You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

algos.h 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283
  1. /**
  2. * \file dnn/src/armv7/matrix_mul/algos.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #pragma once
  13. #include "src/arm_common/matrix_mul/algos.h"
  14. #include "src/armv7/matrix_mul/opr_impl.h"
  15. #include "src/fallback/matrix_mul/gemm_common.h"
  16. namespace megdnn {
  17. namespace armv7 {
  18. class MatrixMulImpl::AlgoF32 final : public AlgoBase {
  19. public:
  20. AlgoAttribute attribute() const override {
  21. return AlgoAttribute::REPRODUCIBLE;
  22. }
  23. const char* name() const override { return "ARMV7_F32"; }
  24. bool usable(const KernSizeParam&) const override;
  25. size_t get_workspace(const KernSizeParam&) const override;
  26. kern_t get_kern(const KernSizeParam&) const override;
  27. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  28. MEGDNN_DECL_ALGO_TYPE(ARMV7_F32)
  29. };
  30. class MatrixMulImpl::AlgoF32MK4Pack4x12 final : public AlgoBase {
  31. public:
  32. AlgoAttribute attribute() const override {
  33. return AlgoAttribute::REPRODUCIBLE;
  34. }
  35. const char* name() const override { return "ARMV7_F32_MK4_PACK_4X12"; }
  36. bool usable(const KernSizeParam&) const override;
  37. size_t get_workspace(const KernSizeParam&) const override;
  38. kern_t get_kern(const KernSizeParam&) const override;
  39. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  40. MEGDNN_DECL_ALGO_TYPE(ARMV7_F32_MK4_PACK_4X12)
  41. };
  42. class MatrixMulImpl::AlgoF32MK4_4x8 final : public AlgoBase {
  43. public:
  44. AlgoAttribute attribute() const override {
  45. return AlgoAttribute::REPRODUCIBLE;
  46. }
  47. const char* name() const override { return "ARMV7_F32_MK4_4x8"; }
  48. bool usable(const KernSizeParam&) const override;
  49. size_t get_workspace(const KernSizeParam&) const override;
  50. kern_t get_kern(const KernSizeParam&) const override;
  51. PackMode packmode() const override { return PackMode::NO_PACK; }
  52. MEGDNN_OVERRIDE_MATMUL_DESC(4, 8, 4, 4, AlgoDataType::FLOAT32, MK4)
  53. MEGDNN_DECL_ALGO_TYPE(ARMV7_F32_MK4_4x8)
  54. };
  55. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  56. class MatrixMulImpl::AlgoF16K4x16x1 final : public AlgoBase {
  57. public:
  58. AlgoAttribute attribute() const override {
  59. return AlgoAttribute::REPRODUCIBLE;
  60. }
  61. const char* name() const override { return "AARCH32_F16_K4X16X1"; }
  62. bool usable(const KernSizeParam&) const override;
  63. size_t get_workspace(const KernSizeParam&) const override;
  64. kern_t get_kern(const KernSizeParam&) const override;
  65. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  66. MEGDNN_DECL_ALGO_TYPE(ARMV7_F16_K4X16X1)
  67. };
  68. class MatrixMulImpl::AlgoF16MK8_4x8 final : public AlgoBase {
  69. public:
  70. AlgoAttribute attribute() const override {
  71. return AlgoAttribute::REPRODUCIBLE;
  72. }
  73. const char* name() const override { return "AARCH32_F16_MK8_4X8"; }
  74. bool usable(const KernSizeParam&) const override;
  75. size_t get_workspace(const KernSizeParam&) const override;
  76. kern_t get_kern(const KernSizeParam&) const override;
  77. PackMode packmode() const override { return PackMode::NO_PACK; }
  78. MEGDNN_OVERRIDE_MATMUL_DESC(4, 8, 8, 2, AlgoDataType::FLOAT16, MK8)
  79. MEGDNN_DECL_ALGO_TYPE(ARMV7_F16_MK8_4X8)
  80. };
  81. #endif
  82. #if __ARM_FEATURE_DOTPROD
  83. class MatrixMulImpl::AlgoInt8x8x32K6x8x4 final : public AlgoBase {
  84. public:
  85. AlgoAttribute attribute() const override {
  86. return AlgoAttribute::REPRODUCIBLE;
  87. }
  88. const char* name() const override { return "AARCH32_INT8_K6X8X4"; }
  89. bool usable(const KernSizeParam&) const override;
  90. size_t get_workspace(const KernSizeParam&) const override;
  91. kern_t get_kern(const KernSizeParam&) const override;
  92. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  93. MEGDNN_DECL_ALGO_TYPE(ARMV7_INT8_K6X8X4)
  94. };
  95. class MatrixMulImpl::AlgoQuint8DotK4x8x4 final : public AlgoBase {
  96. public:
  97. AlgoAttribute attribute() const override {
  98. return AlgoAttribute::REPRODUCIBLE;
  99. }
  100. const char* name() const override { return "AARCH32_QUINT8_K4X8X4"; }
  101. bool usable(const KernSizeParam&) const override;
  102. size_t get_workspace(const KernSizeParam&) const override;
  103. kern_t get_kern(const KernSizeParam&) const override;
  104. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  105. MEGDNN_DECL_ALGO_TYPE(ARMV7_QUINT8_K4X8X4)
  106. };
  107. class MatrixMulImpl::AlgoInt8x8x32MK4_8x4x4DotProd final : public AlgoBase {
  108. public:
  109. AlgoAttribute attribute() const override {
  110. return AlgoAttribute::REPRODUCIBLE;
  111. }
  112. const char* name() const override {
  113. return "AARCH32_INT8_MK4_8X4X4_DOTPROD";
  114. }
  115. bool usable(const KernSizeParam&) const override;
  116. size_t get_workspace(const KernSizeParam&) const override;
  117. kern_t get_kern(const KernSizeParam&) const override;
  118. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  119. MEGDNN_DECL_ALGO_TYPE(ARMV7_INT8_MK4_8X4X4_DOTPROD)
  120. };
  121. #endif
  122. class MatrixMulImpl::AlgoF32Gemv final
  123. : public arm_common::MatrixMulImpl::AlgoF32Gemv {
  124. public:
  125. AlgoF32Gemv() : arm_common::MatrixMulImpl::AlgoF32Gemv() {
  126. m_handle_type = Handle::HandleType::ARMV7;
  127. }
  128. MEGDNN_DECL_ALGO_TYPE(ARMV7_F32_GEMV)
  129. };
  130. class MatrixMulImpl::AlgoInt8x8x32K4x2x16 final : public AlgoBase {
  131. public:
  132. AlgoAttribute attribute() const override {
  133. return AlgoAttribute::REPRODUCIBLE;
  134. }
  135. const char* name() const override { return "ARMV7_INT8X8X32_K4X2X16"; }
  136. bool usable(const KernSizeParam&) const override;
  137. bool preferred(const KernSizeParam&) const override;
  138. size_t get_workspace(const KernSizeParam&) const override;
  139. kern_t get_kern(const KernSizeParam&) const override;
  140. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  141. MEGDNN_DECL_ALGO_TYPE(ARMV7_INT8X8X32_K4X2X16)
  142. };
  143. class MatrixMulImpl::AlgoInt8x8x32K4x8x8 final : public AlgoBase {
  144. public:
  145. AlgoAttribute attribute() const override {
  146. return AlgoAttribute::REPRODUCIBLE;
  147. }
  148. const char* name() const override { return "ARMV7_INT8X8X32_K4X8X8"; }
  149. bool usable(const KernSizeParam&) const override;
  150. bool preferred(const KernSizeParam&) const override;
  151. size_t get_workspace(const KernSizeParam&) const override;
  152. kern_t get_kern(const KernSizeParam&) const override;
  153. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  154. MEGDNN_DECL_ALGO_TYPE(ARMV7_INT8X8X32_K4X8X8)
  155. };
  156. class MatrixMulImpl::AlgoQuint8K4x8x8 final : public AlgoBase {
  157. public:
  158. AlgoAttribute attribute() const override {
  159. return AlgoAttribute::REPRODUCIBLE;
  160. }
  161. const char* name() const override { return "ARMV7_QUINT8_K4X8X8"; }
  162. bool usable(const KernSizeParam&) const override;
  163. size_t get_workspace(const KernSizeParam&) const override;
  164. kern_t get_kern(const KernSizeParam&) const override;
  165. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  166. MEGDNN_DECL_ALGO_TYPE(ARMV7_QUINT8_K4X8X8)
  167. };
  168. class MatrixMulImpl::AlgoInt8x8x16K4x2x16 final : public AlgoBase {
  169. public:
  170. AlgoAttribute attribute() const override {
  171. return AlgoAttribute::REPRODUCIBLE;
  172. }
  173. const char* name() const override { return "ARMV7_INT8X8X16_K4X2X16"; }
  174. bool usable(const KernSizeParam&) const override;
  175. bool preferred(const KernSizeParam&) const override;
  176. size_t get_workspace(const KernSizeParam&) const override;
  177. kern_t get_kern(const KernSizeParam&) const override;
  178. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  179. MEGDNN_DECL_ALGO_TYPE(ARMV7_INT8X8X16_K4X2X16)
  180. };
  181. class MatrixMulImpl::AlgoInt8x8x16K4x8x8 final : public AlgoBase {
  182. public:
  183. AlgoAttribute attribute() const override {
  184. return AlgoAttribute::REPRODUCIBLE;
  185. }
  186. const char* name() const override { return "ARMV7_INT8X8X16_K4X8X8"; }
  187. bool usable(const KernSizeParam&) const override;
  188. bool preferred(const KernSizeParam&) const override;
  189. size_t get_workspace(const KernSizeParam&) const override;
  190. kern_t get_kern(const KernSizeParam&) const override;
  191. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  192. MEGDNN_DECL_ALGO_TYPE(ARMV7_INT8X8X16_K4X8X8)
  193. };
  194. class MatrixMulImpl::AlgoInt8x8x16K8x8x4 final : public AlgoBase {
  195. public:
  196. AlgoAttribute attribute() const override {
  197. return AlgoAttribute::REPRODUCIBLE;
  198. }
  199. const char* name() const override { return "ARMV7_INT8X8X16_K8X8X4"; }
  200. bool usable(const KernSizeParam&) const override;
  201. bool preferred(const KernSizeParam&) const override;
  202. size_t get_workspace(const KernSizeParam&) const override;
  203. kern_t get_kern(const KernSizeParam&) const override;
  204. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  205. MEGDNN_DECL_ALGO_TYPE(ARMV7_INT8X8X16_K8X8X4)
  206. };
  207. class MatrixMulImpl::AlgoInt8x8x16MK4_8x8x4 final : public AlgoBase {
  208. public:
  209. AlgoAttribute attribute() const override {
  210. return AlgoAttribute::REPRODUCIBLE;
  211. }
  212. const char* name() const override { return "ARMV7_INT8X8X16_MK4_K8X8X4"; }
  213. bool usable(const KernSizeParam&) const override;
  214. bool preferred(const KernSizeParam&) const override;
  215. size_t get_workspace(const KernSizeParam&) const override;
  216. kern_t get_kern(const KernSizeParam&) const override;
  217. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  218. MEGDNN_DECL_ALGO_TYPE(ARMV7_INT8X8X16_MK4_K8X8X4)
  219. };
  220. class MatrixMulImpl::AlgoInt16x16x32K12x4x1 final : public AlgoBase {
  221. public:
  222. AlgoAttribute attribute() const override {
  223. return AlgoAttribute::REPRODUCIBLE;
  224. }
  225. const char* name() const override { return "ARMV7_INT16X16X32_K12X4X1"; }
  226. bool usable(const KernSizeParam&) const override;
  227. bool preferred(const KernSizeParam&) const override;
  228. size_t get_workspace(const KernSizeParam&) const override;
  229. kern_t get_kern(const KernSizeParam&) const override;
  230. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  231. MEGDNN_DECL_ALGO_TYPE(ARMV7_INT16X16X32_K12X4X1)
  232. };
  233. class MatrixMulImpl::AlgoInt16x16x32MK8_4x8 final : public AlgoBase {
  234. public:
  235. AlgoAttribute attribute() const override {
  236. return AlgoAttribute::REPRODUCIBLE;
  237. }
  238. const char* name() const override { return "ARMV7_INT16X16X32_MK8_4X8"; }
  239. bool usable(const KernSizeParam&) const override;
  240. size_t get_workspace(const KernSizeParam&) const override;
  241. kern_t get_kern(const KernSizeParam&) const override;
  242. PackMode packmode() const override { return PackMode::NO_PACK; }
  243. MEGDNN_OVERRIDE_MATMUL_DESC(4, 8, 8, 2, AlgoDataType::INT16X16X32, MK8)
  244. MEGDNN_DECL_ALGO_TYPE(ARMV7_INT16X16X32_MK8_4X8)
  245. };
  246. class MatrixMulImpl::AlgoInt8x8x32MK4_4x2x16 final : public AlgoBase {
  247. public:
  248. AlgoAttribute attribute() const override {
  249. return AlgoAttribute::REPRODUCIBLE;
  250. }
  251. const char* name() const override { return "ARMV7_INT8X8X32_MK4_4X2X16"; }
  252. bool usable(const KernSizeParam&) const override;
  253. bool preferred(const KernSizeParam&) const override;
  254. size_t get_workspace(const KernSizeParam&) const override;
  255. kern_t get_kern(const KernSizeParam&) const override;
  256. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  257. MEGDNN_DECL_ALGO_TYPE(ARMV7_INT8X8X32_MK4_4X2X16)
  258. };
  259. } // namespace armv7
  260. } // namespace megdnn
  261. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台