- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- from typing import Tuple, Union
-
- import numpy as np
-
- from ... import module as Float
- from ...core.tensor import dtype
- from ...functional import expand_dims, squeeze
- from ...functional.quantized import batch_conv_bias_activation
- from ...tensor import Parameter
- from ..qat import batch_matmul_activation as QAT
- from .module import QuantizedModule
-
-
- class BatchMatMulActivation(Float.BatchMatMulActivation, QuantizedModule):
- r"""Quantized version of :class:`~.qat.BatchMatMulActivation`."""
-
- def __init__(
- self,
- batch: int,
- in_features: int,
- out_features: int,
- bias: bool = True,
- nonlinear_mode="identity",
- dtype=None,
- **kwargs
- ):
- super().__init__(batch, in_features, out_features, bias, **kwargs)
- self.output_dtype = dtype
-
- def calc_bmm_quantized(self, inp):
- inp_scale = dtype.get_scale(inp.dtype)
- w_scale = dtype.get_scale(self.weight.dtype)
- bias_scale = inp_scale * w_scale
- inp = expand_dims(inp, [-1])
- res = batch_conv_bias_activation(
- inp,
- self.weight,
- self.bias.astype(dtype.qint32(bias_scale)),
- dtype=self.output_dtype,
- stride=1,
- padding=0,
- dilation=1,
- groups=1,
- nonlinear_mode=self.nonlinear_mode,
- )
- return squeeze(res, -1)
-
- @classmethod
- def from_qat_module(cls, qat_module: QAT.BatchMatMulActivation):
- output_dtype = qat_module.get_activation_dtype()
- qbmm = cls(
- qat_module.batch,
- qat_module.in_features,
- qat_module.out_features,
- qat_module.bias is not None,
- dtype=output_dtype,
- name=qat_module.name,
- )
- weight = qat_module.weight.astype(qat_module.get_weight_dtype())
- weight = expand_dims(weight, [-1, -2])
- qbmm.weight = Parameter(weight.numpy(), name=qat_module.weight.name)
- if qat_module.bias is not None:
- bias = qat_module.bias.reshape((1, qbmm.out_features, 1, 1))
- qbmm.bias = Parameter(bias.numpy(), name=qat_module.bias.name)
- else:
- qbmm.bias = Parameter(
- np.zeros((1, qbmm.out_features, 1, 1), dtype=np.float32)
- )
- return qbmm
-
- def forward(self, inp):
- return self.calc_bmm_quantized(inp)
|