You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

qconfig.py 5.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120
  1. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  2. #
  3. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  4. #'
  5. # Unless required by applicable law or agreed to in writing,
  6. # software distributed under the License is distributed on an
  7. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  8. from functools import partial
  9. from ..module import Module
  10. from .fake_quant import TQT, FakeQuantize
  11. from .observer import (
  12. ExponentialMovingAverageObserver,
  13. HistogramObserver,
  14. MinMaxObserver,
  15. SyncExponentialMovingAverageObserver,
  16. SyncMinMaxObserver,
  17. )
  18. class QConfig:
  19. r"""
  20. A config class indicating how to do quantize toward :class:`~.QATModule`'s
  21. ``activation`` and ``weight``. See :meth:`~.QATModule.set_qconfig` for detail usage.
  22. :param weight_observer: interface to instantiate an :class:`~.Observer` indicating
  23. how to collect scales and zero_point of wegiht.
  24. :param act_observer: similar to ``weight_observer`` but toward activation.
  25. :param weight_fake_quant: interface to instantiate a :class:`~.FakeQuantize` indicating
  26. how to do fake_quant calculation.
  27. :param act_observer: similar to ``weight_fake_quant`` but toward activation.
  28. Examples:
  29. .. code-block::
  30. # Default EMA QConfig for QAT.
  31. ema_fakequant_qconfig = QConfig(
  32. weight_observer=partial(MinMaxObserver, dtype="qint8", narrow_range=True),
  33. act_observer=partial(ExponentialMovingAverageObserver, dtype="qint8", narrow_range=False),
  34. weight_fake_quant=partial(FakeQuantize, dtype="qint8", narrow_range=True),
  35. act_fake_quant=partial(FakeQuantize, dtype="qint8", narrow_range=False),
  36. )
  37. Each parameter is a ``class`` rather than an instance. And we recommand using ``functools.partial``
  38. to add initialization parameters of the ``class``, so that don't need to provide parameters in
  39. :meth:`~.QATModule.set_qconfig`.
  40. Usually we set ``narrow_range`` of weight related paramters to ``True`` and of activation related
  41. parameters to ``False``. For the result of multiplication and addition as ``a * b + c * d``, if
  42. four variables are all -128 of dtype ``qint8``, then the result will be ``2^15`` and cause overflow.
  43. Weights are commonly calculated in this way, so needed to narrow the range.
  44. """
  45. def __init__(
  46. self, weight_observer, act_observer, weight_fake_quant, act_fake_quant
  47. ):
  48. if isinstance(act_observer, Module) or isinstance(weight_observer, Module):
  49. raise ValueError(
  50. "QConfig must not receive observer instance, please pass observer"
  51. " class generator using `partial(Observer, ...)` instead. Use"
  52. " partial(MyObserver, x=1) to override arguments to constructor if needed"
  53. )
  54. self.weight_observer = weight_observer
  55. self.act_observer = act_observer
  56. self.weight_fake_quant = weight_fake_quant
  57. self.act_fake_quant = act_fake_quant
  58. tqt_quant_qconfig = QConfig(
  59. weight_observer=partial(
  60. ExponentialMovingAverageObserver, dtype="qint8", narrow_range=True
  61. ),
  62. act_observer=partial(
  63. ExponentialMovingAverageObserver, dtype="qint8", narrow_range=False
  64. ),
  65. weight_fake_quant=partial(TQT, dtype="qint8", narrow_range=True),
  66. act_fake_quant=partial(TQT, dtype="qint8", narrow_range=False),
  67. )
  68. min_max_fakequant_qconfig = QConfig(
  69. weight_observer=partial(MinMaxObserver, dtype="qint8", narrow_range=True),
  70. act_observer=partial(MinMaxObserver, dtype="qint8", narrow_range=False),
  71. weight_fake_quant=partial(FakeQuantize, dtype="qint8", narrow_range=True),
  72. act_fake_quant=partial(FakeQuantize, dtype="qint8", narrow_range=False),
  73. )
  74. ema_fakequant_qconfig = QConfig(
  75. weight_observer=partial(MinMaxObserver, dtype="qint8", narrow_range=True),
  76. act_observer=partial(
  77. ExponentialMovingAverageObserver, dtype="qint8", narrow_range=False
  78. ),
  79. weight_fake_quant=partial(FakeQuantize, dtype="qint8", narrow_range=True),
  80. act_fake_quant=partial(FakeQuantize, dtype="qint8", narrow_range=False),
  81. )
  82. sync_ema_fakequant_qconfig = QConfig(
  83. weight_observer=partial(SyncMinMaxObserver, dtype="qint8", narrow_range=True),
  84. act_observer=partial(
  85. SyncExponentialMovingAverageObserver, dtype="qint8", narrow_range=False
  86. ),
  87. weight_fake_quant=partial(FakeQuantize, dtype="qint8", narrow_range=True),
  88. act_fake_quant=partial(FakeQuantize, dtype="qint8", narrow_range=False),
  89. )
  90. ema_lowbit_fakequant_qconfig = QConfig(
  91. weight_observer=partial(MinMaxObserver, dtype="qint4", narrow_range=False),
  92. act_observer=partial(
  93. ExponentialMovingAverageObserver, dtype="qint4", narrow_range=False
  94. ),
  95. weight_fake_quant=partial(FakeQuantize, dtype="qint4", narrow_range=False),
  96. act_fake_quant=partial(FakeQuantize, dtype="qint4", narrow_range=False),
  97. )
  98. calibration_qconfig = QConfig(
  99. weight_observer=partial(MinMaxObserver, dtype="qint8", narrow_range=True),
  100. act_observer=partial(HistogramObserver, dtype="qint8", narrow_range=False),
  101. weight_fake_quant=None,
  102. act_fake_quant=None,
  103. )

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台