You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

traced_module.py 90 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519
  1. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  2. #
  3. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  4. #
  5. # Unless required by applicable law or agreed to in writing,
  6. # software distributed under the License is distributed on an
  7. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  8. import builtins
  9. import collections
  10. import copy
  11. import fnmatch
  12. import functools
  13. import inspect
  14. import keyword
  15. import re
  16. import weakref
  17. from importlib import import_module
  18. from inspect import getcallargs, getmembers, isclass, ismethod
  19. from itertools import chain
  20. from types import FunctionType
  21. from typing import (
  22. Any,
  23. Callable,
  24. Dict,
  25. Iterable,
  26. List,
  27. Optional,
  28. Sequence,
  29. Tuple,
  30. Type,
  31. Union,
  32. )
  33. from .. import functional as F
  34. from .. import get_logger
  35. from .. import module as M
  36. from ..core._imperative_rt.core2 import Tensor as RawTensor
  37. from ..core._imperative_rt.core2 import (
  38. apply,
  39. is_tracing_module,
  40. set_module_tracing,
  41. unset_module_tracing,
  42. )
  43. from ..core._trace_option import set_symbolic_shape
  44. from ..core.ops.builtin import Copy
  45. from ..module import Module
  46. from ..module import external as MExternal
  47. from ..module.qat import QATModule
  48. from ..quantization.fake_quant import LSQ, TQT, FakeQuantize, _FakeQuantize
  49. from ..quantization.observer import (
  50. ExponentialMovingAverageObserver,
  51. HistogramObserver,
  52. MinMaxObserver,
  53. Observer,
  54. PassiveObserver,
  55. SyncExponentialMovingAverageObserver,
  56. SyncMinMaxObserver,
  57. )
  58. from ..tensor import Tensor
  59. from ..utils.max_recursion_limit import max_recursion_limit
  60. from ..version import __version__
  61. from .expr import (
  62. Apply,
  63. CallFunction,
  64. CallMethod,
  65. Constant,
  66. Expr,
  67. GetAttr,
  68. Input,
  69. get_suffix_name,
  70. is_apply_def,
  71. is_call_function,
  72. is_call_module,
  73. is_call_tensor_method,
  74. is_constant,
  75. is_getattr,
  76. is_input,
  77. )
  78. from .fake_quant import FakeQuantize as TM_FakeQuant
  79. from .module_tracer import (
  80. PatchedFn,
  81. Patcher,
  82. active_module_tracer,
  83. get_tensor_wrapable_method,
  84. module_tracer,
  85. set_active_module_tracer,
  86. )
  87. from .node import ModuleNode, Node, NodeMixin, TensorNode
  88. from .pytree import (
  89. USER_REGISTERED_CONTAINER_TYPE,
  90. USER_REGISTERED_LEAF_TYPE,
  91. ArgsIndex,
  92. TreeDef,
  93. _register_supported_type,
  94. tree_flatten,
  95. )
  96. from .serialization import (
  97. _ModuleState,
  98. load_apply_expr,
  99. load_call_module_expr,
  100. load_call_tensor_method_expr,
  101. load_functional,
  102. )
  103. from .tm_config import (
  104. _exclude_from_trace,
  105. _get_default_checker,
  106. _get_expr_checker,
  107. _graph_surgery_mode,
  108. _set_graph_surgery_mode,
  109. )
  110. from .utils import (
  111. _check_builtin_module_attr,
  112. _check_obj_attr,
  113. _convert_kwargs_to_args,
  114. replace_container_with_module_container,
  115. )
  116. logger = get_logger(__name__)
  117. def _is_builtin_name(name: str) -> bool:
  118. return (
  119. name in builtins.__dict__
  120. or name in keyword.kwlist
  121. or name in {"inf", "nan", "NoneType"}
  122. )
  123. def _is_leaf(node):
  124. assert isinstance(
  125. node, RawTensor
  126. ), 'doesn\'t support {} in return values, MUST use Tensor or use "register_supported_type" method to register self-defined type'.format(
  127. type(node)
  128. )
  129. return isinstance(node, RawTensor)
  130. def _node_to_tensor(*args, **kwargs):
  131. tensors = []
  132. nodes, tree_def = tree_flatten((args, kwargs))
  133. for n in nodes:
  134. if isinstance(n, TensorNode):
  135. if n.top_graph is not None:
  136. active_module_tracer().current_scope()._add_input(n)
  137. value = n.value
  138. if value is None:
  139. flag = _set_graph_surgery_mode(False)
  140. with _exclude_from_trace():
  141. value = F.zeros(shape=n._shape, dtype=n._dtype)
  142. _set_graph_surgery_mode(flag)
  143. orig_n = NodeMixin.get(value, None)
  144. if orig_n is None or "setitem" not in orig_n._name:
  145. NodeMixin.wrap_safe(value, n)
  146. tensors.append(value)
  147. else:
  148. tensors.append(n)
  149. tensors = tree_def.unflatten(tensors)
  150. return tensors
  151. def _tensor_to_node(tensors):
  152. if tensors is None:
  153. return None
  154. nodes = []
  155. tensors, out_def = tree_flatten(tensors)
  156. for t in tensors:
  157. if isinstance(t, Tensor):
  158. n = NodeMixin.get(t, None)
  159. if isinstance(n, TensorNode):
  160. n.value = t
  161. nodes.append(n)
  162. else:
  163. nodes.append(t)
  164. else:
  165. nodes.append(t)
  166. nodes = out_def.unflatten(nodes)
  167. return nodes
  168. def _name_setter(node: Node, new_name: str):
  169. surgery_mode = _set_graph_surgery_mode(False)
  170. graph = active_module_tracer().current_scope()
  171. if node.top_graph is not None:
  172. top_graph = active_module_tracer().top_scope()
  173. if node is top_graph._namespace.used_names.get(node._name, None):
  174. graph = top_graph
  175. else:
  176. graph = node.top_graph
  177. assert (
  178. graph._namespace.used_names.get(new_name, None) is None
  179. ), "The name(%s) is already in use. Please try a different one again." % (new_name)
  180. graph._namespace.unassociate_name_with_obj(node)
  181. node._name = graph._namespace.create_unique_name(new_name, node)
  182. _set_graph_surgery_mode(surgery_mode)
  183. def _wrap_method_to_tensor_node():
  184. def _any_method(name, func):
  185. def _any(*args, **kwargs):
  186. if is_tracing_module() and _graph_surgery_mode():
  187. args, kwargs = _node_to_tensor(*args, **kwargs)
  188. attr = getattr(args[0], name)
  189. outs = attr
  190. if callable(attr):
  191. outs = attr(*(args[1:]), **kwargs)
  192. if name == "__setitem__":
  193. _node_to_tensor(outs)
  194. return None
  195. outs = _tensor_to_node(outs)
  196. return outs
  197. else:
  198. outs = func
  199. if callable(func):
  200. outs = func(*args, **kwargs)
  201. if isinstance(func, property):
  202. outs = func.__get__(*args, **kwargs)
  203. return outs
  204. return _any
  205. tensor_method_patch = []
  206. for method in get_tensor_wrapable_method():
  207. patch = PatchedFn(TensorNode, method)
  208. if type(getattr(Tensor, method)) == property:
  209. # Only support property.getter
  210. patch.set_func(property(_any_method(method, patch.origin_fn)))
  211. else:
  212. patch.set_func(_any_method(method, patch.origin_fn))
  213. tensor_method_patch.append(patch)
  214. patch = PatchedFn(Node, "name")
  215. patch.set_func(property(patch.origin_fn.fget, _name_setter))
  216. tensor_method_patch.append(patch)
  217. return tensor_method_patch
  218. def _convert_node_and_tensor(orig_func):
  219. @functools.wraps(orig_func)
  220. def _convert(*args, **kwargs):
  221. if is_tracing_module() and _graph_surgery_mode():
  222. args, kwargs = _node_to_tensor(*args, **kwargs)
  223. rst = orig_func(*args, **kwargs, method_func=_convert)
  224. rst = _tensor_to_node(rst)
  225. return rst
  226. else:
  227. rst = orig_func(*args, **kwargs)
  228. return rst
  229. return _convert
  230. def _wrap_mnode_getattr(orig_getattr):
  231. @functools.wraps(orig_getattr)
  232. def wraped_fn(self, name):
  233. if is_tracing_module() and _graph_surgery_mode():
  234. obj = self.owner
  235. current_graph = active_module_tracer().current_scope()
  236. if self.top_graph is not None:
  237. current_graph._add_input(self)
  238. attr = getattr(obj, name)
  239. node = attr
  240. if not isinstance(attr, TracedModuleBuilder):
  241. if isinstance(attr, Module):
  242. attr = TracedModuleBuilder(attr)
  243. setattr(obj, name, attr)
  244. if isinstance(attr, (NodeMixin, RawTensor)):
  245. NodeMixin.wrap(
  246. attr,
  247. lambda: GetAttr.make(
  248. self,
  249. type=NodeMixin.get_wrapped_type(attr),
  250. attr_name=name,
  251. name="",
  252. ),
  253. )
  254. if isinstance(attr, (NodeMixin, RawTensor)):
  255. node = NodeMixin.get(attr)
  256. if isinstance(node, ModuleNode) and isinstance(attr, (NodeMixin, Module)):
  257. node._owner = weakref.ref(attr)
  258. return node
  259. else:
  260. node = object.__getattribute__(self, name)
  261. return node
  262. return wraped_fn
  263. def _wrap_mnode_call(orig_call):
  264. @functools.wraps(orig_call)
  265. def wraped_fn(self, *args, **kwargs):
  266. if is_tracing_module() and _graph_surgery_mode():
  267. obj = self.owner
  268. if self.top_graph is not None:
  269. active_module_tracer().current_scope()._add_input(self)
  270. rst = obj(*args, **kwargs)
  271. else:
  272. raise TypeError("'ModuleNode' object is not callable")
  273. return rst
  274. return wraped_fn
  275. class _InsertExprs:
  276. def __init__(self, graph, expr: Optional[Expr] = None):
  277. self.graph = graph
  278. while graph.top_graph is not None:
  279. graph = graph.top_graph
  280. assert graph.inputs[0].owner._is_top
  281. self.root_graph = graph
  282. self.global_scope = InternalGraph(self.graph._name, self.graph._qualname)
  283. self.global_scope._namespace.merge(self.graph._namespace)
  284. self.expr = expr
  285. self._tensor_method_patch = None
  286. def __enter__(self):
  287. self.use_sym_shape = set_symbolic_shape(True)
  288. node_id, expr_id = self.root_graph._total_ids
  289. Node._set_next_id(node_id)
  290. Expr._set_next_id(expr_id)
  291. set_module_tracing()
  292. _set_graph_surgery_mode(True)
  293. assert active_module_tracer() is None
  294. set_active_module_tracer(
  295. module_tracer(lambda x: _convert_node_and_tensor(_wrapped_function(x)))
  296. )
  297. active_module_tracer().patcher.__enter__()
  298. for cls, name, func in [
  299. [ModuleNode, "__getattr__", _wrap_mnode_getattr],
  300. [ModuleNode, "__call__", _wrap_mnode_call],
  301. [TracedModuleBuilder, "__call__", _convert_node_and_tensor],
  302. ]:
  303. active_module_tracer().patcher.patch_function(cls, name, func)
  304. self._tensor_method_patch = _wrap_method_to_tensor_node()
  305. active_module_tracer().push_scope(self.global_scope)
  306. def __exit__(self, ty, va, tr):
  307. if va is not None:
  308. return False
  309. active_module_tracer().patcher.__exit__(ty, va, tr)
  310. while self._tensor_method_patch:
  311. pf = self._tensor_method_patch.pop()
  312. pf.set_func(pf.origin_fn)
  313. # delete ModuleNode.__call__ to avoid entering the
  314. # ModuleNode.__init__ method when call a ModuleNode object.
  315. delattr(ModuleNode, "__call__")
  316. module = self.graph.inputs[0].owner
  317. def build_traced_module(
  318. module: TracedModuleBuilder, target_module: TracedModule
  319. ):
  320. for k, v in module.__dict__.items():
  321. if isinstance(v, TracedModuleBuilder):
  322. traced_v = v.build()
  323. build_traced_module(v, traced_v)
  324. setattr(target_module, k, traced_v)
  325. build_traced_module(module, module)
  326. set_symbolic_shape(self.use_sym_shape)
  327. _set_graph_surgery_mode(False)
  328. set_active_module_tracer(None)
  329. unset_module_tracing()
  330. extra_inp_nodes = set(self.global_scope.inputs)
  331. max_inp_expr_idx = -1
  332. for node in extra_inp_nodes:
  333. assert (
  334. node.top_graph == self.graph
  335. ), "The input node ({}) is not in the graph ({})".format(node, self.graph)
  336. if node.expr in self.graph._exprs:
  337. max_inp_expr_idx = max(
  338. max_inp_expr_idx, self.graph._exprs.index(node.expr)
  339. )
  340. max_inp_expr_idx += 1
  341. insert_index = -1
  342. if self.expr in self.graph._exprs:
  343. insert_index = self.graph._exprs.index(self.expr)
  344. insert_index += 1
  345. if insert_index < max_inp_expr_idx:
  346. insert_index = max_inp_expr_idx
  347. for expr in self.global_scope._exprs:
  348. self.graph._exprs.insert(insert_index, expr)
  349. insert_index += 1
  350. self.graph._namespace.merge(self.global_scope._namespace)
  351. self.root_graph._total_ids = (Node._get_next_id(), Expr._get_next_id())
  352. self.root_graph.inputs[0].owner._update_ref()
  353. for node in self.root_graph.nodes():
  354. if isinstance(node, TensorNode):
  355. node.value = None
  356. return True
  357. class NameSpace:
  358. def __init__(self, name, qualname):
  359. self.name = name
  360. self.qualname = qualname
  361. self._used_names = {}
  362. def create_unique_name(self, name: str, node: Any = None) -> str:
  363. assert isinstance(name, str), "The name must be a string"
  364. if name in self._used_names and (self._used_names[name] is node):
  365. return name
  366. name = re.sub("[^0-9a-zA-Z_]+", "_", name)
  367. if name[0].isdigit():
  368. name = "_{}".format(name)
  369. while (
  370. name in self._used_names and self._used_names[name] is not None
  371. ) or _is_builtin_name(name):
  372. match = re.match(r"(.*)_(\d+)$", name)
  373. if match is None:
  374. name = name + "_1"
  375. else:
  376. base, num = match.group(1, 2)
  377. name = "{}_{}".format(base, int(num) + 1)
  378. self._used_names.setdefault(name)
  379. if node is not None:
  380. self.associate_name_with_obj(name, node)
  381. return name
  382. def auto_naming_for_outputs(self, expr: Expr):
  383. _add_suffix = lambda x: x + "_out"
  384. if is_call_module(expr):
  385. call_node = expr.inputs[0]
  386. qualname = "%s.[out]" % (call_node.qualname)
  387. name = call_node.name
  388. elif is_call_tensor_method(expr):
  389. name = expr.method.strip("_")
  390. qualname = "{}.[{}]".format(
  391. self.qualname, self.create_unique_name("method_%s" % (name)),
  392. )
  393. elif is_call_function(expr):
  394. name = expr.func.__name__
  395. qualname = "{}.[{}]".format(
  396. self.qualname, self.create_unique_name("func_%s" % name),
  397. )
  398. elif is_apply_def(expr):
  399. name = str(expr.opdef).lower()
  400. qualname = "{}.[{}]".format(
  401. self.qualname, self.create_unique_name("def_%s" % name),
  402. )
  403. elif is_getattr(expr):
  404. qualname = "{}.{}".format(expr.inputs[0].qualname, expr.name)
  405. name = get_suffix_name(self.qualname, qualname)
  406. _add_suffix = lambda x: x
  407. elif is_constant(expr) or is_input(expr):
  408. name = (
  409. expr.name if expr.name else "const_" + type(expr.value).__name__.lower()
  410. )
  411. qualname = "{}.[{}]".format(self.qualname, name)
  412. _add_suffix = lambda x: x
  413. for node in expr.outputs:
  414. cur_name = node._name if node._name else _add_suffix(name)
  415. node._name = self.create_unique_name(cur_name, node)
  416. if node._qualname == "":
  417. node._qualname = qualname
  418. assert get_suffix_name(self.qualname, qualname) is not None
  419. def merge(self, other: "NameSpace"):
  420. self._used_names.update(other.used_names)
  421. def associate_name_with_obj(self, name: str, node: Node):
  422. assert name in self.used_names
  423. assert self.used_names[name] is None, "The name(%s) is already in use" % (name)
  424. self._used_names[name] = node
  425. def unassociate_name_with_obj(self, node: Node):
  426. assert node.name in self.used_names
  427. # assert self.used_names[node.name] is node
  428. self._used_names[node.name] = None
  429. @property
  430. def used_names(self):
  431. return self._used_names
  432. class InternalGraph:
  433. r"""``InternalGraph`` is the main data structure used in the TracedModule.
  434. It is used to represent the execution procedure of Module's forward method.
  435. For example, the following code
  436. .. code-block::
  437. import megengine.random as rand
  438. import megengine.functional as F
  439. import megengine.module as M
  440. import megengine.traced_module as tm
  441. class MyModule(M.Module):
  442. def __init__(self):
  443. super().__init__()
  444. self.param = rand.normal(size=(3, 4))
  445. self.linear = M.Linear(4, 5)
  446. def forward(self, x):
  447. return F.relu(self.linear(x + self.param))
  448. net = MyModule()
  449. inp = F.zeros(shape = (3, 4))
  450. traced_module = tm.trace_module(net, inp)
  451. Will produce the following ``InternalGraph``::
  452. print(traced_module.graph)
  453. .. code-block:: text
  454. MyModule.Graph (self, x) {
  455. %2: linear = getattr(self, "linear") -> (Linear)
  456. %3: param = getattr(self, "param") -> (Tensor)
  457. %4: add_out = x.__add__(param, )
  458. %5: linear_out = linear(add_out, )
  459. %6: relu_out = nn.relu(linear_out, )
  460. return relu_out
  461. }
  462. """
  463. _exprs = None # type: List[Expr]
  464. _inputs = None # type: List[Node]
  465. _outputs = None # type: List[Node]
  466. _top_graph = None # type: InternalGraph
  467. _total_ids = None # type: List[int]
  468. def __init__(self, name: str, qualname: str):
  469. self._exprs = []
  470. self._inputs = []
  471. self._outputs = []
  472. self._watch_point = []
  473. self._end_point = []
  474. self._namespace = NameSpace(name, qualname)
  475. self._rst = collections.defaultdict(list)
  476. self._name = name
  477. self._qualname = qualname
  478. def _insert(self, expr):
  479. self._exprs.append(expr)
  480. @property
  481. def name(self) -> str:
  482. r"""Get the name of this graph."""
  483. return self._name
  484. @name.setter
  485. def name(self, new_name: str):
  486. r"""Set a new name to this graph."""
  487. mod = self.inputs[0].owner
  488. graph = self.top_graph
  489. assert graph is not None or mod._is_top, "The parent graph cannot be None."
  490. if graph is not None:
  491. assert graph._namespace.used_names.get(new_name, None) is None, (
  492. "The name(%s) is already in use. Please try a different one again."
  493. % (new_name)
  494. )
  495. new_name = graph._namespace.create_unique_name(new_name, self)
  496. self._name = new_name
  497. @property
  498. def qualname(self) -> str:
  499. r"""Get the `qualname` of this graph. The `qualname` can be used to get the
  500. submodule from the traced Module or Module.
  501. Example:
  502. .. code-block::
  503. import megengine.module as M
  504. import megengine.traced_module as tm
  505. import megengine as mge
  506. class block(M.Module):
  507. def __init__(self):
  508. super().__init__()
  509. self.relu = M.ReLU()
  510. def forward(self, x):
  511. return self.relu(x)
  512. class module(M.Module):
  513. def __init__(self):
  514. super().__init__()
  515. self.block = block()
  516. def forward(self, x):
  517. x = self.block(x)
  518. return x
  519. net = module()
  520. traced_net = tm.trace_module(net, mge.Tensor([0.]))
  521. qualname = traced_net.block.graph.qualname # qualname = "module.block"
  522. qualname = qualname.split(".", 1)[-1] # qualname = "block"
  523. assert qualname in list(map(lambda x: x[0], net.named_modules()))
  524. assert qualname in list(map(lambda x: x[0], traced_net.named_modules()))
  525. """
  526. return self._qualname
  527. @property
  528. def inputs(self) -> List[Node]:
  529. r"""Get the list of input Nodes of this graph.
  530. Returns:
  531. A list of ``Node``.
  532. """
  533. return self._inputs
  534. @property
  535. def outputs(self) -> List[Node]:
  536. r"""Get the list of output Nodes of this graph.
  537. Returns:
  538. A list of ``Node``.
  539. """
  540. return self._outputs
  541. @property
  542. def top_graph(self):
  543. r"""Get the parent graph of this graph.
  544. Returns:
  545. An ``InternalGraph``.
  546. """
  547. if self._top_graph:
  548. return self._top_graph()
  549. return None
  550. def exprs(self, recursive=True):
  551. r"""Get the Exprs that constitute this graph.
  552. Args:
  553. recursive: whether to get the Exprs in the subgraph.
  554. Default: True
  555. Returns:
  556. A ``ExprFilter`` containing all Exprs of this graph.
  557. """
  558. return ExprFilter(_expr_iter(self, recursive))
  559. def nodes(self, recursive=True):
  560. r"""Get the Nodes that constitute this graph.
  561. Args:
  562. recursive: whether to get the Nodes in the subgraph.
  563. Default: True
  564. Returns:
  565. A ``NodeFilter`` containing all Nodes of this graph.
  566. """
  567. return NodeFilter(_node_iter(self, recursive))
  568. def get_function_by_type(self, func: Callable = None, recursive=True):
  569. r"""Filter Exprs by the type of ``CallFunction``.
  570. Args:
  571. func: a built-in function, such as ``F.relu``.
  572. recursive: whether to get the Exprs in the subgraph.
  573. Default: True
  574. Returns:
  575. A :class:`~.TracedModule.ExprFilterCallFunction`.
  576. """
  577. return self.exprs(recursive).call_function(func)
  578. def get_method_by_type(self, method: str = None, recursive=True):
  579. r"""Filter Exprs by the type of ``CallMethod``.
  580. Args:
  581. method: a method string, such as "__add__".
  582. recursive: whether to get the Exprs in the subgraph.
  583. Default: True
  584. Returns:
  585. A :class:`~.TracedModule.ExprFilterCallMethod`.
  586. """
  587. return self.exprs(recursive).call_method(method)
  588. def get_expr_by_id(self, expr_id: List[int] = None, recursive=True):
  589. r"""Filter Exprs by their ``id``.
  590. Args:
  591. expr_id: a list of :class:`int`.
  592. recursive: whether to get the Exprs in the subgraph.
  593. Default: True
  594. Returns:
  595. A :class:`~.TracedModule.ExprFilterExprId`.
  596. """
  597. return self.exprs(recursive).expr_id(expr_id)
  598. def get_module_by_type(self, module_cls: Module, recursive=True):
  599. r"""Filter Nodes by the ``module_type`` of ``ModuleNode``.
  600. Args:
  601. module_cls: a subclass of :class:`~.Module`.
  602. recursive: whether to get the Nodes in the subgraph.
  603. Default: True
  604. Returns:
  605. A :class:`~.TracedModule.NodeFilterType`.
  606. """
  607. return self.nodes(recursive).type(module_cls)
  608. def get_node_by_id(self, node_id: List[int] = None, recursive=True):
  609. r"""Filter Nodes by their ``id``.
  610. The ``id`` of the ``Node`` can be obtained by the following code
  611. .. code-block::
  612. # node : Node
  613. print("{:i}".format(node))
  614. print(node.__format__("i"))
  615. # graph : InternalGraph
  616. print("{:i}".format(graph))
  617. print(graph.__format__("i"))
  618. Args:
  619. node_id: a list of :class:`int`.
  620. recursive: whether to get the Nodes in the subgraph.
  621. Default: True
  622. Returns:
  623. A :class:`~.TracedModule.NodeFilterNodeId`.
  624. """
  625. return self.nodes(recursive).node_id(node_id)
  626. def get_node_by_name(
  627. self, name: str = None, ignorecase: bool = True, recursive=True
  628. ):
  629. r"""Filter Nodes by their full name.
  630. The full name of the ``Node`` can be obtained by the following code
  631. .. code-block::
  632. # node : Node
  633. print("{:p}".format(node))
  634. print(node.__format__("p"))
  635. # graph : InternalGraph
  636. print("{:p}".format(graph))
  637. print(graph.__format__("p"))
  638. Args:
  639. name: a string in glob syntax that can contain ``?`` and
  640. ``*`` to match a single or arbitrary characters.
  641. ignorecase: whether to ignroe case.
  642. Default: True
  643. recursive: whether to get the Nodes in the subgraph.
  644. Default: True
  645. Returns:
  646. A :class:`~.TracedModule.NodeFilterName`.
  647. """
  648. return self.nodes(recursive).name(name, ignorecase)
  649. def _add_input(self, i):
  650. self._inputs.append(i)
  651. def _add_output(self, o):
  652. self._outputs.append(o)
  653. def get_dep_exprs(self, nodes: Sequence[Node]) -> List[Expr]:
  654. r"""Get the dependent Exprs of the ``nodes``.
  655. Args:
  656. nodes: a list of :class:`Node`.
  657. Returns:
  658. A list of dependent :class:`Expr`.
  659. """
  660. if not isinstance(nodes, Sequence):
  661. nodes = (nodes,)
  662. ret = list()
  663. queue = list(nodes)
  664. visited_queue = list()
  665. while queue:
  666. node = queue.pop()
  667. visited_queue.append(node)
  668. expr = node.expr
  669. if expr not in ret:
  670. ret.append(expr)
  671. for i in expr.inputs:
  672. if i not in queue and i not in visited_queue:
  673. queue.append(i)
  674. return ret
  675. def reset_inputs(self, *args, **kwargs):
  676. forma_mnode = self.inputs[0]
  677. moudle = forma_mnode.owner
  678. assert moudle._is_top, "reset_inputs only supports top graph"
  679. inputs, tree_def = tree_flatten(((moudle, *args), kwargs))
  680. def create_node(val: Tensor):
  681. name = self._namespace.create_unique_name("args")
  682. node = Input(
  683. type=TensorNode, name=name, qualname="%s.[%s]" % (self._qualname, name)
  684. ).outputs[0]
  685. self._namespace.associate_name_with_obj(node.name, node)
  686. node.shape = val.shape
  687. node.dtype = val.dtype
  688. return node
  689. formal_node_inputs = [
  690. forma_mnode,
  691. ]
  692. org_argdef = list(moudle.argdef_graph_map.keys())[0]
  693. for v in inputs[1:]:
  694. assert isinstance(v, RawTensor)
  695. formal_node_inputs.append(create_node(v))
  696. self._inputs[:] = formal_node_inputs
  697. moudle.argdef_graph_map[tree_def] = moudle.argdef_graph_map.pop(org_argdef)
  698. moudle.argdef_outdef_map[tree_def] = moudle.argdef_outdef_map.pop(org_argdef)
  699. return formal_node_inputs[1:]
  700. def add_input_node(
  701. self, shape: Tuple[int], dtype: str = "float32", name: str = "args"
  702. ):
  703. r"""Add an input node to the graph.
  704. The new Node will be the last of the positional arguments.
  705. Args:
  706. shape: the shape of the new input Node.
  707. dtype: the dtype of the new input Node.
  708. Default: float32
  709. name: the name of the new input Node. When the name is used in the graph,
  710. a suffix will be added to it.
  711. """
  712. forma_mnode = self.inputs[0]
  713. moudle = forma_mnode.owner
  714. assert moudle._is_top, "add_input_node only supports top graph"
  715. def create_node(name=None):
  716. name = self._namespace.create_unique_name(name)
  717. node = Input(
  718. type=TensorNode, name=name, qualname="%s.[%s]" % (self._qualname, name)
  719. ).outputs[0]
  720. self._namespace.associate_name_with_obj(node.name, node)
  721. node.shape = shape
  722. node.dtype = dtype
  723. return node
  724. org_argdef = list(moudle.argdef_graph_map.keys())[0]
  725. args, kwargs = org_argdef.unflatten(self._inputs)
  726. formal_inp_node = create_node(name)
  727. inputs, tree_def = tree_flatten(
  728. ((*args, formal_inp_node), kwargs),
  729. is_const_leaf=lambda x: not isinstance(x, (TensorNode, ModuleNode)),
  730. )
  731. self._inputs[:] = inputs[:]
  732. moudle.argdef_graph_map[tree_def] = moudle.argdef_graph_map.pop(org_argdef)
  733. moudle.argdef_outdef_map[tree_def] = moudle.argdef_outdef_map.pop(org_argdef)
  734. return formal_inp_node
  735. def reset_outputs(self, outputs):
  736. r"""Reset the output Nodes of the graph.
  737. .. note::
  738. This method only supports resetting the output of graphs
  739. that do not have a parent graph.
  740. Args:
  741. outputs: an object which inner element is Node. Support tuple, list
  742. dict, etc.
  743. For example, the following code
  744. .. code-block::
  745. import megengine.functional as F
  746. import megengine.module as M
  747. import megengine.traced_module as tm
  748. class MyModule(M.Module):
  749. def forward(self, x):
  750. x = x + 1
  751. return x
  752. net = MyModule()
  753. inp = F.zeros(shape = (1, ))
  754. traced_module = tm.trace_module(net, inp)
  755. graph = traced_module.graph
  756. inp_node = graph.inputs[1]
  757. out_node = graph.outputs[0]
  758. graph.reset_outputs((out_node, {"input": inp_node}))
  759. out = traced_module(inp)
  760. Will produce the following ``InternalGraph`` and ``out``::
  761. print(graph)
  762. print(out)
  763. .. code-block:: text
  764. MyModule.Graph (self, x) {
  765. %2: add_out = x.__add__(1, )
  766. return add_out, x
  767. }
  768. (Tensor([1.], device=xpux:0), {'input': Tensor([0.], device=xpux:0)})
  769. """
  770. outputs, out_def = tree_flatten(
  771. outputs, is_leaf=lambda x: isinstance(x, TensorNode),
  772. )
  773. forma_mnode = self.inputs[0]
  774. moudle = forma_mnode.owner
  775. assert moudle._is_top, "reset_outputs only supports top graph"
  776. tree_def = list(moudle.argdef_graph_map.keys())[0]
  777. self._outputs[:] = outputs
  778. moudle.argdef_outdef_map[tree_def] = out_def
  779. def add_output_node(self, node: TensorNode):
  780. r"""Add an output node to the Graph.
  781. The Graph output will become a ``tuple`` after calling ``add_output_node``.
  782. The first element of the ``tuple`` is the original output, and the second
  783. is the ``node``.
  784. For example, the following code
  785. .. code-block::
  786. import megengine.functional as F
  787. import megengine.module as M
  788. import megengine.traced_module as tm
  789. class MyModule(M.Module):
  790. def forward(self, x):
  791. x = x + 1
  792. return x
  793. net = MyModule()
  794. inp = F.zeros(shape = (1, ))
  795. traced_module = tm.trace_module(net, inp)
  796. graph = traced_module.graph
  797. inp_node = graph.inputs[1]
  798. out_node = graph.outputs[0]
  799. graph.add_output_node(inp_node)
  800. graph.add_output_node(out_node)
  801. out = traced_module(inp)
  802. Will produce the following ``InternalGraph`` and ``out``::
  803. print(graph)
  804. print(out)
  805. .. code-block:: text
  806. MyModule.Graph (self, x) {
  807. %2: add_out = x.__add__(1, )
  808. return add_out, x, add_out
  809. }
  810. ((Tensor([1.], device=xpux:0), Tensor([0.], device=xpux:0)), Tensor([1.], device=xpux:0))
  811. """
  812. forma_mnode = self.inputs[0]
  813. moudle = forma_mnode.owner
  814. assert moudle._is_top, "add_output_node only supports top graph"
  815. tree_def = list(moudle.argdef_graph_map.keys())[0]
  816. org_out_def = moudle.argdef_outdef_map[tree_def]
  817. org_outs = org_out_def.unflatten(self._outputs)
  818. outputs, out_def = tree_flatten(
  819. (org_outs, node), is_leaf=lambda x: isinstance(x, TensorNode),
  820. )
  821. self._outputs[:] = outputs
  822. moudle.argdef_outdef_map[tree_def] = out_def
  823. def insert_exprs(self, expr: Optional[Expr] = None):
  824. r"""Initialize the trace mode and insertion position.
  825. When used within a 'with' statement, this will temporary set the trace mode and
  826. then restore normal mode when the with statement exits::
  827. with graph.insert_exprs(e): # set the trace mode
  828. ... # trace function or module
  829. ... # inert exprs into graph and resotre normal mode
  830. Args:
  831. expr: the ``expr`` after which to insert. If None, the insertion position will be
  832. automatically set based on the input node.
  833. Returns:
  834. A resource manager that will initialize trace mode on ``__enter__`` and
  835. restore normal mode on ``__exit__``.
  836. """
  837. if expr is not None:
  838. assert expr.top_graph == self, "Expr to insert after is not in graph."
  839. return _InsertExprs(self, expr)
  840. def replace_node(self, repl_dict: Dict[Node, Node]):
  841. r"""Replace the Nodes in the graph.
  842. Args:
  843. repl_dict: the map {old_Node: new_Node} that specifies how to replace the Nodes.
  844. """
  845. while repl_dict:
  846. node, repl_node = repl_dict.popitem()
  847. assert type(node) == type(
  848. repl_node
  849. ), "The type of {}({}) and {}({}) are not the same".format(
  850. node, type(node).__name__, repl_node, type(repl_node).__name__
  851. )
  852. # check graph inputs and outputs
  853. for i, n in enumerate(self.outputs):
  854. if n is node:
  855. self.outputs[i] = repl_node
  856. # update users of node and repl_node
  857. # update inputs of expr in node.users
  858. graph = repl_node.top_graph
  859. assert graph is not None
  860. assert graph is self
  861. index = -1
  862. if not isinstance(repl_node.expr, Input):
  863. index = graph._exprs.index(repl_node.expr)
  864. dep_exprs = self.get_dep_exprs(repl_node)
  865. i = 0
  866. while i < len(node.users):
  867. n = node.users[i]
  868. if n in graph._exprs and index >= graph._exprs.index(n):
  869. i += 1
  870. continue
  871. if n in dep_exprs:
  872. logger.info("Find a loop: ignore this replacement once")
  873. logger.info("node: %s" % node.__repr__())
  874. logger.info("expr: %s" % n.__repr__())
  875. i += 1
  876. continue
  877. repl_node.users.append(n)
  878. node.users.pop(i)
  879. idx = n.inputs.index(node)
  880. n.inputs[idx] = repl_node
  881. def _merge_getattr_expr(self):
  882. getattr_nodes_map = dict() # Dcit[(Node, str), Node]
  883. node_to_attrname = dict() # Dict[Node, (Node, Str)]
  884. for expr in filter(lambda x: isinstance(x, GetAttr), self._exprs):
  885. base_node, attr_name = expr.inputs[0], expr.name
  886. if expr.inputs[0] in node_to_attrname:
  887. base_node, base_name = node_to_attrname[expr.inputs[0]]
  888. attr_name = "{}.{}".format(base_name, expr.name)
  889. if get_suffix_name(self.qualname, expr.outputs[0].qualname) != attr_name:
  890. expected_qualname = base_node.qualname + "." + attr_name
  891. logger.warning(
  892. "{}.qualname expects {}, got {} actually. You can re-trace this "
  893. "TracedModel to make the name correct.".format(
  894. expr.outputs[0], expected_qualname, expr.outputs[0].qualname
  895. )
  896. )
  897. expr.outputs[0]._qualname = expected_qualname
  898. key = (base_node, attr_name)
  899. node_to_attrname[expr.outputs[0]] = key
  900. if key in getattr_nodes_map:
  901. existed_node = getattr_nodes_map[key]
  902. repl_node = expr.outputs[0]
  903. for expr in repl_node.users:
  904. existed_node.users.append(expr)
  905. idx = expr.inputs.index(repl_node)
  906. expr.inputs[idx] = existed_node
  907. repl_node.users = []
  908. else:
  909. if attr_name != expr.name:
  910. expr.name = attr_name
  911. expr.inputs[0].users.remove(expr)
  912. self.inputs[0].users.append(expr)
  913. expr.inputs[0] = self.inputs[0]
  914. getattr_nodes_map[key] = expr.outputs[0]
  915. def compile(self):
  916. r"""Delete unused expr."""
  917. self._merge_getattr_expr()
  918. dep_exprs = self.get_dep_exprs(self.outputs)
  919. i = 0
  920. while i < len(self._exprs):
  921. expr = self._exprs[i]
  922. if expr in dep_exprs or expr._disable_remove:
  923. i += 1
  924. continue
  925. for n in expr.inputs:
  926. n.users.remove(expr)
  927. self._exprs.remove(expr)
  928. for n in expr.outputs:
  929. self._namespace.unassociate_name_with_obj(n)
  930. def _reset_ids(self):
  931. for total_expr_id, expr in enumerate(self.exprs()):
  932. expr._id = total_expr_id
  933. for total_node_id, node in enumerate(self.nodes()):
  934. node._id = total_node_id
  935. self._total_ids = (total_node_id + 1, total_expr_id + 1)
  936. def _re_associate_name(self):
  937. self._namespace.used_names.clear()
  938. for node in self.nodes(False):
  939. node._name = self._namespace.create_unique_name(node.name, node)
  940. def interpret(self, *inputs):
  941. node2value = {}
  942. end_nodes_set = set(self._end_point)
  943. endnode2value = {}
  944. def get_all_endnode_val(n, v):
  945. if n in end_nodes_set:
  946. endnode2value[n] = v
  947. end_nodes_set.remove(n)
  948. return not end_nodes_set
  949. return False
  950. ref_count = lambda n: len(n.users) + (1 if n in self._outputs else 0)
  951. for n, v in zip(self._inputs, inputs):
  952. if ref_count(n) > 0:
  953. node2value[n] = [v, ref_count(n)]
  954. if n in self._watch_point:
  955. self._rst[n].append(v)
  956. if n in self._end_point and get_all_endnode_val(n, v):
  957. return list(endnode2value[i] for i in self._end_point)
  958. for expr in self._exprs:
  959. values = expr.interpret(*list(node2value[i][0] for i in expr.inputs))
  960. for n in expr.inputs:
  961. node2value[n][1] -= 1
  962. if node2value[n][1] == 0:
  963. node2value.pop(n)
  964. if values is not None:
  965. assert len(values) == len(expr.outputs)
  966. for n, v in zip(expr.outputs, values):
  967. if ref_count(n) > 0:
  968. node2value[n] = [v, ref_count(n)]
  969. if n in self._watch_point:
  970. self._rst[n] = v
  971. if self._end_point and get_all_endnode_val(n, v):
  972. return list(endnode2value[i] for i in self._end_point)
  973. return list(node2value[i][0] for i in self._outputs)
  974. def eval(self, *inputs: Tuple[Tensor]):
  975. r"""Call this method to execute the graph.
  976. Args:
  977. inputs: the tensors corresponding to the ``graph.inputs[1:]``.
  978. """
  979. assert len(inputs) == len(self._inputs) - 1
  980. inp = [self._inputs[0].owner] + list(inputs)
  981. return self.interpret(*inp)
  982. def __repr__(self):
  983. return self.__format__()
  984. def __format__(self, format_spec: str = "") -> str:
  985. saved_format_spec = Node._set_format_spec(format_spec)
  986. name = ""
  987. if self._name:
  988. name = "%s.Graph" % self._name
  989. res = "{} ({}) {{\n\t{}\n\treturn {}\n}}".format(
  990. name,
  991. ", ".join(str(i) for i in self._inputs),
  992. "\n\t".join("{}".format(str(i)) for i in self._exprs),
  993. ", ".join(str(i) for i in self._outputs),
  994. )
  995. Node._set_format_spec(saved_format_spec)
  996. return res
  997. def __getstate__(self):
  998. state = {
  999. "_exprs": self._exprs,
  1000. "_inputs": self._inputs,
  1001. "_outputs": self._outputs,
  1002. "_watch_point": [],
  1003. "_end_point": [],
  1004. "_namespace": self._namespace,
  1005. "_rst": collections.defaultdict(list),
  1006. "_name": self._name,
  1007. "_qualname": self._qualname,
  1008. }
  1009. if self._total_ids:
  1010. state["_total_ids"] = self._total_ids
  1011. _check_obj_attr(state)
  1012. return state
  1013. def __setstate__(self, state):
  1014. old_version = False
  1015. if "_module_name" in state:
  1016. old_version = True
  1017. state["_qualname"] = state.pop("_module_name")
  1018. prefix_name = state.pop("_prefix_name")
  1019. if prefix_name:
  1020. state["_name"] = "{}_{}".format(prefix_name, state["_name"])
  1021. self.__dict__.update(state)
  1022. if old_version:
  1023. self.inputs[0]._qualname = self._qualname
  1024. for e in self.exprs(False):
  1025. if isinstance(e, GetAttr):
  1026. e.outputs[0]._qualname = "{}.{}".format(
  1027. e.inputs[0]._qualname, e.name
  1028. )
  1029. for n in self.nodes(False):
  1030. if isinstance(n.expr, CallMethod) and isinstance(
  1031. n.expr.inputs[0], ModuleNode
  1032. ):
  1033. n._qualname = n.expr.inputs[0]._qualname + ".[out]"
  1034. continue
  1035. if (
  1036. not isinstance(n.expr, GetAttr)
  1037. and isinstance(n, TensorNode)
  1038. and n._qualname
  1039. ):
  1040. n._qualname = "{}.{}".format(self._qualname, n._qualname)
  1041. self._namespace = NameSpace(self._name, self._qualname)
  1042. self._re_associate_name()
  1043. def __copy__(self):
  1044. cls = self.__class__
  1045. result = cls.__new__(cls)
  1046. result.__dict__.update(self.__dict__)
  1047. return result
  1048. def __deepcopy__(self, memo):
  1049. with max_recursion_limit():
  1050. if id(self) in memo:
  1051. return memo[id(self)]
  1052. cls = self.__class__
  1053. result = cls.__new__(cls)
  1054. state = {}
  1055. memo[id(self)] = result
  1056. for k, v in self.__dict__.items():
  1057. if not isinstance(v, weakref.ReferenceType):
  1058. state[k] = copy.deepcopy(v, memo)
  1059. result.__dict__.update(state)
  1060. return result
  1061. def _get_meth_name(obj, func):
  1062. tp = obj if isinstance(obj, type) else type(obj)
  1063. for cls in tp.mro():
  1064. for k, v in cls.__dict__.items():
  1065. if v == func:
  1066. return k
  1067. return None
  1068. def _wrapped_function(orig_func):
  1069. @functools.wraps(orig_func)
  1070. def wrapped_fn(*args, **kwargs):
  1071. method_func = kwargs.pop("method_func", wrapped_fn)
  1072. if not is_tracing_module():
  1073. return orig_func(*args, **kwargs)
  1074. with _exclude_from_trace():
  1075. inputs, tree_def = tree_flatten((args, kwargs))
  1076. for i in inputs:
  1077. if not NodeMixin.get(i, None):
  1078. if isinstance(i, (RawTensor, NodeMixin)):
  1079. NodeMixin.wrap_safe(i, Constant.make(i))
  1080. args, kwargs = _convert_kwargs_to_args(orig_func, args, kwargs)
  1081. meth_name = _get_meth_name(args[0], method_func)
  1082. arg_type = args[0] if isinstance(args[0], type) else type(args[0])
  1083. if meth_name and arg_type and issubclass(arg_type, RawTensor):
  1084. inputs, tree_def = tree_flatten((args, kwargs))
  1085. self = inputs[0]
  1086. if meth_name == "__new__":
  1087. if all([not isinstance(i, RawTensor) for i in inputs]):
  1088. # only trace Tensor.__new__() when there are tensors in args
  1089. return orig_func(*args, **kwargs)
  1090. if isinstance(args[1], RawTensor):
  1091. node = NodeMixin.get(inputs[1])
  1092. inputs[1] = apply(
  1093. Copy(comp_node=inputs[1].device), Tensor(inputs[1])
  1094. )[0]
  1095. # copy inputs[1] to avoid tensor and Tensor(tensor) share same m_tensor,
  1096. # which will cause they have same _NodeMixin__node in tracing.
  1097. NodeMixin.wrap_safe(inputs[1], node)
  1098. args, kwargs = tree_def.unflatten(inputs)
  1099. call_node = CallMethod.make(self, meth_name)
  1100. else:
  1101. call_node = CallMethod.make(NodeMixin.get(self), meth_name)
  1102. call_node.add_inputs(inputs[1:])
  1103. else:
  1104. inputs, tree_def = tree_flatten((args, kwargs))
  1105. call_node = CallFunction.make(orig_func)
  1106. call_node.add_inputs(inputs)
  1107. call_node.arg_def = tree_def
  1108. rst = orig_func(*args, **kwargs)
  1109. if meth_name == "__setitem__":
  1110. rst = self
  1111. if rst is not None:
  1112. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  1113. call_node.out_def = out_def
  1114. else:
  1115. outputs = None
  1116. call_node.add_outputs(outputs)
  1117. if _get_expr_checker():
  1118. with _exclude_from_trace():
  1119. active_module_tracer().checker.check_expr_interpret(
  1120. call_node, outputs
  1121. )
  1122. return rst
  1123. return wrapped_fn
  1124. class TracedModuleBuilder(NodeMixin):
  1125. _mod = None # type: Module
  1126. _body = None # type: InternalGraph
  1127. _is_builtin = None # type: bool
  1128. _argdef_graph_map = None # type: Dict[TreeDef, "InternalGraph"]
  1129. _argdef_outdef_map = None # type: Dict[TreeDef, TreeDef]
  1130. nodes = None
  1131. __builder_attributes__ = [
  1132. "_mod",
  1133. "_body",
  1134. "_NodeMixin__node",
  1135. "_is_builtin",
  1136. "build",
  1137. "_record_wrapped_nodes",
  1138. "_argdef_graph_map",
  1139. "_argdef_outdef_map",
  1140. "_check_qat_module",
  1141. "nodes",
  1142. "__class__",
  1143. "__dict__",
  1144. "_is_top",
  1145. ]
  1146. def __init__(self, mod, is_top_module=False):
  1147. super(TracedModuleBuilder, self).__init__()
  1148. assert isinstance(mod, Module)
  1149. self._mod = mod
  1150. self._body = None
  1151. self._is_top = is_top_module
  1152. self._is_builtin = (
  1153. True
  1154. if isinstance(mod, (Observer, _FakeQuantize))
  1155. else module_tracer.is_builtin(mod)
  1156. )
  1157. if isinstance(self._mod, QATModule):
  1158. with _exclude_from_trace():
  1159. self._check_qat_module(self._mod)
  1160. self._argdef_graph_map = {}
  1161. self._argdef_outdef_map = {}
  1162. self.nodes = set()
  1163. # The builder will be passed to self._mod.forward as 'self' argument. If the 'forward' uses super().xxx to call method of its base classes, the trace procedure will throw exceprion, because the builder doesn't inherit from self._mod.__bases__.
  1164. # modify self.__class__ and let the builder inherit from TracedModuleBuilder and mod.__class__.
  1165. self.__class__ = type(
  1166. "TracedModuleBuilder",
  1167. (TracedModuleBuilder, mod.__class__),
  1168. dict(TracedModuleBuilder.__dict__),
  1169. )
  1170. def _check_qat_module(self, qat_module):
  1171. def isbuiltin(m):
  1172. return m is None or module_tracer.is_builtin(m)
  1173. if qat_module.with_act:
  1174. act_observer = qat_module.act_observer
  1175. act_fakequant = qat_module.act_fake_quant
  1176. if not isbuiltin(act_observer) or not isbuiltin(act_fakequant):
  1177. qparams = (
  1178. act_observer.get_qparams()
  1179. if hasattr(act_observer, "get_qparams")
  1180. else act_fakequant.get_qparams()
  1181. )
  1182. dtype = (
  1183. act_observer.dtype
  1184. if hasattr(act_observer, "dtype")
  1185. else act_fakequant.dtype
  1186. )
  1187. qat_module.act_observer = None
  1188. qat_module.act_fake_quant = TM_FakeQuant(dtype)
  1189. qat_module.act_fake_quant.set_qparams(qparams)
  1190. if qat_module.with_weight:
  1191. weight_observer = qat_module.weight_observer
  1192. weight_fakequant = qat_module.weight_fake_quant
  1193. if not isbuiltin(weight_observer) or not isbuiltin(weight_fakequant):
  1194. qparams = (
  1195. weight_observer.get_qparams()
  1196. if hasattr(weight_observer, "get_qparams")
  1197. else weight_fakequant.get_qparams()
  1198. )
  1199. dtype = (
  1200. weight_observer.dtype
  1201. if hasattr(weight_observer, "dtype")
  1202. else weight_fakequant.dtype
  1203. )
  1204. qat_module.weight_observer = None
  1205. qat_module.weight_fake_quant = TM_FakeQuant(dtype)
  1206. qat_module.weight_fake_quant.set_qparams(qparams)
  1207. def build(self):
  1208. if self._is_builtin:
  1209. assert module_tracer.is_builtin(self._mod)
  1210. mod_type = type(self._mod)
  1211. for node in self.nodes:
  1212. node.module_type = mod_type
  1213. return self._mod
  1214. elif isinstance(self._mod, TracedModule) and _graph_surgery_mode():
  1215. return self._mod
  1216. else:
  1217. is_qat = isinstance(self._mod, QATModule) or (
  1218. isinstance(self._mod, TracedModule) and self._mod.is_qat
  1219. )
  1220. traced_module = TracedModule(
  1221. self._is_top, self._argdef_graph_map, self._argdef_outdef_map, is_qat
  1222. )
  1223. for _, g in self._argdef_graph_map.items():
  1224. g.compile()
  1225. if self._is_top:
  1226. g._total_ids = (Node._get_next_id(), Expr._get_next_id())
  1227. for k, v in self.__dict__.items():
  1228. if k not in TracedModuleBuilder.__builder_attributes__:
  1229. if isinstance(v, TracedModuleBuilder):
  1230. v = v.build()
  1231. setattr(traced_module, k, v)
  1232. elif isinstance(v, RawTensor):
  1233. setattr(traced_module, k, v)
  1234. if isinstance(self._mod, QATModule):
  1235. with _exclude_from_trace():
  1236. traced_module.with_act = self._mod.with_act
  1237. traced_module.with_weight = self._mod.with_weight
  1238. if not hasattr(traced_module, "act_fake_quant"):
  1239. traced_module.act_fake_quant = None
  1240. if not hasattr(traced_module, "act_observer"):
  1241. traced_module.act_observer = None
  1242. if not hasattr(traced_module, "weight_fake_quant"):
  1243. traced_module.weight_fake_quant = None
  1244. if not hasattr(traced_module, "weight_observer"):
  1245. traced_module.weight_observer = None
  1246. if self._is_top:
  1247. traced_module._update_ref()
  1248. return traced_module
  1249. def _record_wrapped_nodes(self, node):
  1250. self.nodes.add(node)
  1251. def __call__(self, *args, **kwargs):
  1252. assert isinstance(self._mod, Module)
  1253. is_graph_surgery_mode = _graph_surgery_mode()
  1254. if isinstance(self._mod, TracedModule) and is_graph_surgery_mode:
  1255. _set_graph_surgery_mode(False)
  1256. # prepare args and kwargs for inner graph
  1257. if "method_func" in kwargs:
  1258. kwargs.pop("method_func")
  1259. args, kwargs = _convert_kwargs_to_args(self._mod.forward, args, kwargs, True)
  1260. def mark_constant(x):
  1261. node = NodeMixin.get(x, None)
  1262. if node is None: # capture as constant
  1263. NodeMixin.wrap(x, lambda: Constant.make(x))
  1264. inputs, tree_def = tree_flatten(((self, *args), kwargs))
  1265. for i in inputs:
  1266. mark_constant(i)
  1267. callnode = CallMethod.make(NodeMixin.get(self))
  1268. callnode.add_inputs(inputs[1:])
  1269. callnode.arg_def = tree_def
  1270. if self._is_builtin or tree_def in self._argdef_graph_map:
  1271. with _exclude_from_trace():
  1272. rst = self._mod(*args, **kwargs)
  1273. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  1274. if _get_expr_checker():
  1275. tmp = self.build()
  1276. active_module_tracer().checker.check_builtin_module(
  1277. tmp, callnode, outputs
  1278. )
  1279. if self._is_builtin:
  1280. self._body = None
  1281. elif tree_def in self._argdef_graph_map:
  1282. self._body = self._argdef_graph_map[tree_def]
  1283. else:
  1284. orig_self = NodeMixin.get(self)
  1285. parent_graph = active_module_tracer().current_scope()
  1286. module_qualname = orig_self._qualname
  1287. self._body = InternalGraph(
  1288. name=parent_graph._namespace.create_unique_name(module_qualname),
  1289. qualname=module_qualname,
  1290. )
  1291. parent_graph._namespace.associate_name_with_obj(self._body.name, self._body)
  1292. active_module_tracer().push_scope(self._body)
  1293. # rebind self to new input node
  1294. NodeMixin.wrap_safe(
  1295. self,
  1296. Input.make(
  1297. name="self",
  1298. qualname=module_qualname,
  1299. type=NodeMixin.get_wrapped_type(self),
  1300. ),
  1301. )
  1302. origin_inp_node = [NodeMixin.get(i, None) for i in inputs[1:]]
  1303. # prepare args and kwargs for inner graph
  1304. index_args, index_kwargs = tree_def.unflatten(
  1305. [
  1306. ArgsIndex(0),
  1307. *list(ArgsIndex(i + 1) for i in range(len(origin_inp_node))),
  1308. ]
  1309. )
  1310. key2idx = getcallargs(type(self._mod).forward, *index_args, **index_kwargs)
  1311. idx2key = {}
  1312. for k, v in key2idx.items():
  1313. if isinstance(v, ArgsIndex):
  1314. idx2key[v.index] = k
  1315. else:
  1316. flatten_argidx, _ = tree_flatten(v)
  1317. for _i, v in enumerate(flatten_argidx):
  1318. if isinstance(v, ArgsIndex):
  1319. idx2key[v.index] = k + "_%d" % _i
  1320. def wrap(x, name):
  1321. if isinstance(x, (RawTensor, NodeMixin)):
  1322. NodeMixin.wrap(
  1323. x,
  1324. lambda: Input.make(
  1325. type=NodeMixin.get_wrapped_type(x),
  1326. name=name,
  1327. qualname="%s.[%s]" % (module_qualname, name),
  1328. ),
  1329. )
  1330. return x
  1331. args = [self]
  1332. orig_traced_inputs = (
  1333. None
  1334. if not isinstance(self._mod, TracedModule)
  1335. else self._mod.argdef_graph_map[tree_def].inputs
  1336. )
  1337. ind = 1
  1338. for v in inputs[1:]:
  1339. if isinstance(v, (RawTensor, NodeMixin)):
  1340. args_name = (
  1341. orig_traced_inputs[ind]._name
  1342. if orig_traced_inputs
  1343. else idx2key[ind]
  1344. )
  1345. ind += 1
  1346. args.append(wrap(v, args_name))
  1347. else:
  1348. args.append(v)
  1349. args, kwargs = tree_def.unflatten(args)
  1350. active_module_tracer().patcher.auto_patch(
  1351. getattr(getattr(self._mod, "forward", self._mod), "__globals__", {})
  1352. )
  1353. rst = type(self._mod).forward(*args, **kwargs)
  1354. if _graph_surgery_mode():
  1355. rst = _node_to_tensor(rst)[0][0]
  1356. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  1357. for i in (
  1358. outputs if isinstance(outputs, collections.abc.Sequence) else (outputs,)
  1359. ):
  1360. mark_constant(i)
  1361. active_module_tracer().current_scope()._add_output(NodeMixin.get(i))
  1362. NodeMixin.wrap_safe(self, orig_self)
  1363. for arg, node in zip(inputs[1:], origin_inp_node):
  1364. if node:
  1365. NodeMixin.wrap_safe(arg, node)
  1366. active_module_tracer().pop_scope()
  1367. # rebind output to outer graph
  1368. callnode.out_def = out_def
  1369. callnode.add_outputs(outputs)
  1370. self._argdef_graph_map[callnode.arg_def] = self._body
  1371. self._argdef_outdef_map[callnode.arg_def] = out_def
  1372. _set_graph_surgery_mode(is_graph_surgery_mode)
  1373. return rst
  1374. def __setattr__(self, name, value):
  1375. object.__setattr__(self, name, value)
  1376. def __repr__(self):
  1377. return repr(self._mod)
  1378. def __getattr__(self, name):
  1379. if name not in self._mod.__dict__:
  1380. attr = getattr(type(self._mod), name).__get__(self, type(self))
  1381. else:
  1382. attr = getattr(self._mod, name)
  1383. if (
  1384. isinstance(attr, FunctionType)
  1385. and id(attr) in active_module_tracer().patcher.patched_fn_ids
  1386. ):
  1387. return active_module_tracer().patcher.wrap_fn(attr)
  1388. if isinstance(attr, (List, Dict)):
  1389. flag = _set_graph_surgery_mode(False)
  1390. with _exclude_from_trace():
  1391. has_module, m_container = replace_container_with_module_container(
  1392. attr
  1393. )
  1394. if m_container:
  1395. attr = m_container
  1396. if has_module and not m_container:
  1397. raise ValueError(
  1398. "Can not trace the module that uses the same container to store"
  1399. " Module and Non-Module objects."
  1400. )
  1401. _set_graph_surgery_mode(flag)
  1402. if isinstance(attr, Module):
  1403. attr = TracedModuleBuilder(attr)
  1404. if isinstance(attr, (Module, RawTensor)):
  1405. setattr(self, name, attr)
  1406. NodeMixin.wrap(
  1407. attr,
  1408. lambda: GetAttr.make(
  1409. NodeMixin.get(self),
  1410. type=NodeMixin.get_wrapped_type(attr),
  1411. attr_name=name,
  1412. name="",
  1413. ),
  1414. )
  1415. return attr
  1416. def __getattribute__(self, name):
  1417. if name in TracedModuleBuilder.__builder_attributes__:
  1418. return object.__getattribute__(self, name)
  1419. else:
  1420. wrapped = object.__getattribute__(self, name)
  1421. class_members = dict(inspect.getmembers(self.__class__))
  1422. if name in self._mod.__dict__:
  1423. mod_attr = getattr(self._mod, name)
  1424. if name in class_members:
  1425. if (
  1426. not isinstance(wrapped, TracedModuleBuilder)
  1427. and wrapped is not mod_attr
  1428. ):
  1429. wrapped = self.__getattr__(name)
  1430. if isinstance(wrapped, TracedModuleBuilder):
  1431. if not isinstance(mod_attr, (List, Dict, QATModule)):
  1432. assert (
  1433. mod_attr is wrapped._mod
  1434. ), "TracedModule do not support modify module attributes, please check your code."
  1435. if isinstance(wrapped, RawTensor):
  1436. assert (
  1437. mod_attr is wrapped
  1438. ), "TracedModule do not support modify tensor attributes, please check your code."
  1439. if isinstance(wrapped, (NodeMixin, RawTensor)):
  1440. NodeMixin.wrap(
  1441. wrapped,
  1442. lambda: GetAttr.make(
  1443. NodeMixin.get(self),
  1444. type=NodeMixin.get_wrapped_type(wrapped),
  1445. attr_name=name,
  1446. name="",
  1447. ),
  1448. )
  1449. return wrapped
  1450. class _expr_iter:
  1451. def __init__(self, graph: InternalGraph, recursive: bool = True):
  1452. self.graph = graph
  1453. self.recursive = recursive
  1454. self._visited_graph = set()
  1455. def __iter__(self):
  1456. yield from self._gen_expr(self.graph)
  1457. def _gen_expr(self, graph: InternalGraph):
  1458. visit_inp = set()
  1459. for inp_node in graph.inputs:
  1460. if inp_node not in visit_inp:
  1461. yield inp_node.expr
  1462. visit_inp.add(inp_node)
  1463. for expr in graph._exprs:
  1464. yield expr
  1465. if (
  1466. self.recursive
  1467. and hasattr(expr, "graph")
  1468. and expr.graph is not None
  1469. and id(expr.graph) not in self._visited_graph
  1470. ):
  1471. self._visited_graph.add(id(expr.graph))
  1472. yield from self._gen_expr(expr.graph)
  1473. class _node_iter:
  1474. def __init__(self, graph: InternalGraph, recursive: bool = True) -> None:
  1475. nodes = []
  1476. node_ids = set()
  1477. for expr in graph.exprs(recursive):
  1478. for n in expr.outputs:
  1479. assert id(n) not in node_ids
  1480. nodes.append(n)
  1481. node_ids.add(id(n))
  1482. self.nodes = nodes
  1483. def __iter__(self):
  1484. for node in self.nodes:
  1485. yield node
  1486. class BaseFilter:
  1487. r"""``BaseFilter`` exposes some methods for converting ``_node_iter/_expr_iter`` to ``list``, ``dict``, etc."""
  1488. def __init__(self, iter: Iterable):
  1489. self._iter = iter
  1490. def __iter__(self):
  1491. return iter(self._iter)
  1492. def as_list(self):
  1493. r"""Consume this iterator and return its content as a list.
  1494. Returns:
  1495. A list of ``Node`` or ``Expr``.
  1496. """
  1497. return list(self)
  1498. def as_dict(self):
  1499. r"""Construct an ordered dict to map from ``id`` to objects in this iterator.
  1500. Returns:
  1501. An :class:`OrderedDict`.
  1502. """
  1503. return collections.OrderedDict((i._id, i) for i in self)
  1504. def as_unique(self):
  1505. """Assert that this iterator yields only one ``Node`` or ``Expr`` and return it.
  1506. Rerurns:
  1507. A ``Node`` or ``Expr``.
  1508. """
  1509. rst = self.as_list()
  1510. assert len(rst) == 1, "{} elements found".format(len(rst))
  1511. (elem,) = self
  1512. return elem
  1513. def as_count(self):
  1514. r"""Consume this iterator and get the number of elements."""
  1515. return sum(1 for _ in self)
  1516. class ExprFilter(BaseFilter):
  1517. """Filter on Expr iterator.
  1518. This class is an iterator of :class:`.Expr` objects and multiple
  1519. filtering conditions and mappers can be chained.
  1520. """
  1521. def call_function(self, func):
  1522. r"""Filter by specific ``CallFunction.func``.
  1523. See :meth:`~.InternalGraph.get_function_by_type` for details.
  1524. """
  1525. return ExprFilterCallFunction(self, func)
  1526. def call_method(self, method):
  1527. r"""Filter by specific ``CallMethod.method``.
  1528. See :meth:`~.InternalGraph.get_function_by_type` for details.
  1529. """
  1530. return ExprFilterCallMethod(self, method)
  1531. def expr_id(self, expr_id: List[int]):
  1532. r"""Filter Exprs by their ``id``.
  1533. See :meth:`~.InternalGraph.get_function_by_type` for details.
  1534. """
  1535. return ExprFilterExprId(self, expr_id)
  1536. class NodeFilter(BaseFilter):
  1537. """Filter on Node iterator.
  1538. This class is an iterator of :class:`~.traced_module.Node` objects and multiple
  1539. filtering conditions and mappers can be chained.
  1540. """
  1541. def type(self, owner_type):
  1542. r"""Filter by specific Module type.
  1543. See :meth:`~.InternalGraph.get_module_by_type` for details.
  1544. """
  1545. return NodeFilterType(self, owner_type)
  1546. def node_id(self, node_id: List[int]):
  1547. r"""Filter Nodes by their ``id``.
  1548. See :meth:`~.InternalGraph.get_node_by_id` for details.
  1549. """
  1550. return NodeFilterNodeId(self, node_id)
  1551. def name(self, name: str, ignorecase: bool = True):
  1552. r"""Filter Nodes by their full name.
  1553. See :meth:`~.InternalGraph.get_node_by_name` for details.
  1554. """
  1555. return NodeFilterName(self, name, ignorecase)
  1556. class NodeFilterType(NodeFilter):
  1557. """See :meth:`~.InternalGraph.get_module_by_type`"""
  1558. def __init__(self, expr_iter, owner_type):
  1559. super().__init__(expr_iter)
  1560. self.owner_type = owner_type
  1561. def __iter__(self):
  1562. for node in self._iter:
  1563. if not isinstance(node, ModuleNode):
  1564. continue
  1565. if not hasattr(node, "owner"):
  1566. continue
  1567. if isinstance(node.owner, self.owner_type):
  1568. yield node
  1569. class NodeFilterNodeId(NodeFilter):
  1570. """See :meth:`~.InternalGraph.get_node_by_id`"""
  1571. def __init__(self, expr_iter, node_id: List[int]):
  1572. super().__init__(expr_iter)
  1573. if not isinstance(node_id, Sequence):
  1574. node_id = [node_id]
  1575. self.node_id = node_id
  1576. def __iter__(self):
  1577. for node in self._iter:
  1578. if node._id in self.node_id:
  1579. yield node
  1580. class NodeFilterName(NodeFilter):
  1581. """See :meth:`~.InternalGraph.get_node_by_name`"""
  1582. _re = None
  1583. def __init__(self, node_iter, pattern, ignorecase):
  1584. super().__init__(node_iter)
  1585. self.pattern = pattern
  1586. self._re = self.make_re(pattern, ignorecase)
  1587. @classmethod
  1588. def make_re(cls, pattern, ignorecase=True):
  1589. assert isinstance(pattern, str), "bad pattern: {!r}".format(pattern)
  1590. assert isinstance(ignorecase, bool)
  1591. flags = 0
  1592. if ignorecase:
  1593. flags |= re.IGNORECASE
  1594. return re.compile(fnmatch.translate(pattern), flags=flags)
  1595. def __iter__(self):
  1596. for i in self._iter:
  1597. graph = i.top_graph
  1598. name = "{}_{}".format(graph._name, i._name)
  1599. if self.pattern == name or self._re.match(name):
  1600. yield i
  1601. class ExprFilterCallFunction(ExprFilter):
  1602. """See :meth:`~.InternalGraph.get_function_by_type`"""
  1603. def __init__(self, expr_iter, func: Callable = None):
  1604. super().__init__(expr_iter)
  1605. self.func = func
  1606. def __iter__(self):
  1607. for expr in self._iter:
  1608. if not isinstance(expr, CallFunction):
  1609. continue
  1610. if self.func is None or expr.func == self.func:
  1611. yield expr
  1612. class ExprFilterCallMethod(ExprFilter):
  1613. """See :meth:`~.InternalGraph.get_method_by_type`"""
  1614. def __init__(self, expr_iter, method: str = None):
  1615. super().__init__(expr_iter)
  1616. self.method = method
  1617. def __iter__(self):
  1618. for expr in self._iter:
  1619. if not isinstance(expr, CallMethod):
  1620. continue
  1621. if self.method is None or expr.method == self.method:
  1622. yield expr
  1623. class ExprFilterExprId(ExprFilter):
  1624. """See :meth:`~.InternalGraph.get_expr_by_id`"""
  1625. def __init__(self, expr_iter, expr_id: List[int]):
  1626. super().__init__(expr_iter)
  1627. if not isinstance(expr_id, Sequence):
  1628. expr_id = [expr_id]
  1629. self.expr_id = expr_id
  1630. def __iter__(self):
  1631. for expr in self._iter:
  1632. if expr._id in self.expr_id:
  1633. yield expr
  1634. class TracedModule(Module):
  1635. r"""``TracedModule`` is the Module created by tracing normal module.
  1636. It owns an argdef to graph(InternalGraph) map. The forward method of ``TracedModule``
  1637. will get a graph from ``argdef_graph_map`` according to the argdef of input ``args/kwargs``
  1638. and interpret it.
  1639. .. note::
  1640. ``TracedModule`` can only be created by :func:`~.trace_module`. See :func:`~.trace_module`
  1641. for more details.
  1642. """
  1643. # m_node = None # type: ModuleNode
  1644. argdef_graph_map = None
  1645. argdef_outdef_map = None
  1646. def __init__(self, is_top, argdef_graph_map, argdef_outdef_map, is_qat=False):
  1647. super(TracedModule, self).__init__()
  1648. self.argdef_graph_map = argdef_graph_map
  1649. self.argdef_outdef_map = argdef_outdef_map
  1650. self._is_top = is_top
  1651. self.watch_points = []
  1652. self.watch_node_value = {}
  1653. self.end_points = []
  1654. self.is_qat = is_qat
  1655. self.argspec = None
  1656. def forward(self, *args, **kwargs):
  1657. if hasattr(self, "argspec") and self.argspec is not None:
  1658. args, kwargs = _convert_kwargs_to_args(self.argspec, args, kwargs, True)
  1659. inputs, treedef = tree_flatten(((self, *args), kwargs))
  1660. assert (
  1661. treedef in self.argdef_graph_map
  1662. ), "support input args kwargs format: \n{}, but get: \n{}".format(
  1663. "\n ".join(
  1664. "forward({})".format(i._args_kwargs_repr())
  1665. for i in self.argdef_graph_map.keys()
  1666. ),
  1667. treedef._args_kwargs_repr(),
  1668. )
  1669. inputs = filter(
  1670. lambda i: isinstance(i, (Module, TracedModuleBuilder, RawTensor)), inputs
  1671. ) # allow TracedModuleBuilder for retrace.
  1672. outputs = self.argdef_graph_map[treedef].interpret(*inputs)
  1673. if self.watch_points:
  1674. self.watch_node_value = {}
  1675. for n in self.watch_points:
  1676. self.watch_node_value[n] = n.top_graph._rst.pop(n)
  1677. if self.end_points:
  1678. return outputs
  1679. out_def = self.argdef_outdef_map[treedef]
  1680. outputs = out_def.unflatten(outputs)
  1681. return outputs
  1682. def set_watch_points(self, nodes):
  1683. r"""Initialize the :attr:`~.TracedModule.watch_points`.
  1684. You can call this function to get the ``Tensor/Module`` corresponding to a ``Node`` at runtime.
  1685. Args:
  1686. nodes: a list of ``Node``.
  1687. For example, the following code
  1688. .. code-block::
  1689. import megengine.module as M
  1690. import megengine as mge
  1691. import megengine.traced_module as tm
  1692. class MyModule(M.Module):
  1693. def forward(self, x):
  1694. x = x + 1 + 2
  1695. return x
  1696. net = MyModule()
  1697. inp = mge.Tensor([0])
  1698. traced_module = tm.trace_module(net, inp)
  1699. add_1_node = traced_module.graph.get_node_by_id(2).as_unique()
  1700. traced_module.set_watch_points(add_1_node)
  1701. out = traced_module(inp)
  1702. Will get the following ``watch_node_value``::
  1703. print(traced_module.watch_node_value)
  1704. .. code-block:: text
  1705. {add_out: Tensor([1.], device=xpux:0)}
  1706. """
  1707. if not isinstance(nodes, Sequence):
  1708. nodes = [nodes]
  1709. self.watch_points = nodes
  1710. if nodes:
  1711. nodes[0].top_graph._watch_point = []
  1712. for n in nodes:
  1713. n.top_graph._watch_point.append(n)
  1714. def clear_watch_points(self):
  1715. r"""Clear the :attr:`~.TracedModule.watch_points` and :attr:`~.TracedModule.watch_node_value`.
  1716. """
  1717. for n in self.watch_points:
  1718. n.top_graph._watch_point = []
  1719. self.watch_points = []
  1720. self.watch_node_value = {}
  1721. def set_end_points(self, nodes: Sequence[Node]):
  1722. r"""Initialize the :attr:`~.TracedModule.end_points`.
  1723. When all the ``nodes`` are generated, the Module will stop execution and return directly.
  1724. Args:
  1725. nodes: a list of ``Node``.
  1726. For example, the following code
  1727. .. code-block::
  1728. import megengine.module as M
  1729. import megengine as mge
  1730. import megengine.traced_module as tm
  1731. class MyModule(M.Module):
  1732. def forward(self, x):
  1733. x = x + 1 + 2
  1734. return x
  1735. net = MyModule()
  1736. inp = mge.Tensor([0])
  1737. traced_module = tm.trace_module(net, inp)
  1738. add_1_node = traced_module.graph.get_node_by_id(2).as_unique()
  1739. traced_module.set_end_points(add_1_node)
  1740. out = traced_module(inp)
  1741. Will get the following ``out``::
  1742. print(out)
  1743. .. code-block:: text
  1744. [Tensor([1.], device=xpux:0)]
  1745. """
  1746. if not isinstance(nodes, Sequence):
  1747. nodes = [nodes]
  1748. self.end_points = nodes
  1749. graphs = list(self.argdef_graph_map.values())
  1750. for n in nodes:
  1751. assert n.top_graph in graphs
  1752. n.top_graph._end_point.append(n)
  1753. def clear_end_points(self):
  1754. r"""Clear the :attr:`~.TracedModule.end_points`.
  1755. """
  1756. for n in self.end_points:
  1757. n.top_graph._end_point = []
  1758. self.end_points = []
  1759. @property
  1760. def graph(self) -> InternalGraph:
  1761. """Return the ``InternalGraph`` of this ``TracedModule``.
  1762. """
  1763. assert len(self.argdef_graph_map) == 1
  1764. return list(self.argdef_graph_map.values())[0]
  1765. def _update_ref(self, actual_node_map: Union[Dict] = None, top_graph=None):
  1766. for inp_def, graph in self.argdef_graph_map.items():
  1767. if top_graph is not None:
  1768. graph._top_graph = weakref.ref(top_graph)
  1769. for n in graph._inputs + graph._outputs:
  1770. n.expr._top_graph = weakref.ref(graph)
  1771. n._top_graph = weakref.ref(graph)
  1772. graph._inputs[0]._owner = weakref.ref(self)
  1773. for i, n in enumerate(graph._inputs):
  1774. n.actual_node = []
  1775. if actual_node_map is not None and inp_def in actual_node_map.keys():
  1776. n.actual_node = list(list(zip(*(actual_node_map[inp_def])))[i])
  1777. node2obj = {}
  1778. next_actual_node_map = collections.defaultdict(
  1779. lambda: collections.defaultdict(list)
  1780. )
  1781. node2obj[graph._inputs[0]] = self
  1782. for expr in graph._exprs:
  1783. for n in expr.inputs + expr.outputs:
  1784. n._top_graph = weakref.ref(graph)
  1785. expr._top_graph = weakref.ref(graph)
  1786. if isinstance(expr, GetAttr) and isinstance(
  1787. expr.outputs[0], ModuleNode
  1788. ):
  1789. obj = expr.interpret(node2obj[expr.inputs[0]])[0]
  1790. expr.outputs[0]._owner = weakref.ref(obj)
  1791. node2obj[expr.outputs[0]] = obj
  1792. if isinstance(expr, Constant) and isinstance(
  1793. expr.outputs[0], ModuleNode
  1794. ):
  1795. obj = expr.value
  1796. expr.outputs[0]._owner = weakref.ref(obj)
  1797. node2obj[expr.outputs[0]] = obj
  1798. if (
  1799. isinstance(expr, CallMethod)
  1800. and expr.method == "__call__"
  1801. and isinstance(expr.inputs[0], ModuleNode)
  1802. ):
  1803. obj = node2obj[expr.inputs[0]]
  1804. if expr.arg_def is not None:
  1805. next_actual_node_map[obj][expr.arg_def].append(expr.inputs)
  1806. for obj in node2obj.values():
  1807. if obj is self:
  1808. continue
  1809. mnode_map = None
  1810. if obj in next_actual_node_map.keys():
  1811. mnode_map = next_actual_node_map[obj]
  1812. if isinstance(obj, TracedModule):
  1813. obj._update_ref(mnode_map, graph)
  1814. def flatten(self):
  1815. r"""Get a new TracedModule, which eliminates ``GetAttr`` and has no hierarchy.
  1816. Retruns:
  1817. A new :class:`TracedModule`.
  1818. """
  1819. new_module = copy.deepcopy(self)
  1820. def _replace_inputs_and_outputs(expr: Expr, repl_dict: Dict[Node, Node]):
  1821. inputs, outputs = expr.inputs, expr.outputs
  1822. for i, node in enumerate(inputs):
  1823. if node in repl_dict:
  1824. inputs[i] = repl_dict[node]
  1825. for i, node in enumerate(outputs):
  1826. if node in repl_dict:
  1827. outputs[i] = repl_dict[node]
  1828. outputs[i].expr = expr
  1829. def _flatten_subgraph(
  1830. parent_graph: InternalGraph,
  1831. graph: InternalGraph,
  1832. call: CallMethod,
  1833. module: Module,
  1834. ):
  1835. repl_dict, node2obj, rename_blacklist = {}, {}, []
  1836. if call is not None:
  1837. graph = copy.deepcopy(graph)
  1838. node2obj[call.inputs[0]] = module
  1839. repl_dict = dict(zip(graph._inputs, call.inputs))
  1840. for ind, out in enumerate(graph.outputs):
  1841. if isinstance(out.expr, Input):
  1842. assert out in repl_dict
  1843. call_out = call.outputs[ind]
  1844. for expr in call.outputs[ind].users:
  1845. for index, inp in enumerate(expr.inputs):
  1846. if inp is call_out:
  1847. expr.inputs[index] = repl_dict[out]
  1848. repl_dict[out].users.append(expr)
  1849. if parent_graph is not None:
  1850. for index, parent_out in enumerate(parent_graph._outputs):
  1851. if parent_out is call_out:
  1852. parent_graph._outputs[index] = repl_dict[out]
  1853. continue
  1854. repl_dict[out] = call.outputs[ind]
  1855. if isinstance(out, TensorNode):
  1856. call.outputs[ind]._qualname = out._qualname
  1857. for node, repl_node in repl_dict.items():
  1858. assert node in graph._inputs or node in graph._outputs
  1859. repl_node.users.extend(node.users)
  1860. rename_blacklist = list(chain(call.inputs, call.outputs))
  1861. node2obj[graph._inputs[0]] = module
  1862. prefix_name = call.inputs[0]._name if call else ""
  1863. flattened_exprs = []
  1864. for expr in graph._exprs:
  1865. exprs = [expr]
  1866. if call is not None:
  1867. _replace_inputs_and_outputs(expr, repl_dict)
  1868. if isinstance(expr, GetAttr):
  1869. mnode = expr.inputs[0]
  1870. node2obj[expr.outputs[0]] = expr.interpret(node2obj[mnode])[0]
  1871. if isinstance(expr, CallMethod):
  1872. obj_node = expr.inputs[0]
  1873. if isinstance(obj_node, ModuleNode) and isinstance(
  1874. obj_node.expr, GetAttr
  1875. ):
  1876. obj = node2obj[obj_node]
  1877. expr_graph = (
  1878. obj.argdef_graph_map[expr.arg_def]
  1879. if hasattr(obj, "argdef_graph_map")
  1880. else None
  1881. )
  1882. if expr_graph is not None and not obj.is_qat:
  1883. exprs = _flatten_subgraph(graph, expr_graph, expr, obj)
  1884. if parent_graph is not None:
  1885. for node in expr.outputs:
  1886. name = node._name
  1887. if node not in rename_blacklist:
  1888. name = "{}_{}".format(prefix_name, name)
  1889. node._name = parent_graph._namespace.create_unique_name(
  1890. name, node
  1891. )
  1892. flattened_exprs.extend(exprs)
  1893. if call is not None:
  1894. for i in call.inputs:
  1895. i.users.remove(call)
  1896. return flattened_exprs
  1897. new_module.graph._exprs = _flatten_subgraph(
  1898. None, new_module.graph, None, new_module
  1899. )
  1900. new_module.graph._re_associate_name()
  1901. new_module.graph.compile()
  1902. new_module._update_ref()
  1903. new_module.graph._reset_ids()
  1904. return new_module
  1905. def __getstate__(self):
  1906. d = self.__dict__.copy()
  1907. for k in Module.__dict__:
  1908. d.pop(k, None)
  1909. _check_obj_attr(d)
  1910. for k in d:
  1911. if module_tracer.is_builtin(d[k]):
  1912. assert _check_builtin_module_attr(
  1913. d[k]
  1914. ), "Module {} can not be serialized. ".format(type(d[k]))
  1915. d[k] = _ModuleState.get_module_state(d[k])
  1916. dump_info = {
  1917. "version": __version__,
  1918. "register_type": USER_REGISTERED_LEAF_TYPE,
  1919. "register_container_type": USER_REGISTERED_CONTAINER_TYPE,
  1920. "register_mdule": USER_REGISTERED_MODULE,
  1921. "register_function": USER_REGISTERED_FUNCTION,
  1922. }
  1923. d["dump_info"] = dump_info
  1924. return d
  1925. def __setstate__(self, state):
  1926. for k, v in state.items():
  1927. if isinstance(v, _ModuleState):
  1928. state[k] = v.to_module()
  1929. super().__setstate__(state)
  1930. self._update_ref()
  1931. for _, graph in self.argdef_graph_map.items():
  1932. for expr in graph._exprs:
  1933. if isinstance(expr, CallFunction):
  1934. load_functional(expr)
  1935. if isinstance(expr, CallMethod):
  1936. if expr.method == "__call__":
  1937. load_call_module_expr(expr)
  1938. else:
  1939. load_call_tensor_method_expr(expr)
  1940. if isinstance(expr, Apply):
  1941. load_apply_expr(expr)
  1942. for _, graph in self.argdef_graph_map.items():
  1943. ind = 0
  1944. while ind < len(graph._exprs):
  1945. cur_expr = graph._exprs[ind]
  1946. has_new_expr = False
  1947. for i in cur_expr.inputs:
  1948. if i.expr not in graph._exprs and not isinstance(i.expr, Input):
  1949. graph._exprs.insert(ind, i.expr)
  1950. has_new_expr = True
  1951. if not has_new_expr:
  1952. ind += 1
  1953. for expr in graph._exprs:
  1954. for i in expr.inputs:
  1955. if expr.inputs.count(i) != i.users.count(expr):
  1956. add_or_del_count = expr.inputs.count(i) - i.users.count(expr)
  1957. if add_or_del_count > 0:
  1958. i.users.extend([expr] * add_or_del_count)
  1959. else:
  1960. [i.users.remove(expr) for i in range(-add_or_del_count)]
  1961. for o in expr.outputs:
  1962. if o.expr is not expr:
  1963. assert o not in o.expr.outputs
  1964. o.expr = expr
  1965. for node in graph.nodes(False):
  1966. # remove users of node which doesn't use node as input
  1967. node.users = [e for e in node.users if node in e.inputs]
  1968. for expr in graph._exprs:
  1969. graph._namespace.auto_naming_for_outputs(expr)
  1970. self._update_ref()
  1971. for _, graph in self.argdef_graph_map.items():
  1972. graph._reset_ids()
  1973. def __copy__(self):
  1974. cls = self.__class__
  1975. result = cls.__new__(cls)
  1976. result.__dict__.update(self.__dict__)
  1977. return result
  1978. def __deepcopy__(self, memo):
  1979. with max_recursion_limit():
  1980. cls = self.__class__
  1981. result = cls.__new__(cls)
  1982. state = {}
  1983. memo[id(self)] = result
  1984. for k, v in self.__dict__.items():
  1985. if not isinstance(v, weakref.ReferenceType):
  1986. state[k] = copy.deepcopy(v, memo)
  1987. result.__dict__.update(state)
  1988. result._update_ref()
  1989. return result
  1990. def cpp_apply_module_trace(opdef, *args):
  1991. return Apply.apply_module_trace_hook(opdef, *args)
  1992. USER_REGISTERED_MODULE = []
  1993. USER_REGISTERED_FUNCTION = []
  1994. def register_as_builtin(mod_cls: Type[Module]) -> None:
  1995. r"""Registers class ``mod_cls`` (subclass of :class:`~.Module`) as builtin module.
  1996. Args:
  1997. mod_cls: the module class which will be treated as builtin module in tracing.
  1998. """
  1999. USER_REGISTERED_MODULE.append((mod_cls.__module__, mod_cls.__qualname__))
  2000. module_tracer.register_as_builtin(mod_cls)
  2001. def wrap(func: Callable):
  2002. r"""Call this function to register ``func`` as a builtin function.
  2003. This function can be called at module-level scope to register ``func`` as a builtin function.
  2004. A builtin function will be converted to a :class:`CallFunction` Expr in tracing::
  2005. def my_func(x, y):
  2006. return x + y
  2007. import megengine.traced_module as tm
  2008. tm.wrap(my_func)
  2009. This function can also equivalently be used as a decorator::
  2010. @tm.wrap
  2011. def my_func(x, y):
  2012. return x + y
  2013. Args:
  2014. func: the function of the global function to insert into the graph when it's called.
  2015. """
  2016. USER_REGISTERED_FUNCTION.append((func.__module__, func.__qualname__))
  2017. assert callable(func), "func must be a callable"
  2018. assert hasattr(func, "__code__")
  2019. fn_name = func.__code__.co_name
  2020. currentframe = inspect.currentframe()
  2021. assert currentframe is not None
  2022. f = currentframe.f_back
  2023. assert f is not None
  2024. assert (
  2025. f.f_code.co_name == "<module>"
  2026. ), "wrap must be called at the top level of a module"
  2027. Patcher._builtin_functions.append((f.f_globals, fn_name))
  2028. return func
  2029. def _register_all_builtin_module():
  2030. for sub_mod in [M, M.qat, M.quantized, MExternal]:
  2031. for m in getmembers(sub_mod):
  2032. if (
  2033. isclass(m[1])
  2034. and issubclass(m[1], M.Module)
  2035. and m[1] is not M.Sequential
  2036. ):
  2037. module_tracer.register_as_builtin(m[1])
  2038. module_tracer.register_as_builtin(Observer)
  2039. module_tracer.register_as_builtin(MinMaxObserver)
  2040. module_tracer.register_as_builtin(SyncMinMaxObserver)
  2041. module_tracer.register_as_builtin(ExponentialMovingAverageObserver)
  2042. module_tracer.register_as_builtin(SyncExponentialMovingAverageObserver)
  2043. module_tracer.register_as_builtin(HistogramObserver)
  2044. module_tracer.register_as_builtin(PassiveObserver)
  2045. module_tracer.register_as_builtin(LSQ)
  2046. module_tracer.register_as_builtin(TQT)
  2047. module_tracer.register_as_builtin(FakeQuantize)
  2048. module_tracer.register_as_builtin(TM_FakeQuant)
  2049. def trace_module(
  2050. mod: Module, *args: Tuple[Any], **kwargs: Dict[str, Any]
  2051. ) -> TracedModule:
  2052. r"""Traces module ``mod`` and returns corresponding :class:`TracedModule`.
  2053. Args:
  2054. mod: the module will be converted to :class:`TracedModule`.
  2055. args: the positional arguments passed to forward method of ``mod``.
  2056. kwargs: the keyword arguments passed to forward method of ``mod``.
  2057. """
  2058. assert active_module_tracer() is None
  2059. assert isinstance(mod, Module)
  2060. try:
  2061. net_name = mod._name if mod._name else mod.__class__.__name__
  2062. use_sym_shape = set_symbolic_shape(True)
  2063. set_active_module_tracer(module_tracer(_wrapped_function))
  2064. set_module_tracing()
  2065. for cls in [Expr, Node]:
  2066. cls._set_next_id(0)
  2067. with active_module_tracer().patcher:
  2068. global_scope = InternalGraph(name="top", qualname=net_name)
  2069. active_module_tracer().push_scope(global_scope)
  2070. builder = TracedModuleBuilder(mod, True)
  2071. NodeMixin.wrap_safe(
  2072. builder, Input.make(name="top", type=ModuleNode, qualname=net_name)
  2073. )
  2074. forward_argspec = (
  2075. mod.argspec
  2076. if hasattr(mod, "argspec")
  2077. else inspect.getfullargspec(mod.forward)
  2078. )
  2079. args, kwargs = _convert_kwargs_to_args(forward_argspec, args, kwargs, True)
  2080. inputs, _ = tree_flatten((args, kwargs))
  2081. for _, i in enumerate(inputs):
  2082. # assert isinstance(i, Tensor), "not support "
  2083. if isinstance(i, RawTensor):
  2084. NodeMixin.wrap_safe(
  2085. i,
  2086. Input.make(
  2087. name="arg_{}".format(_),
  2088. type=NodeMixin.get_wrapped_type(i),
  2089. qualname="{}.[{}]".format(net_name, "arg_{}".format(_)),
  2090. ),
  2091. )
  2092. rst = builder(*copy.deepcopy(args), **copy.deepcopy(kwargs))
  2093. active_module_tracer().pop_scope()
  2094. traced_mod = builder.build()
  2095. traced_mod.argspec = forward_argspec
  2096. traced_mod.graph._reset_ids()
  2097. has_expr_not_check = False
  2098. if _get_expr_checker():
  2099. has_expr_not_check = (
  2100. active_module_tracer().checker.check_node_not_in_scope()
  2101. )
  2102. if _get_default_checker() or has_expr_not_check:
  2103. with _exclude_from_trace():
  2104. tm_res = traced_mod(*args, **kwargs)
  2105. tm_res, _ = tree_flatten(tm_res, is_leaf=_is_leaf)
  2106. rst, _ = tree_flatten(rst, is_leaf=_is_leaf)
  2107. active_module_tracer().checker.check_net_outputs(tm_res, rst)
  2108. return traced_mod
  2109. finally:
  2110. set_symbolic_shape(use_sym_shape)
  2111. unset_module_tracing()
  2112. for t in mod.tensors(recursive=True):
  2113. NodeMixin.clear_node(t)
  2114. for t in inputs:
  2115. NodeMixin.clear_node(t)
  2116. set_active_module_tracer(None)