You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

conv_pooling.cpp 4.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114
  1. /**
  2. * \file dnn/test/common/conv_pooling.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "test/common/conv_pooling.h"
  12. namespace megdnn {
  13. namespace test {
  14. namespace conv_pooling {
  15. /* ConvPooling(
  16. Method method_=Method::WITH_TEXTURE_OBJ,
  17. ConvMode convMode_=ConvMode::CROSS_CORRELATION,
  18. PoolMode poolMode_=PoolMode::AVERAGE,
  19. NonlineMode nonlineMode_=NonlineMode::IDENTITY,
  20. uint32_t pool_shape_h_=1,
  21. uint32_t pool_shape_w_=1,
  22. uint32_t pool_stride_h_=1,
  23. uint32_t pool_stride_w_=1,
  24. uint32_t pool_pad_h_=0,
  25. uint32_t pool_pad_w_=0,
  26. uint32_t conv_stride_h_=1,
  27. uint32_t conv_stride_w_=1,
  28. uint32_t conv_pad_h_=0,
  29. uint32_t conv_pad_w_=0,
  30. float *bias_=NULL)
  31. */
  32. std::vector<TestArg> get_args() {
  33. std::vector<TestArg> args;
  34. uint32_t pool_shape_h = 3;
  35. uint32_t pool_shape_w = 3;
  36. uint32_t pool_stride_h = pool_shape_h;
  37. uint32_t pool_stride_w = pool_shape_w;
  38. param::ConvPooling cur_param(
  39. param::ConvPooling::Method::WITH_TEXTURE_OBJ,
  40. param::ConvPooling::ConvMode::CONVOLUTION,
  41. param::ConvPooling::PoolMode::MAX, param::ConvPooling::NonlineMode::RELU,
  42. pool_shape_h, pool_shape_w, pool_stride_h, pool_stride_w, 0, 0, 1, 1, 0, 0);
  43. std::vector<param::ConvPooling::ConvMode> conv_mode;
  44. conv_mode.push_back(param::ConvPooling::ConvMode::CONVOLUTION);
  45. conv_mode.push_back(param::ConvPooling::ConvMode::CROSS_CORRELATION);
  46. std::vector<param::ConvPooling::NonlineMode> nonline_mode;
  47. nonline_mode.push_back(param::ConvPooling::NonlineMode::IDENTITY);
  48. nonline_mode.push_back(param::ConvPooling::NonlineMode::SIGMOID);
  49. nonline_mode.push_back(param::ConvPooling::NonlineMode::RELU);
  50. for (size_t i = 19; i < 21; ++i) {
  51. for (size_t i_nl_mode = 0; i_nl_mode < nonline_mode.size(); ++i_nl_mode) {
  52. cur_param.nonlineMode = nonline_mode[i_nl_mode];
  53. for (size_t i_conv_mode = 0; i_conv_mode < conv_mode.size();
  54. ++i_conv_mode) {
  55. for (size_t kernel_size = 1; kernel_size < 7; ++kernel_size) {
  56. for (size_t pool_size = 1; pool_size < 5; ++pool_size) {
  57. if (pool_size >= kernel_size)
  58. continue;
  59. cur_param.convMode = conv_mode[i_conv_mode];
  60. args.emplace_back(
  61. cur_param, TensorShape{20, 4, i, i},
  62. TensorShape{3, 4, 4, 4}, TensorShape{1, 3, 1, 1});
  63. }
  64. }
  65. }
  66. }
  67. }
  68. /*
  69. // large channel
  70. for (size_t i = 20; i < 22; ++i) {
  71. cur_param.convMode = param::ConvPooling::ConvMode::CONVOLUTION;
  72. args.emplace_back(cur_param,
  73. TensorShape{2, 20, i, i+1},
  74. TensorShape{30, 20, 4, 4},
  75. TensorShape{1, 30, 1, 1});
  76. cur_param.convMode = param::ConvPooling::ConvMode::CROSS_CORRELATION;
  77. args.emplace_back(cur_param,
  78. TensorShape{2, 20, i, i+1},
  79. TensorShape{30, 20, 3, 3},
  80. TensorShape{1, 30, 1, 1});
  81. }
  82. // large filter
  83. for (size_t i = 20; i < 22; ++i) {
  84. cur_param.convMode = param::ConvPooling::ConvMode::CONVOLUTION;
  85. args.emplace_back(cur_param,
  86. TensorShape{2, 2, i, i+1},
  87. TensorShape{3, 2, 5, 5},
  88. TensorShape{1, 3, 1, 1});
  89. cur_param.convMode = param::ConvPooling::ConvMode::CROSS_CORRELATION;
  90. cur_param.convMode =
  91. param::ConvPooling::ConvMode::CROSS_CORRELATION; args.emplace_back(cur_param,
  92. TensorShape{2, 2, i, i+1},
  93. TensorShape{3, 2, 5, 5},
  94. TensorShape{1, 3, 1, 1});
  95. }
  96. */
  97. return args;
  98. }
  99. } // namespace conv_pooling
  100. } // namespace test
  101. } // namespace megdnn
  102. // vim: syntax=cpp.doxygen