You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

algos.h 7.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182
  1. /**
  2. * \file dnn/src/x86/matrix_mul/algos.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #pragma once
  13. #include "src/fallback/matrix_mul/gemm_common.h"
  14. #include "src/x86/matrix_mul/opr_impl.h"
  15. namespace megdnn {
  16. namespace x86 {
  17. class MatrixMulImpl::AlgoF32Blas : public AlgoBase {
  18. public:
  19. const char* name() const override { return "X86_F32_BLAS"; }
  20. bool usable(const KernSizeParam&) const override;
  21. size_t get_workspace(const KernSizeParam&) const override { return 0; }
  22. kern_t get_kern(const KernSizeParam&) const override;
  23. AlgoAttribute attribute() const override {
  24. return AlgoAttribute::REPRODUCIBLE;
  25. }
  26. PackMode packmode() const override { return PackMode::NO_PACK; }
  27. MEGDNN_OVERRIDE_MATMUL_DESC(8, 16, 1, 4, AlgoDataType::FLOAT32, DEFAULT)
  28. MEGDNN_DECL_ALGO_TYPE(X86_F32_BLAS)
  29. };
  30. #if MEGDNN_X86_WITH_MKL && SUPPORT_MKL_PACKED_GEMM
  31. class MatrixMulImpl::AlgoF32MKLPackA : public AlgoBase {
  32. public:
  33. AlgoAttribute attribute() const override {
  34. return AlgoAttribute::REPRODUCIBLE;
  35. }
  36. const char* name() const override { return "X86_F32_MKL_PACKA"; }
  37. bool usable(const KernSizeParam&) const override;
  38. size_t get_workspace(const KernSizeParam&) const override { return 0; }
  39. kern_t get_kern(const KernSizeParam&) const override;
  40. PackMode packmode() const override { return PackMode::ONLY_PACKA; }
  41. kern_naked_t get_kern_naked(const KernSizeParam&) const override;
  42. void pack_A(const KernParam& kern_param, void* out, size_t index,
  43. size_t stride) const override;
  44. void pack_B(const KernParam&, void*, size_t, size_t) const override {
  45. megdnn_assert(0);
  46. };
  47. WorkspaceBundle get_bundle(const KernSizeParam& param) const override;
  48. InnerBlockSize get_inner_block_size() const override{ return {8, 16, 1}; };
  49. MEGDNN_OVERRIDE_MATMUL_DESC(8, 16, 1, 4, AlgoDataType::FLOAT32, DEFAULT)
  50. MEGDNN_DECL_ALGO_TYPE(X86_F32_MKL_PACKA)
  51. };
  52. #endif
  53. class MatrixMulImpl::AlgoInt8x8x32AVX2M2N4K16 : public AlgoBase {
  54. public:
  55. AlgoAttribute attribute() const override {
  56. return AlgoAttribute::REPRODUCIBLE;
  57. }
  58. const char* name() const override { return "X86_INT8X8X32_AVX2_2X4X16"; }
  59. bool usable(const KernSizeParam&) const override;
  60. size_t get_workspace(const KernSizeParam&) const override;
  61. kern_t get_kern(const KernSizeParam&) const override;
  62. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  63. MEGDNN_DECL_ALGO_TYPE(X86_INT8X8X32_AVX2_2X4X16)
  64. };
  65. class MatrixMulImpl::AlgoInt8x8x32AVX2M4N16K2 : public AlgoBase {
  66. public:
  67. AlgoAttribute attribute() const override {
  68. return AlgoAttribute::REPRODUCIBLE;
  69. }
  70. const char* name() const override { return "X86_INT8X8X32_AVX2_4X16X2"; }
  71. bool usable(const KernSizeParam&) const override;
  72. size_t get_workspace(const KernSizeParam&) const override;
  73. kern_t get_kern(const KernSizeParam&) const override;
  74. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  75. MEGDNN_DECL_ALGO_TYPE(X86_INT8X8X32_AVX2_4X16X2)
  76. };
  77. class MatrixMulImpl::AlgoInt8x8x16AVX2 : public AlgoBase {
  78. private:
  79. static void gemm_s8s8s16_avx2_4x16x2(
  80. const MatrixMulImpl::KernParam& kern_param);
  81. public:
  82. AlgoAttribute attribute() const override {
  83. return AlgoAttribute::REPRODUCIBLE;
  84. }
  85. const char* name() const override { return "X86_INT8X8X16_AVX2"; }
  86. bool usable(const KernSizeParam&) const override;
  87. size_t get_workspace(const KernSizeParam&) const override;
  88. kern_t get_kern(const KernSizeParam&) const override;
  89. bool preferred(const KernSizeParam&) const override;
  90. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  91. MEGDNN_DECL_ALGO_TYPE(X86_INT8X8X16_AVX2)
  92. };
  93. class MatrixMulImpl::AlgoInt8x8x16SSE : public AlgoBase {
  94. private:
  95. static void gemm_s8s8s16_sse_4x8x2(
  96. const MatrixMulImpl::KernParam& kern_param);
  97. public:
  98. AlgoAttribute attribute() const override {
  99. return AlgoAttribute::REPRODUCIBLE;
  100. }
  101. const char* name() const override { return "X86_INT8X8X16_SSE"; }
  102. bool usable(const KernSizeParam&) const override;
  103. size_t get_workspace(const KernSizeParam&) const override;
  104. kern_t get_kern(const KernSizeParam&) const override;
  105. bool preferred(const KernSizeParam&) const override;
  106. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  107. MEGDNN_DECL_ALGO_TYPE(X86_INT8X8X16_SSE)
  108. };
  109. class MatrixMulImpl::AlgoInt8x8x32SSEM4N8K2 : public AlgoBase {
  110. public:
  111. AlgoAttribute attribute() const override {
  112. return AlgoAttribute::REPRODUCIBLE;
  113. }
  114. const char* name() const override { return "X86_INT8X8X32_SSE_4X8X2"; }
  115. bool usable(const KernSizeParam&) const override;
  116. size_t get_workspace(const KernSizeParam&) const override;
  117. kern_t get_kern(const KernSizeParam&) const override;
  118. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  119. MEGDNN_DECL_ALGO_TYPE(X86_INT8X8X32_SSE_4X8X2)
  120. };
  121. class MatrixMulImpl::AlgoF32MK8_8x8 : public AlgoBase {
  122. public:
  123. AlgoAttribute attribute() const override {
  124. return AlgoAttribute::REPRODUCIBLE;
  125. }
  126. const char* name() const override { return "X86_F32MK8_8X8"; }
  127. bool usable(const KernSizeParam&) const override;
  128. size_t get_workspace(const KernSizeParam&) const override;
  129. kern_t get_kern(const KernSizeParam&) const override;
  130. PackMode packmode() const override { return PackMode::NO_PACK; }
  131. MEGDNN_OVERRIDE_MATMUL_DESC(8, 8, 8, 4, AlgoDataType::FLOAT32, MK8)
  132. MEGDNN_DECL_ALGO_TYPE(X86_F32_MK8_8X8)
  133. };
  134. #if MEGDNN_X86_WITH_VNNI
  135. class MatrixMulImpl::AlgoInt8x8x32Vnni : public AlgoBase {
  136. public:
  137. AlgoAttribute attribute() const override {
  138. return AlgoAttribute::REPRODUCIBLE;
  139. }
  140. const char* name() const override { return "X86_INT8X8X32_VNNI"; }
  141. bool usable(const KernSizeParam&) const override;
  142. size_t get_workspace(const KernSizeParam&) const override;
  143. kern_t get_kern(const KernSizeParam&) const override;
  144. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  145. MEGDNN_DECL_ALGO_TYPE(X86_INT8X8X32_VNNI)
  146. };
  147. #endif
  148. #if MEGDNN_X86_WITH_MKL_DNN
  149. class MatrixMulImpl::AlgoInt8x8x32Mkldnn : public AlgoBase {
  150. public:
  151. AlgoAttribute attribute() const override {
  152. return AlgoAttribute::REPRODUCIBLE;
  153. }
  154. const char* name() const override { return "X86_INT8X8X32_MKLDNN"; }
  155. bool usable(const KernSizeParam&) const override;
  156. size_t get_workspace(const KernSizeParam&) const override { return 0; }
  157. kern_t get_kern(const KernSizeParam&) const override;
  158. PackMode packmode() const override { return PackMode::NO_PACK; }
  159. MEGDNN_OVERRIDE_MATMUL_DESC(8, 16, 1, 2, AlgoDataType::QINT8X8X32, DEFAULT)
  160. MEGDNN_DECL_ALGO_TYPE(X86_INT8X8X32_MKLDNN)
  161. };
  162. #endif
  163. } // namespace x86
  164. } // namespace megdnn
  165. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台