  2868. find_opr<opr::WarpPerspectiveForward>(y_opt).param().format);
  2869. ASSERT_EQ(opr::PoolingForward::Param::Format::NCHW4,
  2870. find_opr<opr::PoolingForward>(y_opt).param().format);
  2871. }
  2872. TEST(TestGoptInference, ConvertFormatNCHW4) {
  2873. HostTensorGenerator<> gen;
  2874. auto cn = CompNode::load("cpu0");
  2875. auto graph = ComputingGraph::make();
  2876. graph->options().graph_opt_level = 0;
  2877. auto mkvar = [&](const char* name, const TensorShape& shp) {
  2878. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  2879. };
  2880. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  2881. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2882. .rename(name);
  2883. };
  2884. auto x = mkvar("x", {2, 4, 16, 16});
  2885. // ConvBias test dense
  2886. opr::ConvBias::Param param_conv_bias;
  2887. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2888. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2889. auto w1 = mkcvar("w1", {8, 4, 3, 3}), b1 = mkcvar("b1", {1, 8, 1, 1});
  2890. auto conv1 = opr::ConvBias::make(x, w1, b1, param_conv_bias);
  2891. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2892. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1});
  2893. auto conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  2894. // Convolution
  2895. opr::Convolution::Param param_conv;
  2896. param_conv.pad_h = param_conv.pad_w = 1;
  2897. param_conv.sparse = opr::Convolution::Param::Sparse::DENSE;
  2898. auto w3 = mkcvar("w3", {8, 8, 3, 3});
  2899. auto y = opr::Convolution::make(conv2, w3, param_conv);
  2900. SymbolVar y_opt;
  2901. {
  2902. auto options = gopt::OptimizeForInferenceOptions{};
  2903. options.enable_nchw4();
  2904. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2905. }
  2906. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW,
  2907. find_opr<opr::ConvBias>(y_opt).param().format);
  2908. graph->compile({{y_opt, {}}})
  2909. ->to_json()
  2910. ->writeto_fpath(
  2911. output_file("TestGoptInference.ConvertFormatNCHW4.json"));
  2912. HostTensorND host_y_opt, host_y;
  2913. auto func = graph->compile({make_callback_copy(y, host_y),
  2914. make_callback_copy(y_opt, host_y_opt)});
  2915. func->execute();
  2916. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  2917. }
  2918. TEST(TestGoptInference, ConvertFormatNCHW4Ic3) {
  2919. REQUIRE_GPU(1);
  2920. auto cn = CompNode::load("gpu0");
  2921. cn.activate();
  2922. REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
  2923. HostTensorGenerator<dtype::Float32, RandomDistribution::UNIFORM> gen{
  2924. 1.2f, 127 * 127};
  2925. auto graph = ComputingGraph::make();
  2926. graph->options().graph_opt_level = 0;
  2927. auto mkvar = [&](const char* name, const TensorShape& shp,
  2928. const DType& dtype) {
  2929. return opr::TypeCvt::make(
  2930. opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name),
  2931. dtype);
  2932. };
  2933. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2934. const DType& dtype) {
  2935. return opr::TypeCvt::make(
  2936. opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name),
  2937. dtype);
  2938. };
  2939. auto x = mkvar("x", {2, 3, 16, 16}, dtype::QuantizedS8(2.5f));
  2940. // ConvBias test dense
  2941. opr::ConvBias::Param param_conv_bias;
  2942. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2943. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2944. auto w1 = mkcvar("w1", {8, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  2945. b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2946. auto conv1 =
  2947. opr::ConvBias::make(x, w1, b1, param_conv_bias, {},
  2948. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2949. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2950. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  2951. b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2952. auto conv2 =
  2953. opr::ConvBias::make(conv1, w2, b2, param_conv_bias, {},
  2954. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2955. auto y = opr::TypeCvt::make(conv2, dtype::Float32());
  2956. SymbolVar y_opt;
  2957. {
  2958. auto options = gopt::OptimizeForInferenceOptions{};
  2959. options.enable_nchw4();
  2960. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2961. }
  2962. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4,
  2963. find_opr<opr::ConvBias>(y_opt).param().format);
  2964. graph->compile({{y_opt, {}}})
  2965. ->to_json()
  2966. ->writeto_fpath(output_file(
  2967. "TestGoptInference.ConvertFormatNCHW4Ic3.json"));
  2968. HostTensorND host_y_opt, host_y;
  2969. auto func = graph->compile({make_callback_copy(y, host_y),
  2970. make_callback_copy(y_opt, host_y_opt)});
  2971. func->execute();
  2972. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  2973. }
  2974. TEST(TestGoptInference, ConvertFormatNCHW88) {
  2975. HostTensorGenerator<> gen;
  2976. auto cn = CompNode::load("cpu0");
  2977. auto graph = ComputingGraph::make();
  2978. graph->options().graph_opt_level = 0;
  2979. auto mkvar = [&](const char* name, const TensorShape& shp) {
  2980. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  2981. };
  2982. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  2983. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2984. .rename(name);
  2985. };
  2986. auto host_x = gen({2, 3, 16, 16}, cn);
  2987. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  2988. //! Hybrid nchw88 mode
  2989. opr::Convolution::Param param_conv;
  2990. param_conv.pad_h = param_conv.pad_w = 1;
  2991. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  2992. conv1 = opr::Convolution::make(x, w1, param_conv, {},
  2993. OperatorNodeConfig("conv1"));
  2994. //! channel wise
  2995. opr::ConvBias::Param param_conv_bias;
  2996. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2997. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2998. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  2999. conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  3000. //! group
  3001. auto w3 = mkcvar("w3", {1, 8, 8, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  3002. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  3003. auto shape_of = opr::GetVarShape::make(conv3);
  3004. auto subtensor = opr::Subtensor::make(
  3005. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  3006. 0, x.make_scalar(2), None, x.make_scalar(1))});
  3007. opr::Resize::Param param_resize;
  3008. param_resize.format = opr::Resize::Param::Format::NCHW;
  3009. auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
  3010. auto mat = mkcvar("mat", {2, 3, 3}),
  3011. warp = opr::WarpPerspectiveForward::make(
  3012. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  3013. auto b = mkvar("b", {1, 8, 1, 1}),
  3014. elem = opr::Elemwise::make({warp + b},
  3015. opr::Elemwise::Param::Mode::RELU);
  3016. //! Dense
  3017. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3018. auto w4 = mkcvar("w4", {2, 6, 4, 3, 3}), b4 = mkcvar("b4", {1, 12, 1, 1}),
  3019. conv4 = opr::ConvBias::make(elem, w4, b4, param_conv_bias);
  3020. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3021. auto w5 = mkcvar("w5", {8, 12, 3, 3}), b5 = mkcvar("b5", {1, 8, 1, 1}),
  3022. conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias);
  3023. auto w6 = mkcvar("w6", {8, 8, 3, 3}), b6 = mkcvar("b6", {1, 8, 1, 1}),
  3024. y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias);
  3025. SymbolVar y_opt;
  3026. {
  3027. auto options = gopt::OptimizeForInferenceOptions{};
  3028. options.enable_nchw88();
  3029. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3030. }
  3031. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW88,
  3032. find_opr<opr::Convolution>(y_opt, "conv1").param().format);
  3033. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW88,
  3034. find_opr<opr::ConvBias>(y_opt).param().format);
  3035. graph->compile({{y_opt, {}}})
  3036. ->to_json()
  3037. ->writeto_fpath(
  3038. output_file("TestGoptInference.ConvertFormatNCHW88.json"));
  3039. HostTensorND host_y_opt, host_y;
  3040. auto func = graph->compile({make_callback_copy(y, host_y),
  3041. make_callback_copy(y_opt, host_y_opt)});
  3042. func->execute();
  3043. //! meybe go to winograd in x86-32, so set error 1e-1
  3044. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3045. *host_x = *gen({2, 3, 32, 32}, cn);
  3046. func->execute();
  3047. //! meybe go to winograd in x86-32, so set error 1e-1
  3048. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3049. }
  3050. TEST(TestGoptInference, ConvertFormatNCHW44) {
  3051. HostTensorGenerator<> gen;
  3052. auto cn = CompNode::load("cpu0");
  3053. auto graph = ComputingGraph::make();
  3054. graph->options().graph_opt_level = 0;
  3055. auto mkvar = [&](const char* name, const TensorShape& shp) {
  3056. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  3057. };
  3058. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3059. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3060. .rename(name);
  3061. };
  3062. auto mkcvar_dtype = [&](const char* name, const TensorShape& shp,
  3063. const DType& dtype) {
  3064. return opr::TypeCvt::make(
  3065. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3066. .rename(name),
  3067. dtype);
  3068. };
  3069. auto host_x = gen({2, 3, 16, 16}, cn);
  3070. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  3071. //! Hybrid nchw44 mode
  3072. opr::Convolution::Param param_conv;
  3073. param_conv.pad_h = param_conv.pad_w = 1;
  3074. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  3075. conv1 = opr::Convolution::make(x, w1, param_conv, {},
  3076. OperatorNodeConfig("conv1"));
  3077. //! no supported hybrid nchw44
  3078. opr::ConvBias::Param param_conv_bias_pad0;
  3079. param_conv_bias_pad0.pad_h = param_conv_bias_pad0.pad_w = 0;
  3080. auto w1_f1 = mkcvar("w1_1", {8, 3, 1, 1});
  3081. auto conv1_f1 = opr::ConvBias::make(x, w1_f1, param_conv_bias_pad0, {},
  3082. OperatorNodeConfig("conv1_f1"));
  3083. auto conv1_add = conv1_f1 * conv1;
  3084. auto conv_1_q8 = opr::TypeCvt::make(conv1_add, dtype::QuantizedS8(2.5f));
  3085. //! s8 dense conv
  3086. opr::ConvBias::Param param_conv_bias;
  3087. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3088. auto w1_2 = mkcvar_dtype("w1_2", {8, 8, 3, 3}, dtype::QuantizedS8(2.5f));
  3089. auto b1_2 = mkcvar_dtype("b1_2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  3090. auto conv_1_2 = opr::ConvBias::make(
  3091. conv_1_q8, w1_2, b1_2, param_conv_bias, {},
  3092. OperatorNodeConfig{"conv_1_2", cn, dtype::QuantizedS8{6.25f}});
  3093. auto conv_1_2_fp32 = opr::TypeCvt::make(conv_1_2, dtype::Float32());
  3094. //! channel wise
  3095. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3096. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  3097. conv2 = opr::ConvBias::make(conv_1_2_fp32, w2, b2, param_conv_bias);
  3098. //! group
  3099. auto w3 = mkcvar("w3", {2, 4, 4, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  3100. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  3101. auto shape_of = opr::GetVarShape::make(conv3);
  3102. auto subtensor = opr::Subtensor::make(
  3103. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  3104. 0, x.make_scalar(2), None, x.make_scalar(1))});
  3105. opr::Resize::Param param_resize;
  3106. param_resize.format = opr::Resize::Param::Format::NCHW;
  3107. auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
  3108. auto mat = mkcvar("mat", {2, 3, 3}),
  3109. warp = opr::WarpPerspectiveForward::make(
  3110. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  3111. auto b = mkvar("b", {1, 8, 1, 1}),
  3112. elem = opr::Elemwise::make({warp + b},
  3113. opr::Elemwise::Param::Mode::RELU);
  3114. //! Dense
  3115. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3116. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3117. auto w3_2 = mkcvar("w3_2", {16, 8, 3, 3}),
  3118. b3_2 = mkcvar("b3_2", {1, 16, 1, 1}),
  3119. conv3_2 = opr::ConvBias::make(elem, w3_2, b3_2, param_conv_bias, {},
  3120. OperatorNodeConfig("conv3_2"));
  3121. //! s8 group conv
  3122. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3123. auto conv3_2_q8 = opr::TypeCvt::make(conv3_2, dtype::QuantizedS8(2.5f));
  3124. auto w3_3 = mkcvar_dtype("w3_3", {4, 8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  3125. b3_3 = mkcvar_dtype("b3_3", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f)),
  3126. conv3_3_q = opr::ConvBias::make(
  3127. conv3_2_q8, w3_3, b3_3, param_conv_bias, {},
  3128. OperatorNodeConfig{"conv_3_3_q", cn,
  3129. dtype::QuantizedS8{6.25f}});
  3130. auto conv3_3 = opr::TypeCvt::make(conv3_3_q, dtype::Float32());
  3131. //! Dense
  3132. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3133. auto w4 = mkcvar("w4", {16, 32, 3, 3}), b4 = mkcvar("b4", {1, 16, 1, 1}),
  3134. conv4 = opr::ConvBias::make(conv3_3, w4, b4, param_conv_bias, {},
  3135. OperatorNodeConfig("conv4"));
  3136. auto w4_1 = mkcvar("w4_1", {16, 32, 1, 1}),
  3137. b4_1 = mkcvar("b4_1", {2, 16, 4, 4}),
  3138. conv4_1 =
  3139. opr::ConvBias::make(conv3_3, w4_1, b4_1, param_conv_bias_pad0,
  3140. {}, OperatorNodeConfig("conv4_1"));
  3141. auto conv4_add = conv4 + conv4_1;
  3142. auto w5 = mkcvar("w5", {6, 16, 3, 3}), b5 = mkcvar("b5", {1, 6, 1, 1}),
  3143. conv5 = opr::ConvBias::make(conv4_add, w5, b5, param_conv_bias, {},
  3144. OperatorNodeConfig("conv5"));
  3145. auto w6 = mkcvar("w6", {4, 6, 3, 3}), b6 = mkcvar("b6", {1, 4, 1, 1}),
  3146. y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias, {},
  3147. OperatorNodeConfig("conv6"));
  3148. SymbolVar y_opt;
  3149. auto options = gopt::OptimizeForInferenceOptions{};
  3150. options.enable_fuse_conv_bias_nonlinearity();
  3151. options.enable_nchw44();
  3152. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3153. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  3154. find_opr<opr::Convolution>(y_opt, "conv1").param().format);
  3155. ASSERT_EQ(opr::Convolution::Param::Format::NCHW,
  3156. find_opr<opr::ConvBias>(y_opt, "conv1_f1").param().format);
  3157. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  3158. find_opr<opr::ConvBias>(y_opt, "conv_1_2").param().format);
  3159. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  3160. find_opr<opr::ConvBias>(y_opt, "conv3_2").param().format);
  3161. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  3162. find_opr<opr::ConvBias>(y_opt, "conv_3_3_q").param().format);
  3163. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  3164. find_opr<opr::ConvBias>(y_opt, "conv4").param().format);
  3165. ASSERT_EQ(opr::Convolution::Param::Format::NCHW,
  3166. find_opr<opr::ConvBias>(y_opt, "conv5").param().format);
  3167. graph->compile({{y_opt, {}}})
  3168. ->to_json()
  3169. ->writeto_fpath(
  3170. output_file("TestGoptInference.ConvertFormatNCHW44.json"));
  3171. HostTensorND host_y_opt, host_y;
  3172. auto func = graph->compile({make_callback_copy(y, host_y),
  3173. make_callback_copy(y_opt, host_y_opt)});
  3174. func->execute();
  3175. //! meybe go to winograd in x86-32, so set error 1e-1
  3176. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3177. *host_x = *gen({2, 3, 32, 32}, cn);
  3178. func->execute();
  3179. //! meybe go to winograd in x86-32, so set error 1e-1
  3180. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3181. }
  3182. TEST(TestGoptInference, ConvertFormatNCHW44MultiInput) {
  3183. HostTensorGenerator<> gen;
  3184. auto cn = CompNode::load("cpu0");
  3185. auto graph = ComputingGraph::make();
  3186. graph->options().graph_opt_level = 0;
  3187. auto mkvar = [&](const char* name, const TensorShape& shp) {
  3188. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  3189. };
  3190. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3191. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3192. .rename(name);
  3193. };
  3194. auto host_x1 = gen({1, 8, 16, 16}, cn);
  3195. auto host_x2 = gen({1, 1, 16, 16}, cn);
  3196. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3197. opr::Convolution::Param param_conv;
  3198. param_conv.pad_h = param_conv.pad_w = 1;
  3199. auto w1 = mkcvar("w1", {8, 8, 3, 3}),
  3200. conv1 = opr::Convolution::make(x, w1, param_conv);
  3201. auto b = mkvar("b", {1, 1, 16, 16}),
  3202. elem0 = opr::Elemwise::make({conv1 + b + b},
  3203. opr::Elemwise::Param::Mode::RELU);
  3204. auto w2 = mkcvar("w2", {8, 8, 3, 3}),
  3205. conv2 = opr::Convolution::make(elem0, w2, param_conv);
  3206. auto b1 = mkvar("b1", {1}),
  3207. y = opr::Elemwise::make({conv2 + b1 + b},
  3208. opr::Elemwise::Param::Mode::RELU);
  3209. SymbolVar y_opt;
  3210. auto options = gopt::OptimizeForInferenceOptions{};
  3211. options.enable_nchw44();
  3212. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3213. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  3214. find_opr<opr::Convolution>(y_opt).param().format);
  3215. graph->compile({{y_opt, {}}})
  3216. ->to_json()
  3217. ->writeto_fpath(output_file(
  3218. "TestGoptInference.ConvertFormatNCHW44MultiInput.json"));
  3219. HostTensorND host_y_opt, host_y;
  3220. auto func = graph->compile({make_callback_copy(y, host_y),
  3221. make_callback_copy(y_opt, host_y_opt)});
  3222. func->execute();
  3223. //! meybe go to winograd in x86-32, so set error 1e-1
  3224. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3225. }
  3226. TEST(TestGoptInference, ConvertFormatNCHW44Reshape) {
  3227. HostTensorGenerator<> gen;
  3228. auto cn = CompNode::load("cpu0");
  3229. auto graph = ComputingGraph::make();
  3230. graph->options().graph_opt_level = 0;
  3231. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3232. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3233. .rename(name);
  3234. };
  3235. auto host_x1 = gen({1, 8, 16, 16}, cn);
  3236. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3237. opr::Convolution::Param param_conv;
  3238. param_conv.pad_h = param_conv.pad_w = 1;
  3239. auto w1 = mkcvar("w1", {8, 8, 3, 3}),
  3240. conv1 = opr::Convolution::make(x, w1, param_conv);
  3241. auto y = opr::Reshape::make(conv1, {8, 16 * 16});
  3242. SymbolVar y_opt;
  3243. auto options = gopt::OptimizeForInferenceOptions{};
  3244. options.enable_nchw44();
  3245. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3246. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  3247. find_opr<opr::Convolution>(y_opt).param().format);
  3248. graph->compile({{y_opt, {}}})
  3249. ->to_json()
  3250. ->writeto_fpath(output_file(
  3251. "TestGoptInference.ConvertFormatNCHW44Reshape.json"));
  3252. HostTensorND host_y_opt, host_y;
  3253. auto func = graph->compile({make_callback_copy(y, host_y),
  3254. make_callback_copy(y_opt, host_y_opt)});
  3255. func->execute();
  3256. //! meybe go to winograd in x86-32, so set error 1e-1
  3257. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3258. }
  3259. TEST(TestGoptInference, ConvertFormatNCHW44_DOT) {
  3260. HostTensorGenerator<> gen;
  3261. auto cn = CompNode::load("cpu0");
  3262. auto graph = ComputingGraph::make();
  3263. graph->options().graph_opt_level = 0;
  3264. auto mkvar = [&](const char* name, const TensorShape& shp) {
  3265. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  3266. };
  3267. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3268. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3269. .rename(name);
  3270. };
  3271. auto mkcvar_dtype = [&](const char* name, const TensorShape& shp,
  3272. const DType& dtype) {
  3273. return opr::TypeCvt::make(
  3274. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3275. .rename(name),
  3276. dtype);
  3277. };
  3278. auto host_x = gen({2, 3, 16, 16}, cn);
  3279. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  3280. //! Hybrid nchw44 mode
  3281. opr::Convolution::Param param_conv;
  3282. param_conv.pad_h = param_conv.pad_w = 1;
  3283. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  3284. conv1 = opr::Convolution::make(x, w1, param_conv, {},
  3285. OperatorNodeConfig("conv1"));
  3286. printf("create conv1 %s\n",
  3287. conv1.node()->owner_opr()->dyn_typeinfo()->name);
  3288. param_conv.pad_h = param_conv.pad_w = 1;
  3289. //! no supported hybrid nchw44
  3290. opr::ConvBias::Param param_conv_bias_pad0;
  3291. param_conv_bias_pad0.pad_h = param_conv_bias_pad0.pad_w = 0;
  3292. auto b1 = mkcvar("b1", {1, 8, 1, 1});
  3293. auto w1_f1 = mkcvar("w1_1", {8, 3, 1, 1});
  3294. auto conv1_f1 = opr::ConvBias::make(x, w1_f1, b1, param_conv_bias_pad0, {},
  3295. OperatorNodeConfig("conv1_f1"));
  3296. //! hybrid dot
  3297. auto x_s = opr::TypeCvt::make(x, dtype::QuantizedS8(2.5f));
  3298. auto w1_3 = mkcvar_dtype("w1_3", {8, 3, 3, 3}, dtype::QuantizedS8(2.5f));
  3299. auto conv1_3_q = opr::Convolution::make(
  3300. x_s, w1_3, param_conv, {},
  3301. OperatorNodeConfig{"conv1_3_q", cn, dtype::QuantizedS8{6.25f}});
  3302. auto conv1_3 = opr::TypeCvt::make(conv1_3_q, dtype::Float32());
  3303. auto conv1_add = conv1_f1 * conv1 * conv1_3;
  3304. auto conv_1_q8 = opr::TypeCvt::make(conv1_add, dtype::QuantizedS8(2.5f));
  3305. //! s8 dense conv
  3306. opr::ConvBias::Param param_conv_bias;
  3307. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3308. auto w1_2 = mkcvar_dtype("w1_2", {8, 8, 3, 3}, dtype::QuantizedS8(2.5f));
  3309. auto conv_1_2 = opr::ConvBias::make(
  3310. conv_1_q8, w1_2, param_conv_bias, {},
  3311. OperatorNodeConfig{"conv_1_2", cn, dtype::QuantizedS8{6.25f}});
  3312. auto conv_1_2_fp32 = opr::TypeCvt::make(conv_1_2, dtype::Float32());
  3313. //! channel wise
  3314. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3315. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  3316. conv2 = opr::ConvBias::make(conv_1_2_fp32, w2, b2, param_conv_bias);
  3317. //! group
  3318. auto w3 = mkcvar("w3", {2, 4, 4, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  3319. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  3320. auto shape_of = opr::GetVarShape::make(conv3);
  3321. auto subtensor = opr::Subtensor::make(
  3322. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  3323. 0, x.make_scalar(2), None, x.make_scalar(1))});
  3324. opr::Resize::Param param_resize;
  3325. param_resize.format = opr::Resize::Param::Format::NCHW;
  3326. auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
  3327. auto mat = mkcvar("mat", {2, 3, 3}),
  3328. warp = opr::WarpPerspectiveForward::make(
  3329. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  3330. auto b = mkvar("b", {1, 8, 1, 1}),
  3331. elem = opr::Elemwise::make({warp + b},
  3332. opr::Elemwise::Param::Mode::RELU);
  3333. //! Dense
  3334. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3335. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3336. auto w3_2 = mkcvar("w3_2", {16, 8, 3, 3}),
  3337. b3_2 = mkcvar("b3_2", {1, 16, 1, 1}),
  3338. conv3_2 = opr::ConvBias::make(elem, w3_2, b3_2, param_conv_bias, {},
  3339. OperatorNodeConfig("conv3_2"));
  3340. //! s8 group conv
  3341. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3342. auto conv3_2_q8 = opr::TypeCvt::make(conv3_2, dtype::QuantizedS8(2.5f));
  3343. auto w3_3 = mkcvar_dtype("w3_3", {4, 8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  3344. b3_3 = mkcvar_dtype("b3_3", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f)),
  3345. conv3_3_q = opr::ConvBias::make(
  3346. conv3_2_q8, w3_3, b3_3, param_conv_bias, {},
  3347. OperatorNodeConfig{"conv_3_3_q", cn,
  3348. dtype::QuantizedS8{6.25f}});
  3349. auto conv3_3 = opr::TypeCvt::make(conv3_3_q, dtype::Float32());
  3350. //! Dense
  3351. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3352. auto w4 = mkcvar("w4", {4, 32, 3, 3}), b4 = mkcvar("b4", {1, 4, 1, 1}),
  3353. conv4 = opr::ConvBias::make(conv3_3, w4, b4, param_conv_bias, {},
  3354. OperatorNodeConfig("conv4"));
  3355. auto w5 = mkcvar("w5", {6, 4, 3, 3}), b5 = mkcvar("b5", {1, 6, 1, 1}),
  3356. conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias, {},
  3357. OperatorNodeConfig("conv5"));
  3358. auto w6 = mkcvar("w6", {4, 6, 3, 3}), b6 = mkcvar("b6", {1, 4, 1, 1}),
  3359. y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias, {},
  3360. OperatorNodeConfig("conv6"));
  3361. SymbolVar y_opt;
  3362. auto options = gopt::OptimizeForInferenceOptions{};
  3363. options.enable_fuse_conv_bias_nonlinearity();
  3364. options.enable_nchw44_dot();
  3365. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3366. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  3367. find_opr<opr::Convolution>(y_opt, "conv1").param().format);
  3368. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44_DOT,
  3369. find_opr<opr::Convolution>(y_opt, "conv1_3_q").param().format);
  3370. ASSERT_EQ(opr::Convolution::Param::Format::NCHW,
  3371. find_opr<opr::ConvBias>(y_opt, "conv1_f1").param().format);
  3372. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44_DOT,
  3373. find_opr<opr::ConvBias>(y_opt, "conv_1_2").param().format);
  3374. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  3375. find_opr<opr::ConvBias>(y_opt, "conv3_2").param().format);
  3376. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44_DOT,
  3377. find_opr<opr::ConvBias>(y_opt, "conv_3_3_q").param().format);
  3378. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  3379. find_opr<opr::ConvBias>(y_opt, "conv4").param().format);
  3380. ASSERT_EQ(opr::Convolution::Param::Format::NCHW,
  3381. find_opr<opr::ConvBias>(y_opt, "conv5").param().format);
  3382. graph->compile({{y_opt, {}}})
  3383. ->to_json()
  3384. ->writeto_fpath(output_file(
  3385. "TestGoptInference.ConvertFormatNCHW44_DOT.json"));
  3386. HostTensorND host_y_opt, host_y;
  3387. auto func = graph->compile({make_callback_copy(y, host_y),
  3388. make_callback_copy(y_opt, host_y_opt)});
  3389. func->execute();
  3390. //! meybe go to winograd in x86-32, so set error 1e-1
  3391. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3392. *host_x = *gen({2, 3, 32, 32}, cn);
  3393. func->execute();
  3394. //! meybe go to winograd in x86-32, so set error 1e-1
  3395. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3396. }
  3397. TEST(TestGoptInference, ConvertFormatCD4GroupOneConv) {
  3398. // hwcd4 is only supported in naive handle
  3399. NaiveMegDNNHandleScope naive_megdnn_handle;
  3400. HostTensorGenerator<> gen;
  3401. auto cn = CompNode::load("cpu0");
  3402. auto graph = ComputingGraph::make();
  3403. graph->options().graph_opt_level = 0;
  3404. auto mkvar = [&](const char* name, const TensorShape& shp) {
  3405. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  3406. };
  3407. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3408. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3409. .rename(name);
  3410. };
  3411. auto x = mkvar("x", {1, 3, 128, 128});
  3412. // ConvBias
  3413. opr::ConvBias::Param param_conv_bias;
  3414. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3415. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3416. auto w1 = mkcvar("w1", {1, 16, 3, 3, 3}), b1 = mkcvar("b1", {1, 16, 1, 1});
  3417. auto conv1 = opr::ConvBias::make(x, w1, b1, param_conv_bias);
  3418. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3419. // Convolution
  3420. opr::Convolution::Param param_conv;
  3421. param_conv.pad_h = param_conv.pad_w = 1;
  3422. param_conv.sparse = opr::Convolution::Param::Sparse::GROUP;
  3423. auto w3 = mkcvar("w3", {1, 16, 16, 3, 3});
  3424. auto y = opr::Convolution::make(conv1, w3, param_conv);
  3425. SymbolVar y_opt;
  3426. {
  3427. auto options = gopt::OptimizeForInferenceOptions{};
  3428. options.enable_nhwcd4();
  3429. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3430. }
  3431. HostTensorND host_y_opt, host_y;
  3432. auto func = graph->compile({make_callback_copy(y, host_y),
  3433. make_callback_copy(y_opt, host_y_opt)});
  3434. func->execute();
  3435. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  3436. }
  3437. #if MGB_CUDA
  3438. TEST(TestGoptInference, PreProcessCase0) {
  3439. REQUIRE_GPU(1);
  3440. HostTensorGenerator<dtype::Quantized8Asymm, RandomDistribution::UNIFORM>
  3441. gen(dt_quint8(0), dt_quint8(50), 1, 128, 1234);
  3442. auto cn = CompNode::load("gpu0");
  3443. auto graph = ComputingGraph::make();
  3444. graph->options().graph_opt_level = 0;
  3445. size_t n = 1;
  3446. size_t c = 3;
  3447. size_t h = 16;
  3448. size_t w = 16;
  3449. auto host_x1 = gen({n, c, h, w}, cn);
  3450. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3451. auto x_q8 = opr::TypeCvt::make(x, dtype::QuantizedS8(1.f), cn);
  3452. auto zero = DTypeScalar(dtype::QuantizedS8(1.f));
  3453. auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
  3454. auto pad_channel_tensor =
  3455. opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
  3456. auto paded_x = opr::Concat::make({x_q8, pad_channel_tensor}, 1, cn)
  3457. .reshape({n, 1, 4, h, w});
  3458. auto result = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
  3459. auto y = result;
  3460. SymbolVar y_opt;
  3461. auto options = gopt::OptimizeForInferenceOptions{};
  3462. options.enable_fuse_preprocess();
  3463. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3464. graph->compile({{y_opt, {}}})
  3465. ->to_json()
  3466. ->writeto_fpath(
  3467. output_file("TestGoptInference.PreProcessCase0.json"));
  3468. HostTensorND host_y_opt, host_y;
  3469. auto func = graph->compile({make_callback_copy(y, host_y),
  3470. make_callback_copy(y_opt, host_y_opt)});
  3471. func->execute();
  3472. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  3473. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::RelayoutFormat>());
  3474. }
  3475. TEST(TestGoptInference, PreProcessCase1) {
  3476. REQUIRE_GPU(1);
  3477. HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
  3478. auto cn = CompNode::load("gpu0");
  3479. auto graph = ComputingGraph::make();
  3480. graph->options().graph_opt_level = 0;
  3481. size_t n = 1;
  3482. size_t c = 3;
  3483. size_t h = 16;
  3484. size_t w = 16;
  3485. auto host_x1 = gen({n, c, h, w}, cn);
  3486. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3487. auto x_u8 = opr::TypeCvt::make(x, dtype::Float32(), cn);
  3488. auto x_s8 = x_u8 - 128;
  3489. auto zero = DTypeScalar(dtype::Float32());
  3490. auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
  3491. auto pad_channel_tensor =
  3492. opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
  3493. auto paded_x = opr::Concat::make({x_s8, pad_channel_tensor}, 1, cn)
  3494. .reshape({n, 1, 4, h, w});
  3495. auto nchw4_out = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
  3496. auto result = opr::TypeCvt::make(nchw4_out, dtype::QuantizedS8(1.f));
  3497. auto y = result;
  3498. SymbolVar y_opt;
  3499. auto options = gopt::OptimizeForInferenceOptions{};
  3500. options.enable_fuse_preprocess();
  3501. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3502. graph->compile({{y_opt, {}}})
  3503. ->to_json()
  3504. ->writeto_fpath(
  3505. output_file("TestGoptInference.PreProcessCase1.json"));
  3506. HostTensorND host_y_opt, host_y;
  3507. auto func = graph->compile({make_callback_copy(y, host_y),
  3508. make_callback_copy(y_opt, host_y_opt)});
  3509. func->execute();
  3510. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  3511. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::RelayoutFormat>());
  3512. }
  3513. TEST(TestGoptInference, WarpAndPreProcessCase0) {
  3514. REQUIRE_GPU(1);
  3515. HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
  3516. auto cn = CompNode::load("gpu0");
  3517. auto graph = ComputingGraph::make();
  3518. graph->options().graph_opt_level = 0;
  3519. size_t n = 1;
  3520. size_t c = 3;
  3521. size_t h = 16;
  3522. size_t w = 16;
  3523. auto host_x1 = gen({n, h, w, c}, cn);
  3524. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3525. auto mat_host = std::make_shared<HostTensorND>(cn, TensorShape{n, 3, 3},
  3526. dtype::Float32());
  3527. warp_perspective_mat_gen(*mat_host, n, h, w);
  3528. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  3529. opr::WarpPerspective::Param warp_param;
  3530. warp_param.format = opr::WarpPerspective::Param::Format::NHWC;
  3531. auto x_warp =
  3532. opr::WarpPerspective::make(x, mat, TensorShape{h, w}, warp_param);
  3533. auto x_nchw = opr::Dimshuffle::make(x_warp, {0, 3, 1, 2}, 4, cn);
  3534. auto x_u8 = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
  3535. auto x_s8 = x_u8 - 128;
  3536. auto zero = DTypeScalar(dtype::Float32());
  3537. auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
  3538. auto pad_channel_tensor =
  3539. opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
  3540. auto paded_x = opr::Concat::make({x_s8, pad_channel_tensor}, 1, cn)
  3541. .reshape({n, 1, 4, h, w});
  3542. auto nchw4_out = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
  3543. auto result = opr::TypeCvt::make(nchw4_out, dtype::QuantizedS8(1.f));
  3544. auto y = result;
  3545. SymbolVar y_opt;
  3546. auto options = gopt::OptimizeForInferenceOptions{};
  3547. options.enable_fuse_preprocess();
  3548. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3549. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::WarpPerspective>());
  3550. ASSERT_EQ(opr::WarpPerspective::Param::Format::NHWC_NCHW4_IC_SMALL,
  3551. find_opr<opr::WarpPerspective>(y_opt).param().format);
  3552. graph->compile({{y_opt, {}}})
  3553. ->to_json()
  3554. ->writeto_fpath(output_file(
  3555. "TestGoptInference.WarpAndPreProcessCase0.json"));
  3556. HostTensorND host_y_opt, host_y;
  3557. auto func = graph->compile({make_callback_copy(y, host_y),
  3558. make_callback_copy(y_opt, host_y_opt)});
  3559. func->execute();
  3560. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  3561. }
  3562. TEST(TestGoptInference, PreProcessCaseAutopadNCHW64) {
  3563. REQUIRE_GPU(1);
  3564. HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
  3565. auto cn = CompNode::load("gpu0");
  3566. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  3567. auto sm_ver = prop.major * 10 + prop.minor;
  3568. if (sm_ver < 75) {
  3569. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  3570. "expected: %d)\n",
  3571. sm_ver, 75);
  3572. return;
  3573. }
  3574. auto graph = ComputingGraph::make();
  3575. graph->options().graph_opt_level = 0;
  3576. auto mkcvar = [&](const char* name, const TensorShape& shp,
  3577. const DType& dtype) {
  3578. return opr::TypeCvt::make(
  3579. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3580. .rename(name),
  3581. dtype);
  3582. };
  3583. size_t n = 2;
  3584. size_t c = 3;
  3585. size_t h = 32;
  3586. size_t w = 32;
  3587. auto host_x1 = gen({n, c, h, w}, cn);
  3588. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3589. auto x_u8_fp32 = opr::TypeCvt::make(x, dtype::Float32(), cn);
  3590. auto x_s8_fp32 = x_u8_fp32 - 128;
  3591. auto x_s8 = opr::TypeCvt::make(x_s8_fp32, dtype::QuantizedS8(2.5f), cn);
  3592. auto weight = mkcvar("weight", {16, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  3593. bias = mkcvar("bias", {1, 16, 1, 1}, dtype::QuantizedS32(6.25f));
  3594. opr::ConvBias::Param param;
  3595. param.format = opr::ConvBias::Param::Format::NCHW;
  3596. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  3597. param.stride_h = param.stride_w = 2;
  3598. param.pad_h = param.pad_w = 1;
  3599. auto result =
  3600. opr::ConvBias::make(x_s8, weight, bias, param, {},
  3601. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  3602. auto y = result;
  3603. SymbolVar y_opt;
  3604. auto options = gopt::OptimizeForInferenceOptions{};
  3605. options.enable_nchw64();
  3606. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3607. graph->compile({{y_opt, {}}})
  3608. ->to_json()
  3609. ->writeto_fpath(output_file(
  3610. "TestGoptInference.PreProcessCaseAutopadNCHW64.json"));
  3611. HostTensorND host_y_opt, host_y;
  3612. auto func = graph->compile({make_callback_copy(y, host_y),
  3613. make_callback_copy(y_opt, host_y_opt)});
  3614. func->execute();
  3615. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  3616. ASSERT_TRUE(find_opr<opr::RelayoutFormat>(y_opt).param().mode ==
  3617. opr::RelayoutFormat::Param::Mode::NCHW_NCHW4);
  3618. }
  3619. TEST(TestGoptInference, WarpAndPreProcessCase1) {
  3620. REQUIRE_GPU(1);
  3621. HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
  3622. auto cn = CompNode::load("gpu0");
  3623. auto graph = ComputingGraph::make();
  3624. graph->options().graph_opt_level = 0;
  3625. size_t n = 1;
  3626. size_t c = 3;
  3627. size_t h = 16;
  3628. size_t w = 16;
  3629. auto host_x1 = gen({n, h, w, c}, cn);
  3630. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3631. auto mat_host = std::make_shared<HostTensorND>(cn, TensorShape{n, 3, 3},
  3632. dtype::Float32());
  3633. warp_perspective_mat_gen(*mat_host, n, h, w);
  3634. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  3635. opr::WarpPerspective::Param warp_param;
  3636. warp_param.format = opr::WarpPerspective::Param::Format::NHWC;
  3637. auto x_warp =
  3638. opr::WarpPerspective::make(x, mat, TensorShape{h, w}, warp_param);
  3639. auto x_nchw = opr::Dimshuffle::make(x_warp, {0, 3, 1, 2}, 4, cn);
  3640. auto result = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
  3641. auto y = result;
  3642. SymbolVar y_opt;
  3643. auto options = gopt::OptimizeForInferenceOptions{};
  3644. options.enable_fuse_preprocess();
  3645. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3646. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::WarpPerspective>());
  3647. ASSERT_EQ(opr::WarpPerspective::Param::Format::NHWC_NCHW,
  3648. find_opr<opr::WarpPerspective>(y_opt).param().format);
  3649. graph->compile({{y_opt, {}}})
  3650. ->to_json()
  3651. ->writeto_fpath(output_file(
  3652. "TestGoptInference.WarpAndPreProcessCase1.json"));
  3653. HostTensorND host_y_opt, host_y;
  3654. auto func = graph->compile({make_callback_copy(y, host_y),
  3655. make_callback_copy(y_opt, host_y_opt)});
  3656. func->execute();
  3657. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  3658. }
  3659. TEST(TestGoptInference, FoldingConvDimshuffle) {
  3660. REQUIRE_GPU(1);
  3661. auto cn = CompNode::load("gpu0");
  3662. cn.activate();
  3663. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  3664. auto sm_ver = prop.major * 10 + prop.minor;
  3665. if (sm_ver < 61) {
  3666. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  3667. "expected: %d)\n",
  3668. sm_ver, 61);
  3669. return;
  3670. }
  3671. HostTensorGenerator<dtype::Int8> gen;
  3672. auto graph = ComputingGraph::make();
  3673. graph->options().graph_opt_level = 0;
  3674. auto mkvar = [&](const char* name, const TensorShape& shp,
  3675. const DType& dtype) {
  3676. return opr::TypeCvt::make(
  3677. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  3678. dtype);
  3679. };
  3680. auto mkcvar = [&](const char* name, const TensorShape& shp,
  3681. const DType& dtype) {
  3682. return opr::TypeCvt::make(
  3683. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3684. .rename(name),
  3685. dtype);
  3686. };
  3687. auto nchw42nchw = [](SymbolVar x) {
  3688. auto xshp = opr::GetVarShape::make(x);
  3689. auto cv = [&x](int v) { return x.make_scalar(v); };
  3690. auto sub = [&xshp, &cv](int idx) {
  3691. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  3692. };
  3693. auto tshp0 = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  3694. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  3695. auto y1 = opr::Reshape::make(y0, tshp0);
  3696. return y1;
  3697. };
  3698. auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  3699. w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  3700. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  3701. opr::ConvBias::Param param;
  3702. param.format = opr::ConvBias::Param::Format::NCHW4;
  3703. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  3704. param.stride_h = param.stride_w = 2;
  3705. param.pad_h = param.pad_w = 1;
  3706. auto y = opr::ConvBias::make(x, w, b, param, {},
  3707. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  3708. y = opr::TypeCvt::make(y, dtype::Float32());
  3709. y = nchw42nchw(y);
  3710. SymbolVar y_fuse, y_non_fuse;
  3711. unpack_vector(gopt::GraphOptimizer{}
  3712. .add_pass<gopt::ShuffleShuffleRemovePass>()
  3713. .add_pass<gopt::FoldingConvBiasDimshufflePass>()
  3714. .add_pass<gopt::ParamFusePass>()
  3715. .apply({{y}})
  3716. .endpoint_vars(),
  3717. y_fuse);
  3718. gopt::modify_opr_algo_strategy_inplace(
  3719. {y_fuse},
  3720. opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy::PROFILE);
  3721. graph->compile({{y_fuse, {}}})
  3722. ->to_json()
  3723. ->writeto_fpath(output_file(
  3724. "TestGoptInference.FoldingConvDimshuffle.json"));
  3725. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4_NCHW,
  3726. find_opr<opr::ConvBias>(y_fuse).param().format);
  3727. ASSERT_EQ(0u, find_opr_num<opr::Dimshuffle>(y_fuse));
  3728. unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(),
  3729. y_non_fuse);
  3730. HostTensorND host_y_fuse, host_y_non_fuse;
  3731. auto func =
  3732. graph->compile({make_callback_copy(y_fuse, host_y_fuse),
  3733. make_callback_copy(y_non_fuse, host_y_non_fuse)});
  3734. func->execute();
  3735. }
  3736. TEST(TestGoptInference, FoldingConvDimshuffleNCHW4NCHW32) {
  3737. REQUIRE_GPU(1);
  3738. auto cn = CompNode::load("gpu0");
  3739. cn.activate();
  3740. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  3741. auto sm_ver = prop.major * 10 + prop.minor;
  3742. if (sm_ver < 61) {
  3743. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  3744. "expected: %d)\n",
  3745. sm_ver, 61);
  3746. return;
  3747. }
  3748. HostTensorGenerator<dtype::Int8> gen;
  3749. auto graph = ComputingGraph::make();
  3750. graph->options().graph_opt_level = 0;
  3751. auto mkvar = [&](const char* name, const TensorShape& shp,
  3752. const DType& dtype) {
  3753. return opr::TypeCvt::make(
  3754. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  3755. dtype);
  3756. };
  3757. auto mkcvar = [&](const char* name, const TensorShape& shp,
  3758. const DType& dtype) {
  3759. return opr::TypeCvt::make(
  3760. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3761. .rename(name),
  3762. dtype);
  3763. };
  3764. auto nchw42nchw32 = [](SymbolVar x) {
  3765. auto xshp = opr::GetVarShape::make(x);
  3766. auto cv = [&x](int v) { return x.make_scalar(v); };
  3767. auto sub = [&xshp, &cv](int idx) {
  3768. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  3769. };
  3770. auto tshp0 = opr::Concat::make(
  3771. {sub(0), sub(1) / 8, cv(8), sub(2), sub(3), sub(4)}, 0),
  3772. tshp1 = opr::Concat::make(
  3773. {sub(0), sub(1) / 8, sub(2), sub(3), sub(4) * 8}, 0);
  3774. auto y0 = opr::Reshape::make(x, tshp0);
  3775. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2, 5});
  3776. auto y2 = opr::Reshape::make(y1, tshp1);
  3777. return y2;
  3778. };
  3779. auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  3780. w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  3781. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  3782. opr::ConvBias::Param param;
  3783. param.format = opr::ConvBias::Param::Format::NCHW4;
  3784. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  3785. param.stride_h = param.stride_w = 2;
  3786. param.pad_h = param.pad_w = 1;
  3787. auto y = opr::ConvBias::make(x, w, b, param, {},
  3788. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  3789. y = nchw42nchw32(y);
  3790. y = opr::TypeCvt::make(y, dtype::Float32());
  3791. SymbolVar y_fuse, y_non_fuse;
  3792. unpack_vector(gopt::GraphOptimizer{}
  3793. .add_pass<gopt::FoldingConvBiasDimshufflePass>()
  3794. .add_pass<gopt::ParamFusePass>()
  3795. .apply({{y}})
  3796. .endpoint_vars(),
  3797. y_fuse);
  3798. gopt::modify_opr_algo_strategy_inplace(
  3799. {y_fuse},
  3800. opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy::PROFILE);
  3801. graph->compile({{y_fuse, {}}})
  3802. ->to_json()
  3803. ->writeto_fpath(output_file(
  3804. "TestGoptInference.FoldingConvDimshuffleNCHW4NCHW32.json"));
  3805. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4_NCHW32,
  3806. find_opr<opr::ConvBias>(y_fuse).param().format);
  3807. ASSERT_EQ(0u, find_opr_num<opr::Dimshuffle>(y_fuse));
  3808. unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(),
  3809. y_non_fuse);
  3810. HostTensorND host_y_fuse, host_y_non_fuse;
  3811. auto func =
  3812. graph->compile({make_callback_copy(y_fuse, host_y_fuse),
  3813. make_callback_copy(y_non_fuse, host_y_non_fuse)});
  3814. func->execute();
  3815. MGB_ASSERT_TENSOR_EQ(host_y_fuse, host_y_non_fuse);
  3816. }
  3817. #if CUDA_VERSION >= 10020
  3818. TEST(TestGoptInference, FoldingConvDimshuffleNCHW32NCHW4) {
  3819. REQUIRE_GPU(1);
  3820. auto cn = CompNode::load("gpu0");
  3821. cn.activate();
  3822. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  3823. auto sm_ver = prop.major * 10 + prop.minor;
  3824. if (sm_ver < 75) {
  3825. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  3826. "expected: %d)\n",
  3827. sm_ver, 75);
  3828. return;
  3829. }
  3830. HostTensorGenerator<dtype::Int8> gen;
  3831. auto graph = ComputingGraph::make();
  3832. graph->options().graph_opt_level = 0;
  3833. auto mkvar = [&](const char* name, const TensorShape& shp,
  3834. const DType& dtype) {
  3835. return opr::TypeCvt::make(
  3836. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  3837. dtype);
  3838. };
  3839. auto mkcvar = [&](const char* name, const TensorShape& shp,
  3840. const DType& dtype) {
  3841. return opr::TypeCvt::make(
  3842. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3843. .rename(name),
  3844. dtype);
  3845. };
  3846. auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  3847. w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  3848. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  3849. w1 = mkcvar("w1", {16, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  3850. b1 = mkcvar("b1", {1, 4, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  3851. opr::ConvBias::Param param;
  3852. param.format = opr::ConvBias::Param::Format::NCHW4;
  3853. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  3854. param.stride_h = param.stride_w = 2;
  3855. param.pad_h = param.pad_w = 1;
  3856. auto y = opr::ConvBias::make(x, w, b, param, {},
  3857. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  3858. param.stride_h = param.stride_w = 1;
  3859. y = opr::ConvBias::make(y, w1, b1, param, {},
  3860. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  3861. y = opr::TypeCvt::make(y, dtype::Float32());
  3862. SymbolVar y_fuse, y_non_fuse;
  3863. {
  3864. auto options = gopt::OptimizeForInferenceOptions{};
  3865. options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
  3866. unpack_vector(gopt::optimize_for_inference({y}, options), y_fuse);
  3867. }
  3868. graph->compile({{y_fuse, {}}})
  3869. ->to_json()
  3870. ->writeto_fpath(output_file(
  3871. "TestGoptInference.FoldingConvDimshuffleNCHW32NCHW4.json"));
  3872. ASSERT_EQ(1u, find_opr_num<opr::Dimshuffle>(y_fuse));
  3873. bool found = false;
  3874. cg::DepOprIter{[&found](cg::OperatorNodeBase* opr) {
  3875. if (!found && opr->same_type<opr::ConvBias>()) {
  3876. opr::ConvBias* cb = &opr->cast_final_safe<opr::ConvBias>();
  3877. if (cb->param().format ==
  3878. opr::ConvBias::Param::Format::NCHW32_NCHW4)
  3879. found = true;
  3880. }
  3881. }}
  3882. .add(y_fuse.node()->owner_opr());
  3883. EXPECT_TRUE(found);
  3884. unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(),
  3885. y_non_fuse);
  3886. HostTensorND host_y_fuse, host_y_non_fuse;
  3887. auto func =
  3888. graph->compile({make_callback_copy(y_fuse, host_y_fuse),
  3889. make_callback_copy(y_non_fuse, host_y_non_fuse)});
  3890. func->execute();
  3891. MGB_ASSERT_TENSOR_EQ(host_y_fuse, host_y_non_fuse);
  3892. }
  3893. TEST(TestGoptInference, FoldingConvDimshuffleNCHW4NHWC) {
  3894. REQUIRE_GPU(1);
  3895. auto cn = CompNode::load("gpu0");
  3896. cn.activate();
  3897. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  3898. auto sm_ver = prop.major * 10 + prop.minor;
  3899. if (sm_ver < 75) {
  3900. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  3901. "expected: %d)\n",
  3902. sm_ver, 75);
  3903. return;
  3904. }
  3905. HostTensorGenerator<dtype::Int8> gen;
  3906. auto graph = ComputingGraph::make();
  3907. graph->options().graph_opt_level = 0;
  3908. auto mkvar = [&](const char* name, const TensorShape& shp,
  3909. const DType& dtype) {
  3910. return opr::TypeCvt::make(
  3911. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  3912. dtype);
  3913. };
  3914. auto mkcvar = [&](const char* name, const TensorShape& shp,
  3915. const DType& dtype) {
  3916. return opr::TypeCvt::make(
  3917. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3918. .rename(name),
  3919. dtype);
  3920. };
  3921. auto x = mkvar("x", {32, 4, 23, 40}, dtype::QuantizedS8(2.5f)),
  3922. w = mkcvar("w", {64, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  3923. b = mkcvar("b", {1, 64, 1, 1}, dtype::QuantizedS32(6.25f)),
  3924. w1 = mkcvar("w1", {64, 64, 3, 3}, dtype::QuantizedS4(1.234f)),
  3925. b1 = mkcvar("b1", {1, 64, 1, 1}, dtype::QuantizedS32(12.34567f*1.234f));
  3926. opr::ConvBias::Param param;
  3927. param.format = opr::ConvBias::Param::Format::NCHW;
  3928. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  3929. param.stride_h = param.stride_w = 1;
  3930. param.pad_h = param.pad_w = 1;
  3931. auto y = opr::ConvBias::make(
  3932. x, w, b, param, {},
  3933. OperatorNodeConfig{dtype::QuantizedS8(12.34567f)});
  3934. y = opr::TypeCvt::make(y, dtype::QuantizedS4(12.34567f));
  3935. y = opr::ConvBias::make(y, w1, b1, param, {},
  3936. OperatorNodeConfig{dtype::QuantizedS4(56.71234f)});
  3937. y = opr::TypeCvt::make(y, dtype::Float32());
  3938. SymbolVar y_fuse, y_non_fuse;
  3939. {
  3940. auto options = gopt::OptimizeForInferenceOptions{};
  3941. options.enable_nchw64();
  3942. unpack_vector(gopt::optimize_for_inference({y}, options), y_fuse);
  3943. }
  3944. using S = opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy;
  3945. S strategy = S::PROFILE;
  3946. gopt::modify_opr_algo_strategy_inplace({y_fuse}, strategy);
  3947. HostTensorND host_y_fuse;
  3948. auto func1 = graph->compile({make_callback_copy(y_fuse, host_y_fuse)});
  3949. func1->execute();
  3950. graph->compile({{y_fuse, {}}})
  3951. ->to_json()
  3952. ->writeto_fpath(output_file(
  3953. "TestGoptInference.FoldingConvDimshuffleNCHW4NHWC.json"));
  3954. size_t nr_dimshuffle = find_opr_num<opr::TypeCvt>(y_fuse);
  3955. printf("%zu \n", nr_dimshuffle);
  3956. ASSERT_EQ(3u, find_opr_num<opr::Dimshuffle>(y_fuse));
  3957. bool found = false;
  3958. cg::DepOprIter{[&found](cg::OperatorNodeBase* opr) {
  3959. if (!found && opr->same_type<opr::ConvBias>()) {
  3960. opr::ConvBias* cb = &opr->cast_final_safe<opr::ConvBias>();
  3961. if (cb->param().format == opr::ConvBias::Param::Format::NCHW4_NHWC)
  3962. found = true;
  3963. }
  3964. }}
  3965. .add(y_fuse.node()->owner_opr());
  3966. EXPECT_TRUE(found);
  3967. unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(),
  3968. y_non_fuse);
  3969. gopt::modify_opr_algo_strategy_inplace({y_non_fuse}, strategy);
  3970. HostTensorND host_y_non_fuse;
  3971. auto func2 =
  3972. graph->compile({make_callback_copy(y_non_fuse, host_y_non_fuse)});
  3973. func2->execute();
  3974. MGB_ASSERT_TENSOR_EQ(host_y_fuse, host_y_non_fuse);
  3975. }
  3976. #endif
  3977. TEST(TestGoptInference, PaddingChannels) {
  3978. REQUIRE_GPU(1);
  3979. auto cn = CompNode::load("gpu0");
  3980. cn.activate();
  3981. REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
  3982. HostTensorGenerator<dtype::Int8> gen;
  3983. auto graph = ComputingGraph::make();
  3984. graph->options().graph_opt_level = 0;
  3985. auto mkvar = [&](const char* name, const TensorShape& shp,
  3986. const DType& dtype) {
  3987. return opr::TypeCvt::make(
  3988. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  3989. dtype);
  3990. };
  3991. auto mkcvar = [&](const char* name, const TensorShape& shp,
  3992. const DType& dtype) {
  3993. return opr::TypeCvt::make(
  3994. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3995. .rename(name),
  3996. dtype);
  3997. };
  3998. auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
  3999. w = mkcvar("w", {20, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  4000. b = mkcvar("b", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
  4001. opr::ConvBias::Param param;
  4002. param.format = opr::ConvBias::Param::Format::NCHW;
  4003. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4004. param.stride_h = param.stride_w = 1;
  4005. param.pad_h = param.pad_w = 1;
  4006. auto y = opr::ConvBias::make(x, w, b, param, {},
  4007. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4008. auto w1 = mkcvar("w1", {24, 20, 3, 3}, dtype::QuantizedS8(2.5f)),
  4009. b1 = mkcvar("b1", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  4010. auto y1 = opr::ConvBias::make(y, w1, b1, param, {},
  4011. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4012. auto w2 = mkcvar("w2", {20, 24, 3, 3}, dtype::QuantizedS8(2.5f)),
  4013. b2 = mkcvar("b2", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
  4014. auto y2 = opr::ConvBias::make(y1, w2, b2, param, {},
  4015. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4016. using ElemMultiMode = opr::ElemwiseMultiType::Param::Mode;
  4017. auto y3 = opr::ElemwiseMultiType::make(
  4018. {y, y2}, {ElemMultiMode::QFUSE_ADD_RELU},
  4019. OperatorNodeConfig{dtype::QuantizedS8{1.2f}});
  4020. y3 = opr::TypeCvt::make(y3, dtype::Float32());
  4021. SymbolVar y3_pad;
  4022. unpack_vector(gopt::GraphOptimizer{}
  4023. .add_pass<gopt::PaddingChannelPass>()
  4024. .apply({{y3}})
  4025. .endpoint_vars(),
  4026. y3_pad);
  4027. ASSERT_EQ(y3_pad.node()->shape()[1], y3.node()->shape()[1]);
  4028. SmallVector<cg::OperatorNodeBase*> oprs;
  4029. auto cb = [&oprs](cg::OperatorNodeBase* opr) {
  4030. if (opr->same_type<opr::ConvBias>()) {
  4031. oprs.push_back(opr);
  4032. }
  4033. };
  4034. cg::DepOprIter{cb}.add(y3_pad.node()->owner_opr());
  4035. ASSERT_EQ(oprs.size(), 3);
  4036. ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
  4037. ASSERT_EQ(oprs[1]->output(0)->shape()[1], 32);
  4038. ASSERT_EQ(oprs[2]->output(0)->shape()[1], 32);
  4039. HostTensorND t1, t2;
  4040. auto func1 = graph->compile({make_callback_copy(y3, t1)});
  4041. func1->execute();
  4042. auto func2 = graph->compile({make_callback_copy(y3_pad, t2)});
  4043. func2->execute();
  4044. MGB_ASSERT_TENSOR_EQ(t1, t2);
  4045. }
  4046. TEST(TestGoptInference, ConcatAfterPaddingChannels) {
  4047. REQUIRE_GPU(1);
  4048. auto cn = CompNode::load("gpu0");
  4049. cn.activate();
  4050. REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
  4051. HostTensorGenerator<dtype::Int8> gen;
  4052. auto graph = ComputingGraph::make();
  4053. graph->options().graph_opt_level = 0;
  4054. auto mkvar = [&](const char* name, const TensorShape& shp,
  4055. const DType& dtype) {
  4056. return opr::TypeCvt::make(
  4057. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  4058. dtype);
  4059. };
  4060. auto mkcvar = [&](const char* name, const TensorShape& shp,
  4061. const DType& dtype) {
  4062. return opr::TypeCvt::make(
  4063. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  4064. .rename(name),
  4065. dtype);
  4066. };
  4067. auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
  4068. w = mkcvar("w", {18, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  4069. b = mkcvar("b", {1, 18, 1, 1}, dtype::QuantizedS32(6.25f));
  4070. opr::ConvBias::Param param;
  4071. param.format = opr::ConvBias::Param::Format::NCHW;
  4072. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4073. param.stride_h = param.stride_w = 1;
  4074. param.pad_h = param.pad_w = 1;
  4075. auto y = opr::ConvBias::make(x, w, b, param, {},
  4076. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4077. auto w1 = mkcvar("w1", {18, 18, 3, 3}, dtype::QuantizedS8(2.5f)),
  4078. b1 = mkcvar("b1", {1, 18, 1, 1}, dtype::QuantizedS32(6.25f));
  4079. auto y1 = opr::ConvBias::make(y, w1, b1, param, {},
  4080. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4081. // concat at batch dim
  4082. auto y2 = opr::Concat::make({y, y1}, 0);
  4083. y2 = opr::TypeCvt::make(y2, dtype::Float32());
  4084. SymbolVar y2_pad;
  4085. unpack_vector(gopt::GraphOptimizer{}
  4086. .add_pass<gopt::PaddingChannelPass>()
  4087. .apply({{y2}})
  4088. .endpoint_vars(),
  4089. y2_pad);
  4090. ASSERT_EQ(y2_pad.node()->shape()[1], y2.node()->shape()[1]);
  4091. SmallVector<cg::OperatorNodeBase*> oprs;
  4092. auto cb = [&oprs](cg::OperatorNodeBase* opr) {
  4093. if (opr->same_type<opr::ConvBias>()) {
  4094. oprs.push_back(opr);
  4095. }
  4096. };
  4097. cg::DepOprIter{cb}.add(y2_pad.node()->owner_opr());
  4098. ASSERT_EQ(oprs.size(), 2);
  4099. ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
  4100. ASSERT_EQ(oprs[1]->output(0)->shape()[1], 32);
  4101. HostTensorND t1, t2;
  4102. auto func1 = graph->compile({make_callback_copy(y2, t1)});
  4103. func1->execute();
  4104. auto func2 = graph->compile({make_callback_copy(y2_pad, t2)});
  4105. func2->execute();
  4106. MGB_ASSERT_TENSOR_EQ(t1, t2);
  4107. }
  4108. TEST(TestGoptInference, PaddingChannelsWithPooling) {
  4109. REQUIRE_GPU(1);
  4110. auto cn = CompNode::load("gpu0");
  4111. cn.activate();
  4112. REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
  4113. HostTensorGenerator<dtype::Int8> gen;
  4114. auto graph = ComputingGraph::make();
  4115. graph->options().graph_opt_level = 0;
  4116. auto mkvar = [&](const char* name, const TensorShape& shp,
  4117. const DType& dtype) {
  4118. return opr::TypeCvt::make(
  4119. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  4120. dtype);
  4121. };
  4122. auto mkcvar = [&](const char* name, const TensorShape& shp,
  4123. const DType& dtype) {
  4124. return opr::TypeCvt::make(
  4125. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  4126. .rename(name),
  4127. dtype);
  4128. };
  4129. auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
  4130. w = mkcvar("w", {20, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  4131. b = mkcvar("b", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
  4132. opr::ConvBias::Param param;
  4133. param.format = opr::ConvBias::Param::Format::NCHW;
  4134. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4135. param.stride_h = param.stride_w = 1;
  4136. param.pad_h = param.pad_w = 1;
  4137. auto y = opr::ConvBias::make(x, w, b, param, {},
  4138. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4139. auto w1 = mkcvar("w1", {24, 20, 3, 3}, dtype::QuantizedS8(2.5f)),
  4140. b1 = mkcvar("b1", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  4141. auto y1 = opr::ConvBias::make(y, w1, b1, param, {},
  4142. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4143. opr::Pooling::Param pool_param;
  4144. pool_param.format = opr::Pooling::Param::Format::NCHW;
  4145. y1 = opr::Pooling::make(y1, pool_param);
  4146. y1 = opr::TypeCvt::make(y1, dtype::Float32());
  4147. SymbolVar y1_pad;
  4148. unpack_vector(gopt::GraphOptimizer{}
  4149. .add_pass<gopt::PaddingChannelPass>()
  4150. .apply({{y1}})
  4151. .endpoint_vars(),
  4152. y1_pad);
  4153. ASSERT_EQ(y1_pad.node()->shape()[1], y1.node()->shape()[1]);
  4154. SmallVector<cg::OperatorNodeBase*> oprs;
  4155. auto cb = [&oprs](cg::OperatorNodeBase* opr) {
  4156. if (opr->same_type<opr::Pooling>()) {
  4157. oprs.push_back(opr);
  4158. }
  4159. };
  4160. cg::DepOprIter{cb}.add(y1_pad.node()->owner_opr());
  4161. ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
  4162. HostTensorND t1, t2;
  4163. auto func1 = graph->compile({make_callback_copy(y1, t1)});
  4164. func1->execute();
  4165. auto func2 = graph->compile({make_callback_copy(y1_pad, t2)});
  4166. func2->execute();
  4167. MGB_ASSERT_TENSOR_EQ(t1, t2);
  4168. }
  4169. // FIXME replace cpu with gpu to enable gpu validation
  4170. TEST(TestGoptInference, PaddingChannelsWithWarpPerspective) {
  4171. auto cn = CompNode::load("cpu0");
  4172. HostTensorGenerator<dtype::Int8> gen;
  4173. auto graph = ComputingGraph::make();
  4174. graph->options().graph_opt_level = 0;
  4175. auto mkvar = [&](const char* name, const TensorShape& shp,
  4176. const DType& dtype) {
  4177. return opr::TypeCvt::make(
  4178. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  4179. dtype);
  4180. };
  4181. auto mkcvar = [&](const char* name, const TensorShape& shp,
  4182. const DType& dtype) {
  4183. return opr::TypeCvt::make(
  4184. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  4185. .rename(name),
  4186. dtype);
  4187. };
  4188. std::shared_ptr<HostTensorND> mat = std::make_shared<HostTensorND>(
  4189. cn, TensorShape{16, 3, 3}, dtype::Float32());
  4190. warp_perspective_mat_gen(*mat, 16, 14, 14);
  4191. auto mat_var = opr::Host2DeviceCopy::make(*graph, mat).rename("mat");
  4192. auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
  4193. w = mkcvar("w", {20, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  4194. b = mkcvar("b", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
  4195. opr::ConvBias::Param param;
  4196. param.format = opr::ConvBias::Param::Format::NCHW;
  4197. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4198. param.stride_h = param.stride_w = 1;
  4199. param.pad_h = param.pad_w = 1;
  4200. auto y = opr::ConvBias::make(x, w, b, param, {},
  4201. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4202. auto w1 = mkcvar("w1", {24, 20, 3, 3}, dtype::QuantizedS8(2.5f)),
  4203. b1 = mkcvar("b1", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  4204. auto y1 = opr::ConvBias::make(y, w1, b1, param, {},
  4205. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4206. opr::WarpPerspective::Param warp_param;
  4207. warp_param.format = opr::WarpPerspective::Param::Format::NCHW;
  4208. y1 = opr::WarpPerspective::make(y1, mat_var, TensorShape{14, 14},
  4209. warp_param);
  4210. y1 = opr::TypeCvt::make(y1, dtype::Float32());
  4211. SymbolVar y1_pad;
  4212. unpack_vector(gopt::GraphOptimizer{}
  4213. .add_pass<gopt::PaddingChannelPass>()
  4214. .apply({{y1}})
  4215. .endpoint_vars(),
  4216. y1_pad);
  4217. ASSERT_EQ(y1_pad.node()->shape()[1], y1.node()->shape()[1]);
  4218. SmallVector<cg::OperatorNodeBase*> oprs;
  4219. auto cb = [&oprs](cg::OperatorNodeBase* opr) {
  4220. if (opr->same_type<opr::WarpPerspective>()) {
  4221. oprs.push_back(opr);
  4222. }
  4223. };
  4224. cg::DepOprIter{cb}.add(y1_pad.node()->owner_opr());
  4225. ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
  4226. HostTensorND t1, t2;
  4227. auto func1 = graph->compile({make_callback_copy(y1, t1)});
  4228. func1->execute();
  4229. auto func2 = graph->compile({make_callback_copy(y1_pad, t2)});
  4230. func2->execute();
  4231. MGB_ASSERT_TENSOR_EQ(t1, t2);
  4232. }
  4233. #endif
  4234. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台