You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

matrix_mul.cpp 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445
  1. /**
  2. * \file dnn/test/common/matrix_mul.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #include "test/common/matrix_mul.h"
  13. #include "src/common/utils.h"
  14. #include "test/common/benchmarker.h"
  15. #include "test/common/checker.h"
  16. using namespace megdnn;
  17. using namespace test;
  18. constexpr size_t matrix_mul::TestArg::UNSET_STRIDE_VAL;
  19. std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args_no_mask() {
  20. std::vector<TestArg> args;
  21. for (size_t m : {1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 32})
  22. for (size_t n : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  23. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 32})
  24. for (size_t k : {1, 2, 4, 8, 11, 12, 15, 16, 31, 32, 37})
  25. args.emplace_back(m, n, k, 0);
  26. for (size_t m : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17})
  27. args.emplace_back(m, m + 1, m + 2, 0);
  28. for (size_t mbase : {11})
  29. for (size_t test_case_offset : {64, 256, 512}) {
  30. size_t mnk = mbase + test_case_offset;
  31. args.emplace_back(mnk, mnk, mnk, 0);
  32. return args;
  33. }
  34. return args;
  35. }
  36. std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_mk_packed_args(size_t nbase) {
  37. std::vector<TestArg> args;
  38. for (size_t m : {1, 2, 3, 4, 5, 6, 7, 8, 11})
  39. for (size_t n : {1, 2, 3, 4, 5, 8, 12, 16, 24})
  40. for (size_t k : {1, 2, 3, 4, 5, 9, 10, 11})
  41. args.emplace_back(m, n * nbase, k, 0);
  42. return args;
  43. }
  44. std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_args_cublaslt() {
  45. std::vector<TestArg> args;
  46. for (size_t m : {4, 6, 8, 16}) {
  47. for (size_t n : {4, 6, 8, 16}) {
  48. //[TODO]: the following test case are disabled due to the
  49. // cublasLt(version: 10020) produce wrong result when k in [65, 97],
  50. // so please uncomment it if the bug is fixed
  51. for (size_t k : {32, 64}) {
  52. args.emplace_back(
  53. m, n, k, 0, TestArg::UNSET_STRIDE_VAL,
  54. TestArg::UNSET_STRIDE_VAL, TestArg::UNSET_STRIDE_VAL, 2);
  55. }
  56. }
  57. }
  58. return args;
  59. }
  60. std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_args_int8x8x32() {
  61. std::vector<TestArg> args;
  62. for (size_t m : {1, 2, 3, 4, 5, 8, 64}) {
  63. for (size_t n : {1, 2, 3, 4, 5, 8, 64}) {
  64. for (size_t k : {1, 2, 3, 4, 5, 8, 64}) {
  65. args.emplace_back(
  66. m, n, k, 0, TestArg::UNSET_STRIDE_VAL,
  67. TestArg::UNSET_STRIDE_VAL, TestArg::UNSET_STRIDE_VAL, 2);
  68. }
  69. }
  70. }
  71. return args;
  72. }
  73. std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args_mask(uint8_t mask) {
  74. std::vector<TestArg> args;
  75. std::vector<TestArg> args_temp = matrix_mul::get_matmul_args_no_mask();
  76. for (auto arg : args_temp) {
  77. arg.mask = mask;
  78. args.emplace_back(arg);
  79. }
  80. // non-contiguous case
  81. for (size_t m : {110})
  82. for (size_t n : {119})
  83. for (size_t k : {120}) {
  84. // A: (m, k)
  85. size_t Astride = mask & 1 ? m + 2 : k + 2;
  86. // B: (k, n)
  87. size_t Bstride = mask & 2 ? k + 2 : n + 2;
  88. size_t Cstride = n * 2 + 2;
  89. args.emplace_back(m, n, k, mask, Astride, Bstride, Cstride);
  90. }
  91. return args;
  92. }
  93. std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args() {
  94. std::vector<TestArg> args;
  95. for (size_t mask = 0; mask < 4; ++mask) {
  96. std::vector<TestArg> args_temp = matrix_mul::get_matmul_args_mask(mask);
  97. for (auto arg : args_temp)
  98. args.emplace_back(arg);
  99. }
  100. return args;
  101. }
  102. std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args_split_k() {
  103. std::vector<TestArg> args = get_matmul_args();
  104. for (auto iter = args.begin(); iter < args.end();) {
  105. if (iter->k <= iter->n) {
  106. iter = args.erase(iter);
  107. } else {
  108. iter++;
  109. }
  110. }
  111. return args;
  112. }
  113. std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_args_mask(
  114. uint8_t mask) {
  115. std::vector<TestArg> args;
  116. for (size_t b : {1, 2, 3}) {
  117. std::vector<TestArg> args_temp =
  118. megdnn::test::matrix_mul::get_matmul_args_mask(mask);
  119. for (auto arg : args_temp) {
  120. arg.b = b;
  121. args.emplace_back(arg);
  122. }
  123. }
  124. return args;
  125. }
  126. std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_args() {
  127. std::vector<TestArg> args;
  128. for (size_t mask = 0; mask < 4; ++mask) {
  129. std::vector<TestArg> args_temp = matrix_mul::get_batched_matmul_args_mask(mask);
  130. for (auto arg : args_temp)
  131. args.emplace_back(arg);
  132. }
  133. return args;
  134. }
  135. std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_broadcast_args() {
  136. std::vector<TestArg> args;
  137. for (size_t mask = 0; mask < 4; ++mask) {
  138. std::vector<TestArg> args_temp =
  139. matrix_mul::get_batched_matmul_broadcast_args_mask(mask);
  140. for (auto arg : args_temp)
  141. args.emplace_back(arg);
  142. }
  143. return args;
  144. }
  145. std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_broadcast_args_mask(
  146. uint8_t mask) {
  147. std::vector<TestArg> args;
  148. std::vector<TestArg> args_temp = matrix_mul::get_batched_matmul_args_mask(mask);
  149. for (auto arg : args_temp) {
  150. args.emplace_back(arg);
  151. args.back().A_batch_stride = 0;
  152. }
  153. return args;
  154. }
  155. template <typename Opr>
  156. void matrix_mul::check_matrix_mul(
  157. DType A_dtype, DType B_dtype, DType C_dtype, Handle* handle,
  158. const ExecutionPolicyAlgoName& algo, param::MatrixMul::Format format,
  159. size_t nbase, float eps, std::vector<TestArg>&& user_args,
  160. bool force_deduce_dst, param::MatrixMul::ComputeMode compute_mode) {
  161. megdnn_assert(A_dtype.enumv() == B_dtype.enumv());
  162. Checker<Opr> checker(handle);
  163. checker.set_force_deduce_dst(force_deduce_dst);
  164. if (!algo.name.empty()) {
  165. checker.set_before_exec_callback(AlgoChecker<Opr>(algo));
  166. }
  167. std::unique_ptr<RNG> rng;
  168. checker.set_epsilon(eps);
  169. if (A_dtype.enumv() == DTypeEnum::Int8 ||
  170. A_dtype.enumv() == DTypeEnum::QuantizedS8) {
  171. //! use larger rng to check the overflow
  172. rng = std::make_unique<UniformIntRNG>(-127, 127);
  173. } else if (
  174. A_dtype.enumv() == DTypeEnum::Uint8 ||
  175. A_dtype.enumv() == DTypeEnum::Quantized8Asymm) {
  176. rng = std::make_unique<NormalRNG>(128.f);
  177. } else if (A_dtype.enumv() == DTypeEnum::Int16) {
  178. rng = std::make_unique<UniformIntRNG>(-32767, 32767);
  179. } else if (A_dtype.enumv() == DTypeEnum::Float16) {
  180. rng = std::make_unique<NormalRNG>(2.f);
  181. //! if fp16 not set eps, default 1e-3, we just set it to 1e-2
  182. if (eps < 1e-2) {
  183. checker.set_epsilon(1e-2);
  184. }
  185. }
  186. if (rng) {
  187. checker.set_rng(0, rng.get()).set_rng(1, rng.get());
  188. }
  189. //! return expect if stride == -1, stride otherwise
  190. auto stride_val = [](size_t stride, size_t expect) -> size_t {
  191. if (stride == TestArg::UNSET_STRIDE_VAL) {
  192. return expect;
  193. } else {
  194. return stride;
  195. }
  196. };
  197. constexpr static bool batched = std::is_same<Opr, megdnn::BatchedMatrixMul>::value;
  198. using Param = MatrixMul::Param;
  199. std::vector<TestArg> args;
  200. if (user_args.empty()) {
  201. if (format == param::MatrixMul::Format::DEFAULT) {
  202. if (batched) {
  203. args = matrix_mul::get_batched_matmul_args();
  204. } else {
  205. args = matrix_mul::get_matmul_args();
  206. }
  207. } else {
  208. megdnn_assert(!batched, "BatchedMatrixMul does not support MK4/MK8");
  209. args = matrix_mul::get_matmul_mk_packed_args(nbase);
  210. }
  211. } else {
  212. args = user_args;
  213. }
  214. size_t pack_size = MatrixMulForward::pack_size(format);
  215. for (auto& arg : args) {
  216. size_t m = arg.m, n = arg.n, k = arg.k;
  217. if (handle->type() == Handle::HandleType::CUDA) {
  218. //! NOTE: cublas can only process 4B aligned 8-bit input matrix;
  219. bool is_dt_8bit = A_dtype.enumv() == DTypeEnum::Int8 ||
  220. A_dtype.enumv() == DTypeEnum::QuantizedS8 ||
  221. A_dtype.enumv() == DTypeEnum::Uint8 ||
  222. A_dtype.enumv() == DTypeEnum::Quantized8Asymm;
  223. if (is_dt_8bit && ((m % 4 != 0) || (n % 4 != 0))) {
  224. continue;
  225. }
  226. }
  227. Param param;
  228. param.transposeA = arg.mask & 0x1;
  229. param.transposeB = arg.mask & 0x2;
  230. param.compute_mode = compute_mode;
  231. param.format = format;
  232. checker.set_dtype(0, A_dtype).set_dtype(1, B_dtype).set_dtype(2, C_dtype);
  233. size_t A0 = m, A1 = k, B0 = k, B1 = n;
  234. TensorShape A, B;
  235. if (param.transposeA) {
  236. std::swap(A0, A1);
  237. }
  238. if (param.transposeB) {
  239. std::swap(B0, B1);
  240. }
  241. ptrdiff_t A_stride = arg.A_stride, B_stride = arg.B_stride,
  242. C_stride = arg.C_stride, A_batch_stride = arg.A_batch_stride,
  243. B_batch_stride = arg.B_batch_stride,
  244. C_batch_stride = arg.C_batch_stride;
  245. A_stride = stride_val(A_stride, A1);
  246. B_stride = stride_val(B_stride, B1);
  247. C_stride = stride_val(C_stride, n);
  248. A_batch_stride = stride_val(A_batch_stride, A0 * A_stride);
  249. B_batch_stride = stride_val(B_batch_stride, B0 * B_stride);
  250. C_batch_stride = stride_val(C_batch_stride, m * C_stride);
  251. checker.set_param(param);
  252. if (format == param::MatrixMul::Format::DEFAULT) {
  253. if (batched) {
  254. checker.execl(
  255. {TensorLayout{
  256. {arg.b, A0, A1},
  257. {A_batch_stride, A_stride, 1},
  258. A_dtype},
  259. TensorLayout{
  260. {arg.b, B0, B1},
  261. {B_batch_stride, B_stride, 1},
  262. B_dtype},
  263. TensorLayout{
  264. {arg.b, m, n},
  265. {C_batch_stride, C_stride, 1},
  266. C_dtype}});
  267. } else {
  268. checker.execl(
  269. {TensorLayout{{A0, A1}, {A_stride, 1}, A_dtype},
  270. TensorLayout{{B0, B1}, {B_stride, 1}, B_dtype},
  271. TensorLayout{{m, n}, {C_stride, 1}, C_dtype}});
  272. }
  273. } else {
  274. //! ignore non-contiguous, only DEFAULT format support
  275. //! non-contiguous input
  276. checker.execs({{A0, A1, pack_size, pack_size}, {B0, B1, pack_size}, {}});
  277. }
  278. }
  279. }
  280. void matrix_mul::check_batched_matrix_mul(
  281. DType A_dtype, DType B_dtype, DType C_dtype, Handle* handle,
  282. const ExecutionPolicyAlgoName& algo, float eps, std::vector<TestArg>&& args,
  283. bool force_deduce_dst) {
  284. check_matrix_mul<megdnn::BatchedMatrixMul>(
  285. A_dtype, B_dtype, C_dtype, handle, algo, param::MatrixMul::Format::DEFAULT,
  286. 8, eps, std::forward<decltype(args)>(args), force_deduce_dst);
  287. }
  288. void matrix_mul::check_matrix_mul(
  289. DType A_dtype, DType B_dtype, DType C_dtype, Handle* handle,
  290. const ExecutionPolicyAlgoName& algo, param::MatrixMul::Format format,
  291. size_t nbase, float eps, bool force_deduce_dst) {
  292. check_matrix_mul<megdnn::MatrixMul>(
  293. A_dtype, B_dtype, C_dtype, handle, algo, format, nbase, eps, {},
  294. force_deduce_dst);
  295. }
  296. #if MEGDNN_WITH_BENCHMARK
  297. std::vector<matrix_mul::TestArg> matrix_mul::get_benchmark_matmul_args() {
  298. std::vector<matrix_mul::TestArg> args;
  299. args.emplace_back(256, 12 * 24, 256, 0);
  300. //////////////////////// gemv //////////////////////////
  301. for (size_t M : {8, 64, 112, 256}) {
  302. for (size_t K : {8, 64, 112, 256}) {
  303. args.emplace_back(M, 1, K, 0);
  304. }
  305. }
  306. //////////////////////// gemm //////////////////////////
  307. for (size_t M : {8, 64, 112, 256}) {
  308. for (size_t K : {8, 16, 32, 64, 112, 256}) {
  309. for (size_t N : {8, 64, 112, 256}) {
  310. args.emplace_back(M, N, K, 0);
  311. }
  312. }
  313. }
  314. return args;
  315. }
  316. std::vector<matrix_mul::TestArg> matrix_mul::get_benchmark_matmul_mk_packed_args(
  317. size_t nbase) {
  318. std::vector<TestArg> args;
  319. for (size_t m : {2, 4, 8, 16, 24, 32, 64})
  320. for (size_t n : {1, 2, 3, 4, 8, 16, 32, 64})
  321. for (size_t k : {2, 4, 8, 16, 24, 32, 64})
  322. args.emplace_back(m, n * nbase, k, 0);
  323. return args;
  324. }
  325. void matrix_mul::benchmark_with_contrast(
  326. Handle* handle, const std::vector<TestArg>& args, DType A_dtype, DType B_dtype,
  327. DType C_dtype, const char* algo, param::MatrixMul::Format format,
  328. DType contrast_A_dtype, DType contrast_B_dtype, DType contrast_C_dtype,
  329. const char* contrast_algo, param::MatrixMul::Format contrast_format) {
  330. using Param = MatrixMul::Param;
  331. megdnn_assert(A_dtype.enumv() == B_dtype.enumv());
  332. megdnn_assert(contrast_A_dtype.enumv() == contrast_B_dtype.enumv());
  333. Benchmarker<MatrixMul> benchmark_contrast(handle);
  334. Benchmarker<MatrixMul> benchmark(handle);
  335. constexpr size_t RUNS = 50;
  336. if (algo) {
  337. benchmark.set_before_exec_callback(AlgoChecker<MatrixMul>(algo));
  338. }
  339. if (contrast_algo) {
  340. benchmark_contrast.set_before_exec_callback(
  341. AlgoChecker<MatrixMul>(contrast_algo));
  342. }
  343. benchmark.set_dtype(0, A_dtype).set_dtype(1, B_dtype).set_dtype(2, C_dtype);
  344. benchmark.set_times(RUNS);
  345. benchmark_contrast.set_dtype(0, contrast_A_dtype)
  346. .set_dtype(1, contrast_B_dtype)
  347. .set_dtype(2, contrast_C_dtype);
  348. benchmark_contrast.set_times(RUNS);
  349. auto bench = [](Benchmarker<MatrixMul>& benchmark, Param param,
  350. param::MatrixMul::Format format, size_t m, size_t n, size_t k,
  351. size_t pack_size) -> float {
  352. param.format = format;
  353. benchmark.set_param(param);
  354. float used_algo = 1.0;
  355. if (format == param::MatrixMul::Format::DEFAULT) {
  356. size_t A0 = m * pack_size, A1 = k * pack_size, B0 = k * pack_size, B1 = n;
  357. TensorShape A, B;
  358. if (param.transposeA) {
  359. std::swap(A0, A1);
  360. }
  361. if (param.transposeB) {
  362. std::swap(B0, B1);
  363. }
  364. used_algo = benchmark.execs({{A0, A1}, {B0, B1}, {}}) / RUNS;
  365. } else {
  366. size_t A0 = m, A1 = k, B0 = k, B1 = n;
  367. if (param.transposeA) {
  368. std::swap(A0, A1);
  369. }
  370. if (param.transposeB) {
  371. std::swap(B0, B1);
  372. }
  373. used_algo =
  374. benchmark.execs(
  375. {{A0, A1, pack_size, pack_size}, {B0, B1, pack_size}, {}}) /
  376. RUNS;
  377. }
  378. return used_algo;
  379. };
  380. size_t mk_size = MatrixMulForward::pack_size(format);
  381. size_t mk_size_contrast = MatrixMulForward::pack_size(contrast_format);
  382. size_t pack_size = std::max(mk_size, mk_size_contrast);
  383. for (auto& arg : args) {
  384. Param param;
  385. param.transposeA = arg.mask & 0x1;
  386. param.transposeB = arg.mask & 0x2;
  387. auto used_contrast =
  388. bench(benchmark_contrast, param, contrast_format, arg.m, arg.n, arg.k,
  389. pack_size);
  390. auto used_algo =
  391. bench(benchmark, param, format, arg.m, arg.n, arg.k, pack_size);
  392. float computations = 2.f * arg.m * pack_size * arg.k * pack_size * arg.n * 1e-6;
  393. printf("run: {(%zu, %zu) x (%zu, %zu)} contrast: %f ms %f Gflops %s: "
  394. "%f "
  395. "ms "
  396. "%f Gflops "
  397. "speedup: %f \n",
  398. arg.m * pack_size, arg.k * pack_size, arg.k * pack_size, arg.n,
  399. used_contrast, computations / used_contrast, algo, used_algo,
  400. computations / used_algo, used_contrast / used_algo);
  401. }
  402. }
  403. #endif
  404. // vim: syntax=cpp.doxygen