You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

network_share_weights.cpp 3.0 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879
  1. /**
  2. * \file example/cpp_example/network_share_weights.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "../example.h"
  12. #if LITE_BUILD_WITH_MGE
  13. using namespace lite;
  14. using namespace example;
  15. bool lite::example::network_share_same_weights(const Args& args) {
  16. std::string network_path = args.model_path;
  17. std::string input_path = args.input_path;
  18. //! create and load the network
  19. std::shared_ptr<Network> network = std::make_shared<Network>();
  20. network->load_model(network_path);
  21. //! load a new network from the created network and share the same weights,
  22. Config config_new;
  23. config_new.options.const_shape = true;
  24. NetworkIO network_io_new;
  25. std::shared_ptr<Network> weight_shared_network =
  26. std::make_shared<Network>(config_new, network_io_new);
  27. Runtime::shared_weight_with_network(weight_shared_network, network);
  28. //! set input data to input tensor
  29. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  30. void* dst_ptr = input_tensor->get_memory_ptr();
  31. std::shared_ptr<Tensor> input_tensor2 = weight_shared_network->get_input_tensor(0);
  32. void* dst_ptr2 = input_tensor2->get_memory_ptr();
  33. //! copy or forward data to network
  34. size_t length = input_tensor->get_tensor_total_size_in_byte();
  35. auto src_tensor = parse_npy(input_path);
  36. void* src = src_tensor->get_memory_ptr();
  37. memcpy(dst_ptr, src, length);
  38. memcpy(dst_ptr2, src, length);
  39. //! forward
  40. network->forward();
  41. network->wait();
  42. weight_shared_network->forward();
  43. weight_shared_network->wait();
  44. //! get the output data or read tensor set in network_in
  45. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  46. std::shared_ptr<Tensor> output_tensor2 =
  47. weight_shared_network->get_output_tensor(0);
  48. void* out_data = output_tensor->get_memory_ptr();
  49. void* out_data2 = output_tensor2->get_memory_ptr();
  50. size_t out_length = output_tensor->get_tensor_total_size_in_byte() /
  51. output_tensor->get_layout().get_elem_size();
  52. printf("length=%zu\n", length);
  53. float max = -1.0f;
  54. float sum = 0.0f;
  55. for (size_t i = 0; i < out_length; i++) {
  56. float data = static_cast<float*>(out_data)[i];
  57. float data2 = static_cast<float*>(out_data2)[i];
  58. if (data != data2) {
  59. printf("the result between the origin network and weight share "
  60. "netwrok is different.\n");
  61. }
  62. sum += data;
  63. if (max < data)
  64. max = data;
  65. }
  66. printf("max=%e, sum=%e\n", max, sum);
  67. return true;
  68. }
  69. #endif
  70. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台