You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_pre_dataloader.py 8.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300
  1. # -*- coding: utf-8 -*-
  2. import gc
  3. import os
  4. import platform
  5. import time
  6. import numpy as np
  7. import pytest
  8. from megengine.data.collator import Collator
  9. from megengine.data.dataloader import DataLoader
  10. from megengine.data.dataset import ArrayDataset, StreamDataset
  11. from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler
  12. from megengine.data.transform import (
  13. Compose,
  14. Normalize,
  15. PseudoTransform,
  16. ToMode,
  17. Transform,
  18. )
  19. def init_dataset():
  20. sample_num = 100
  21. rand_data = np.random.randint(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8)
  22. label = np.random.randint(0, 10, size=(sample_num,), dtype=int)
  23. dataset = ArrayDataset(rand_data, label)
  24. return dataset
  25. def test_dataloader_init():
  26. dataset = init_dataset()
  27. with pytest.raises(ValueError):
  28. dataloader = DataLoader(dataset, num_workers=2, divide=True)
  29. with pytest.raises(ValueError):
  30. dataloader = DataLoader(dataset, num_workers=-1)
  31. with pytest.raises(ValueError):
  32. dataloader = DataLoader(dataset, timeout=-1)
  33. with pytest.raises(ValueError):
  34. dataloader = DataLoader(dataset, num_workers=0, divide=True)
  35. dataloader = DataLoader(dataset, preload=True)
  36. assert isinstance(dataloader.sampler, SequentialSampler)
  37. assert isinstance(dataloader.transform, PseudoTransform)
  38. assert isinstance(dataloader.collator, Collator)
  39. dataloader = DataLoader(
  40. dataset,
  41. sampler=RandomSampler(dataset, batch_size=6, drop_last=False),
  42. preload=True,
  43. )
  44. assert len(dataloader) == 17
  45. dataloader = DataLoader(
  46. dataset,
  47. sampler=RandomSampler(dataset, batch_size=6, drop_last=True),
  48. preload=True,
  49. )
  50. assert len(dataloader) == 16
  51. class MyStream(StreamDataset):
  52. def __init__(self, number, batch=False, error_foramt=False, block=False):
  53. self.number = number
  54. self.batch = batch
  55. self.error_format = error_foramt
  56. self.block = block
  57. def __iter__(self):
  58. for cnt in range(self.number):
  59. if self.block:
  60. for _ in range(10):
  61. time.sleep(1)
  62. if self.batch:
  63. data = np.random.randint(0, 256, (2, 2, 2, 3), dtype="uint8")
  64. yield (True, (data, [cnt, cnt - self.number]))
  65. else:
  66. data = np.random.randint(0, 256, (2, 2, 3), dtype="uint8")
  67. if self.error_format:
  68. yield (data, cnt)
  69. else:
  70. yield (False, (data, cnt))
  71. raise StopIteration
  72. @pytest.mark.parametrize("batch", [True, False])
  73. @pytest.mark.parametrize("num_workers", [0, 2])
  74. def test_stream_dataloader(batch, num_workers):
  75. dataset = MyStream(100, batch=batch)
  76. sampler = StreamSampler(batch_size=4)
  77. dataloader = DataLoader(
  78. dataset,
  79. sampler,
  80. Compose([Normalize(mean=(103, 116, 123), std=(57, 57, 58)), ToMode("CHW")]),
  81. num_workers=num_workers,
  82. preload=True,
  83. )
  84. check_set = set()
  85. for step, data in enumerate(dataloader):
  86. if step == 10:
  87. break
  88. assert data[0]._tuple_shape == (4, 3, 2, 2)
  89. assert data[1]._tuple_shape == (4,)
  90. for i in data[1]:
  91. assert i not in check_set
  92. check_set.add(i)
  93. def test_stream_dataloader_error():
  94. dataset = MyStream(100, error_foramt=True)
  95. sampler = StreamSampler(batch_size=4)
  96. dataloader = DataLoader(dataset, sampler, preload=True)
  97. with pytest.raises(AssertionError, match=r".*tuple.*"):
  98. data_iter = iter(dataloader)
  99. next(data_iter)
  100. @pytest.mark.parametrize("num_workers", [0, 2])
  101. def test_stream_dataloader_timeout(num_workers):
  102. dataset = MyStream(100, False, block=True)
  103. sampler = StreamSampler(batch_size=4)
  104. dataloader = DataLoader(
  105. dataset, sampler, num_workers=num_workers, timeout=2, preload=True
  106. )
  107. with pytest.raises(RuntimeError, match=r".*timeout.*"):
  108. data_iter = iter(dataloader)
  109. next(data_iter)
  110. def test_dataloader_serial():
  111. dataset = init_dataset()
  112. dataloader = DataLoader(
  113. dataset,
  114. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  115. preload=True,
  116. )
  117. for (data, label) in dataloader:
  118. assert data._tuple_shape == (4, 1, 32, 32)
  119. assert label._tuple_shape == (4,)
  120. def test_dataloader_parallel():
  121. # set max shared memory to 100M
  122. os.environ["MGE_PLASMA_MEMORY"] = "100000000"
  123. dataset = init_dataset()
  124. dataloader = DataLoader(
  125. dataset,
  126. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  127. num_workers=2,
  128. divide=False,
  129. preload=True,
  130. )
  131. for (data, label) in dataloader:
  132. assert data._tuple_shape == (4, 1, 32, 32)
  133. assert label._tuple_shape == (4,)
  134. dataloader = DataLoader(
  135. dataset,
  136. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  137. num_workers=2,
  138. divide=True,
  139. preload=True,
  140. )
  141. for (data, label) in dataloader:
  142. assert data._tuple_shape == (4, 1, 32, 32)
  143. assert label._tuple_shape == (4,)
  144. @pytest.mark.skipif(
  145. platform.system() == "Windows",
  146. reason="dataloader do not support parallel on windows",
  147. )
  148. def test_dataloader_parallel_timeout():
  149. dataset = init_dataset()
  150. class TimeoutTransform(Transform):
  151. def __init__(self):
  152. pass
  153. def apply(self, input):
  154. time.sleep(10)
  155. return input
  156. dataloader = DataLoader(
  157. dataset,
  158. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  159. transform=TimeoutTransform(),
  160. num_workers=2,
  161. timeout=2,
  162. preload=True,
  163. )
  164. with pytest.raises(RuntimeError, match=r".*timeout.*"):
  165. data_iter = iter(dataloader)
  166. batch_data = next(data_iter)
  167. @pytest.mark.skipif(
  168. platform.system() == "Windows",
  169. reason="dataloader do not support parallel on windows",
  170. )
  171. def test_dataloader_parallel_worker_exception():
  172. dataset = init_dataset()
  173. class FakeErrorTransform(Transform):
  174. def __init__(self):
  175. pass
  176. def apply(self, input):
  177. raise RuntimeError("test raise error")
  178. return input
  179. dataloader = DataLoader(
  180. dataset,
  181. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  182. transform=FakeErrorTransform(),
  183. num_workers=2,
  184. preload=True,
  185. )
  186. with pytest.raises(RuntimeError, match=r"worker.*died"):
  187. data_iter = iter(dataloader)
  188. batch_data = next(data_iter)
  189. def _multi_instances_parallel_dataloader_worker():
  190. dataset = init_dataset()
  191. for divide_flag in [True, False]:
  192. train_dataloader = DataLoader(
  193. dataset,
  194. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  195. num_workers=2,
  196. divide=divide_flag,
  197. preload=True,
  198. )
  199. val_dataloader = DataLoader(
  200. dataset,
  201. sampler=RandomSampler(dataset, batch_size=10, drop_last=False),
  202. num_workers=2,
  203. divide=divide_flag,
  204. preload=True,
  205. )
  206. for idx, (data, label) in enumerate(train_dataloader):
  207. assert data._tuple_shape == (4, 1, 32, 32)
  208. assert label._tuple_shape == (4,)
  209. if idx % 5 == 0:
  210. for val_data, val_label in val_dataloader:
  211. assert val_data._tuple_shape == (10, 1, 32, 32)
  212. assert val_label._tuple_shape == (10,)
  213. def test_dataloader_parallel_multi_instances():
  214. # set max shared memory to 100M
  215. os.environ["MGE_PLASMA_MEMORY"] = "100000000"
  216. _multi_instances_parallel_dataloader_worker()
  217. @pytest.mark.isolated_distributed
  218. def test_dataloader_parallel_multi_instances_multiprocessing():
  219. gc.collect()
  220. # set max shared memory to 100M
  221. os.environ["MGE_PLASMA_MEMORY"] = "100000000"
  222. import multiprocessing as mp
  223. # mp.set_start_method("spawn")
  224. processes = []
  225. for i in range(4):
  226. p = mp.Process(target=_multi_instances_parallel_dataloader_worker)
  227. p.start()
  228. processes.append(p)
  229. for p in processes:
  230. p.join()
  231. assert p.exitcode == 0
  232. @pytest.mark.parametrize("num_workers", [0, 2])
  233. def test_timeout_event(num_workers):
  234. def cb():
  235. return (True, (np.zeros(shape=(2, 2, 2, 3)), np.ones(shape=(2,))))
  236. dataset = MyStream(100, block=True)
  237. sampler = StreamSampler(batch_size=4)
  238. dataloader = DataLoader(
  239. dataset,
  240. sampler,
  241. num_workers=num_workers,
  242. timeout=2,
  243. timeout_event=cb,
  244. preload=True,
  245. )
  246. for _, data in enumerate(dataloader):
  247. np.testing.assert_equal(data[0], np.zeros(shape=(4, 2, 2, 3)))
  248. np.testing.assert_equal(data[1], np.ones(shape=(4,)))
  249. break