You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

network.py 29 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import collections
  10. import fnmatch
  11. import itertools
  12. import pickle
  13. import re
  14. from collections import OrderedDict
  15. from typing import Any, Dict, List, Optional, Sequence
  16. from ..core import _imperative_rt
  17. from ..core._imperative_rt import ComputingGraph, SerializationMetadata
  18. from ..core._trace_option import set_symbolic_shape as _set_symbolic_shape
  19. from ..core.tensor import megbrain_graph as G
  20. from ..logger import get_logger
  21. from .comp_graph_tools import get_dep_vars, get_opr_type, get_oprs_seq
  22. from .network_node import (
  23. ConstOpBase,
  24. Host2DeviceCopy,
  25. ImmutableTensor,
  26. NetworkNode,
  27. OpNode,
  28. VarNode,
  29. str_to_mge_class,
  30. )
  31. logger = get_logger(__name__)
  32. class Network:
  33. def __init__(self):
  34. self.input_vars = [] # input var of graph
  35. self._orig_inputs = []
  36. self.output_vars = [] # output var of graph
  37. self._orig_outputs = []
  38. self.all_oprs_map = OrderedDict() # _imperative_rt.graph.VarNode.id: VarNode
  39. self.all_vars_map = (
  40. OrderedDict()
  41. ) # _imperative_rt.graph.OperatorNode.id: OpNode
  42. self.graph = ComputingGraph()
  43. self._metadata = None
  44. @property
  45. def metadata(self):
  46. r"""
  47. Load metadata as a dict.
  48. """
  49. if not self._metadata.is_valid:
  50. logger.info("metadata is not valid!")
  51. return None
  52. ret = dict()
  53. try:
  54. user_info = pickle.loads(self._metadata.user_info)
  55. except: # pylint: disable=bare-except
  56. logger.warning(
  57. "can't parse user info by pickle, so return the original bytes object!"
  58. )
  59. user_info = self._metadata.user_info
  60. ret["user_info"] = user_info
  61. ret["graph_modified"] = self._metadata.graph_modified
  62. ret["optimized_for_inference"] = self._metadata.optimized_for_inference
  63. if ret["optimized_for_inference"]:
  64. ret.update(G.deserialize_infer_option(self._metadata.optimize_options))
  65. return ret
  66. @classmethod
  67. def load(cls, model_path: str, outspec: List[str] = None):
  68. """
  69. Loads a computing graph as a Network object.
  70. :param model_path: file path of mge model.
  71. :param outspec: only load the subgraph with outspec as its endpoints.
  72. """
  73. self = cls()
  74. ret = G.load_graph(model_path)
  75. outputs, self._metadata = ret.output_vars_list, ret.metadata
  76. if outspec is not None:
  77. output_spec = outspec.copy()
  78. all_vars = get_dep_vars(outputs) + outputs
  79. new_outputs = {}
  80. for i in all_vars:
  81. if i.name in output_spec:
  82. new_outputs[i.name] = i
  83. output_spec.remove(i.name)
  84. assert len(output_spec) == 0, "Can not find {} in this model".format(
  85. output_spec
  86. )
  87. outputs = [new_outputs[i] for i in outspec]
  88. self._orig_outputs = outputs
  89. for x in self._orig_outputs:
  90. self.output_vars.append(self._get_var(x))
  91. self.add_dep_oprs()
  92. for x in self._orig_inputs:
  93. self.input_vars.append(self._get_var(x))
  94. self.graph = self._orig_outputs[0].graph
  95. return self
  96. def _compile(self):
  97. self.all_oprs_map = {}
  98. self.all_vars_map = {}
  99. for opr in self.all_oprs:
  100. if isinstance(opr, (ConstOpBase, Host2DeviceCopy)):
  101. opr.compile(self.graph)
  102. else:
  103. opr.compile()
  104. if opr.name is not None:
  105. opr._opr.name = opr.name
  106. self.all_oprs_map[opr._opr.id] = opr
  107. for o in opr.outputs:
  108. self.all_vars_map[o.var.id] = o
  109. def optimize_for_inference(self, dest_vars, **kwargs):
  110. r"""
  111. Applies optimize_for_inference pass for operator graph.
  112. :param dest_vars: list of output vars in the operator graph
  113. :Keyword Arguments:
  114. * enable_io16xc32 --
  115. whether to use float16 for I/O between oprs and use
  116. float32 as internal computation precision. Note the output var would be
  117. changed to float16.
  118. * enable_ioc16 --
  119. whether to use float16 for both I/O and computation
  120. precision.
  121. * enable_hwcd4 --
  122. whether to use NHWCD4 data layout. This is faster on some
  123. OpenCL backend.
  124. * enable_nchw88 --
  125. whether to use NCHW88 data layout, currently
  126. used in X86 AVX backend.
  127. * enable_nchw44 --
  128. whether to use NCHW44 data layout, currently
  129. used in arm backend.
  130. * enable_nchw44_dot --
  131. whether to use NCHW44_dot data layout, currently
  132. used in armv8.2+dotprod backend.
  133. * enable_nchw4 --
  134. whether to use NCHW4 data layout, currently
  135. used in nvidia backend(based on cudnn).
  136. * enable_nchw32 --
  137. whether to use NCHW32 data layout, currently
  138. used in nvidia backend with tensorcore(based on cudnn).
  139. * enable_chwn4 --
  140. whether to use CHWN4 data layout, currently
  141. used in nvidia backend with tensorcore.
  142. * enable_nchw64 --
  143. whether to use NCHW64 data layout, used for fast int4
  144. support on Nvidia GPU.
  145. * enable_fuse_conv_bias_nonlinearity: whether to fuse conv+bias+nonlinearty
  146. into one opr.
  147. * enable_fuse_conv_bias_with_z: whether to fuse conv_bias with z
  148. input for inference on nvidia backend(this optimization pass will
  149. result in mismatch of the precision of output of training and
  150. inference)
  151. """
  152. if not isinstance(dest_vars, Sequence):
  153. dest_vars = [dest_vars]
  154. dest_vars = list(G.VarNode(var.var) for var in dest_vars)
  155. new_vars = G.optimize_for_inference(dest_vars, **kwargs)
  156. return list(self._get_var(var) for var in new_vars)
  157. def dump(
  158. self,
  159. file,
  160. *,
  161. keep_var_name: int = 1,
  162. keep_opr_name: bool = False,
  163. keep_param_name: bool = False,
  164. keep_opr_priority: bool = False,
  165. strip_info_file=None,
  166. append_json=False,
  167. optimize_for_inference=True,
  168. append=False,
  169. user_info: Any = None,
  170. enable_metadata=True,
  171. **kwargs
  172. ):
  173. """
  174. Serializes graph to file.
  175. :param file: output file, could be file object or filename.
  176. :param append: whether output is appended to ``file``.
  177. Only works when ``file`` is str.
  178. :param keep_var_name: level for keeping variable names:
  179. * 0: none of the names are kept
  180. * 1: (default)keep names of output vars
  181. * 2: keep names of all (output and internal) vars
  182. :param keep_opr_name: whether to keep operator names.
  183. :param keep_param_name: whether to keep param names, so param values can be
  184. easily manipulated after loading model
  185. :param keep_opr_priority: whether to keep priority setting for operators
  186. :param strip_info_file: a string for path or a file handler. if is not None,
  187. then the dump information for code strip would be written to ``strip_info_file``
  188. :param append_json: will be check when `strip_info_file` is not None. if set
  189. true, the information for code strip will be append to strip_info_file.
  190. if set false, will rewrite strip_info_file
  191. :param optimize_for_inference: enbale optmizations,
  192. will skip all optimize options if this is False. Default: True
  193. :param user_info: any type object, which will be pickled to bytes.
  194. :param enable_metadata: whether to save metadata into output file.
  195. :Keyword Arguments:
  196. See also :py:meth:`optimize_for_inference`.
  197. """
  198. def _set_var_name(var):
  199. graph_var = G.VarNode(var.var)
  200. graph_var.name = var.name
  201. return graph_var
  202. self._compile()
  203. out = list(map(_set_var_name, self.output_vars))
  204. if kwargs.pop("arg_names", False):
  205. logger.warning(
  206. '"arg_names" is not supported in Network.dump, rename input vars directly'
  207. )
  208. if kwargs.pop("output_names", False):
  209. logger.warning(
  210. '"output_names" is not supported in Network.dump, rename output vars directly'
  211. )
  212. if optimize_for_inference:
  213. out, optimize_options = G.optimize_for_inference(out, **kwargs)
  214. metadata = SerializationMetadata()
  215. if enable_metadata:
  216. metadata.is_valid = True
  217. metadata.graph_modified = True
  218. metadata.user_info = pickle.dumps(user_info)
  219. if optimize_for_inference:
  220. metadata.optimize_options = optimize_options
  221. G.set_priority_to_id([o._node if isinstance(o, G.VarNode) else o for o in out])
  222. dump_content, _ = G.dump_graph(
  223. out,
  224. keep_var_name=keep_var_name,
  225. keep_opr_name=keep_opr_name,
  226. keep_param_name=keep_param_name,
  227. keep_opr_priority=keep_opr_priority,
  228. strip_info_file=strip_info_file,
  229. append_json=append_json,
  230. metadata=metadata,
  231. )
  232. if isinstance(file, str):
  233. permission = "wb" if append == False else "ab"
  234. file = open(file, permission)
  235. file.write(dump_content)
  236. def make_const(self, data, name=None, device=None):
  237. """Makes an ImmutableTensor OpNode to provide a parameter for the network.
  238. """
  239. node = ImmutableTensor(data, name, device, self.graph)
  240. node.compile(self.graph)
  241. return node.outputs[0]
  242. def make_input_node(self, shape, dtype, name=None, device=None):
  243. """Makes a Host2DeviceCopy OpNode to provide an input varnode for the network.
  244. """
  245. node = Host2DeviceCopy(shape, dtype, name, device)
  246. node.compile(self.graph)
  247. return node.outputs[0]
  248. def add_output(self, *vars: VarNode):
  249. """Adds vars into the network output node list
  250. """
  251. if not all([var.owner for var in vars]):
  252. self.add_dep_oprs(*vars)
  253. for var in vars:
  254. # use method 'is' instead of 'in' to avoid
  255. # compare VarNode use elemwise equal
  256. if not any(var is _ for _ in self.output_vars):
  257. self.output_vars.append(var)
  258. def remove_output(self, *vars: VarNode):
  259. """Removes vars from the network output node list.
  260. """
  261. for var in vars:
  262. # use list pop instead of remove to avoid
  263. # compare VarNode use elemwise equal
  264. for idx, out_var in enumerate(self.output_vars):
  265. if var is out_var:
  266. self.output_vars.pop(idx)
  267. def add_dep_oprs(self, *vars):
  268. if len(vars) == 0:
  269. vars = self.output_vars
  270. assert all(isinstance(var, VarNode) for var in vars), "Only support add VarNode"
  271. q = list(vars)
  272. while len(q) > 0:
  273. cur = q.pop(0)
  274. if cur.owner is not None:
  275. continue
  276. if cur.name is None:
  277. cur.name = cur.var.name
  278. self.all_vars_map[cur.var.id] = cur
  279. mge_opr = cur.var.owner
  280. if get_opr_type(mge_opr) == "Host2DeviceCopy":
  281. self._orig_inputs.extend(mge_opr.outputs)
  282. cur.owner = self._add_opr(mge_opr)
  283. if cur.owner is None:
  284. cur.owner = self.all_oprs_map[mge_opr.id]
  285. continue
  286. q.extend(cur.owner.inputs)
  287. return list(vars)
  288. def modify_opr_names(self, modifier):
  289. """Modifies names of operators **inplace**; useful for merging loaded
  290. network into another network
  291. :param modifier: a string to be prepended to the name, or a function
  292. that maps from name to name
  293. :type modifier: str or callable
  294. """
  295. if isinstance(modifier, str):
  296. om = modifier
  297. modifier = lambda v: "{}.{}".format(om, v)
  298. assert isinstance(modifier, collections.Callable)
  299. for i in self.all_oprs:
  300. v0 = i.name
  301. v1 = modifier(v0)
  302. assert isinstance(v1, str)
  303. i.name = v1
  304. def reset_batch_size(self, batchsize, *, blacklist=()):
  305. """Helper for reset batch size; first dimension of all data providers
  306. not in blacklist are assumed to be the batch size
  307. :param blacklist: data provider names whose first dimension is not
  308. batchbatch size
  309. """
  310. blacklist = set(blacklist)
  311. prev_batchsize = None
  312. for i in self.data_providers_filter:
  313. if i.name in blacklist:
  314. blacklist.remove(i.name)
  315. else:
  316. shp = list(i.shape)
  317. if prev_batchsize is None:
  318. prev_batchsize = shp[0]
  319. else:
  320. assert prev_batchsize == shp[0], (
  321. "batchsize mismatch: batchsize={} "
  322. "shape={} dp={}".format(prev_batchsize, shp, i.name)
  323. )
  324. shp[0] = batchsize
  325. i.shape = tuple(shp)
  326. self._compile()
  327. assert prev_batchsize is not None, "no data provider found"
  328. assert not blacklist, "unused items in blacklist: {}".format(blacklist)
  329. def replace_vars(self, repl_dict: Dict[VarNode, VarNode]):
  330. """
  331. Replaces vars in the graph.
  332. :param repl_dict: the map {old_var: new_var} that specifies how to replace the vars.
  333. """
  334. if not all([var.owner for var in repl_dict.values()]):
  335. self.add_dep_oprs(*list(repl_dict.values()))
  336. for var in self.all_vars:
  337. if var in repl_dict:
  338. repl_var = repl_dict[var]
  339. if repl_var is var:
  340. continue
  341. for opnode in var.users:
  342. assert var in opnode.inputs
  343. opnode.inputs = [repl_var if var is i else i for i in opnode.inputs]
  344. if opnode not in repl_var.users:
  345. repl_var.users.append(opnode)
  346. var.users.clear()
  347. self._compile()
  348. def replace_oprs(self, repl_dict: Dict[OpNode, OpNode]):
  349. """
  350. Replaces operators in the graph.
  351. :param oprmap: the map {old_opr: new_opr} that specifies how to replace the operators.
  352. """
  353. for opr in self.all_oprs:
  354. if opr in repl_dict:
  355. assert len(opr.outputs) == len(
  356. repl_dict[opr].outputs
  357. ), "can not replace {} with {}".format(type(opr), type(repl_dict[opr]))
  358. for ind, var in enumerate(opr.outputs):
  359. var.owner = repl_dict[opr]
  360. var.__dict__.update(repl_dict[opr].outputs[ind].__dict__)
  361. var.var = repl_dict[opr].outputs[ind].var
  362. repl_dict[opr].outputs = opr.outputs
  363. self._compile()
  364. def get_opr_by_type(self, oprcls, unique=True):
  365. assert issubclass(oprcls, OpNode)
  366. rst = self.opr_filter.type(oprcls).as_list()
  367. if unique:
  368. assert len(rst) == 1, "{} operators of type {} found".format(
  369. len(rst), oprcls
  370. )
  371. (rst,) = rst
  372. return rst
  373. def get_opr_by_name(self, name, unique=True):
  374. rst = self.opr_filter.name(name).as_list()
  375. if unique:
  376. assert len(rst) == 1, "{} operators of type {} found".format(len(rst), name)
  377. (rst,) = rst
  378. return rst
  379. def get_var_by_name(self, name, unique=True):
  380. rst = self.var_filter.name(name).as_list()
  381. if unique:
  382. assert len(rst) == 1, "{} operators of type {} found".format(len(rst), name)
  383. (rst,) = rst
  384. return rst
  385. def get_var_receive_oprs(self, var):
  386. """ Gets all oprs which use var as input
  387. """
  388. return self.opr_filter.has_input(var).as_list()
  389. def get_dep_oprs(self, var):
  390. """Gets dependent oprs of var
  391. """
  392. return get_oprs_seq(var, False, False)
  393. @property
  394. def opr_filter(self):
  395. """Filter on all opnodes of the Network.
  396. """
  397. oprs = self.all_oprs
  398. return NodeFilter(itertools.islice(oprs, len(oprs)))
  399. @property
  400. def var_filter(self):
  401. """Filter on all varnode of the Network.
  402. """
  403. vars = self.all_vars
  404. return NodeFilter(itertools.islice(vars, len(vars)))
  405. @property
  406. def params_filter(self): # all immutable tensor
  407. """Filter on all parameters (ImmutableTensor Opr) of the Network
  408. """
  409. return self.opr_filter.param_provider()
  410. @property
  411. def data_providers_filter(self): # all host2devicecopy
  412. """Filter on all input nodes (Host2DeviceCopy Opr) of the Network
  413. """
  414. return self.opr_filter.data_provider()
  415. @property
  416. def dest_vars(self):
  417. """Output varnodes of the Network.
  418. """
  419. return self.output_vars
  420. @property
  421. def all_oprs(self):
  422. return get_oprs_seq(self.output_vars, False, False)
  423. @property
  424. def all_vars(self):
  425. return get_dep_vars(self.output_vars)
  426. @property
  427. def all_vars_dict(self):
  428. return self.var_filter.as_dict()
  429. @property
  430. def all_oprs_dict(self):
  431. return self.opr_filter.as_dict()
  432. def _add_opr(self, opr) -> Optional[OpNode]:
  433. """
  434. Used for loading and building graph.
  435. """
  436. assert isinstance(opr, _imperative_rt.graph.OperatorNode)
  437. # TODO: use megbrain C++ RTTI to replace type string
  438. if opr.id not in self.all_oprs_map:
  439. opnode = str_to_mge_class(get_opr_type(opr)).load(opr)
  440. self.all_oprs_map[opr.id] = opnode
  441. for var in opr.inputs:
  442. varnode = self._get_var(var)
  443. opnode.add_inp_var(varnode)
  444. varnode.users.append(opnode)
  445. for var in opr.outputs:
  446. opnode.add_out_var(self._get_var(var))
  447. return opnode
  448. else:
  449. # overwrite the opnode 'new' output VarNode with
  450. # original one when output number larger than 1,
  451. # or will cause dependence issue in _compiler step.
  452. if len(opr.outputs) > 1:
  453. opnode = self.all_oprs_map[opr.id]
  454. for idx, output in enumerate(opnode.outputs):
  455. if output.var.id in self.all_vars_map:
  456. opnode.outputs[idx] = self.all_vars_map[output.var.id]
  457. return None
  458. def _get_opr(self, x):
  459. if x.id in self.all_oprs_map:
  460. return self.all_oprs_map[x.id]
  461. else:
  462. return None
  463. def _get_var(self, x):
  464. """
  465. Convert :class:`~._imperative_rt.graph.VarNode` to :class:`~.VarNode`.
  466. """
  467. assert isinstance(x, _imperative_rt.graph.VarNode)
  468. if x.id not in self.all_vars_map or self.all_vars_map[x.id].var != x:
  469. self.all_vars_map[x.id] = VarNode.load(x, self._get_opr(x.owner))
  470. return self.all_vars_map[x.id]
  471. def set_symbolic_shape(option: bool):
  472. """
  473. Set the VarNode use symbolic shape or not, return the last status.
  474. Please set to True and must recover after dump if want to change the input batch size.
  475. :param option: True for enable symbolic shape.
  476. """
  477. return _set_symbolic_shape(option)
  478. def as_varnode(obj):
  479. """convert a :class:`.VarNode` compatible object to :class:`.VarNode`.
  480. :param obj: it must be one of the following:
  481. 1. a :class:`.VarNode` object
  482. 2. a :class:`.OpNode` object that has unique output
  483. 3. an iterable that produces either type 1 or 2, with length 1
  484. :rtype: :class:`.VarNode`
  485. """
  486. if type(obj) is VarNode:
  487. return obj
  488. if isinstance(obj, OpNode):
  489. assert len(obj.outputs) == 1, (
  490. "operator {} must have one output to be converted to VarNode; "
  491. "got {} actually".format(obj, len(obj.outputs))
  492. )
  493. ret = obj.outputs[0]
  494. assert type(ret) is VarNode
  495. return ret
  496. assert isinstance(
  497. obj, collections.Iterable
  498. ), "{} is not compatible with VarNode".format(obj)
  499. val = list(obj)
  500. assert (
  501. len(val) == 1
  502. ), "can not convert sequence of length {} to VarNode ({})".format(
  503. len(val), (lambda s: s if len(s) < 50 else s[:50] + " ...")(str(val))
  504. )
  505. return as_varnode(val[0])
  506. def as_oprnode(obj):
  507. """convert a :class:`.OpNode` compatible object to
  508. :class:`.OpNode`; it works like :func:`as_varnode`."""
  509. if type(obj) is VarNode:
  510. return obj.owner
  511. if isinstance(obj, OpNode):
  512. return obj
  513. assert isinstance(
  514. obj, collections.Iterable
  515. ), "{} is not compatible with OpNode".format(obj)
  516. val = list(obj)
  517. assert (
  518. len(val) == 1
  519. ), "can not convert sequence of length {} to " "OpNode({})".format(len(val), val)
  520. return as_oprnode(val[0])
  521. class NodeFilter:
  522. """Filter on node iterator. This class is an iterator of
  523. :class:`.NetworkNode` objects and multiple filtering conditions and
  524. mappers can be chained.
  525. Example::
  526. # find all :class:`.ImmutableTensor` nodes
  527. for i in NodeFilter(node_iter).param_provider():
  528. print(i)
  529. # find all :class:`.ImmutableTensor` nodes that end with ':W'
  530. for i in NodeFilter(node_iter).param_provider().name('*:W'):
  531. print(i)
  532. # number of inputs
  533. nr_input = NodeFilter(node_iter).data_provider().as_count()
  534. """
  535. _iter = None
  536. def __init__(self, node_iter):
  537. """
  538. :param node_iter: iterator to :class:`.NetworkNode`, or a
  539. :class:`.VarNode`-compatible object; in the later case, its
  540. dependent oprs would be used
  541. """
  542. if isinstance(node_iter, VarNode):
  543. oprs = get_oprs_seq(node_iter, False, False)
  544. node_iter = itertools.islice(oprs, len(oprs) - 1)
  545. if isinstance(node_iter, OpNode):
  546. oprs = get_oprs_seq(node_iter.inputs, False, False)
  547. node_iter = itertools.islice(oprs, len(oprs) - 1)
  548. assert isinstance(node_iter, collections.Iterable)
  549. if (not isinstance(node_iter, NodeFilter)) and type(
  550. self
  551. ) is not NodeFilterCheckType:
  552. node_iter = NodeFilterCheckType(node_iter, NetworkNode)
  553. self._iter = node_iter
  554. @classmethod
  555. def make_all_deps(cls, *dest_vars):
  556. """make a :class:`NodeFilter` that contains all deps of given vars"""
  557. return cls(list(get_oprs_seq(dest_vars, False, False)))
  558. def __iter__(self):
  559. """to be overwritten by subclass to implement filters"""
  560. return iter(self._iter)
  561. def type(self, node_type):
  562. """filter by specific node type
  563. :param node_type: node type class
  564. :return: a new :class:`NodeFilter` object
  565. """
  566. return NodeFilterType(self, node_type)
  567. def check_type(self, node_type):
  568. """assert that all oprs produced by this iterator are instances of
  569. certain type
  570. :param node_type: node type class
  571. :return: a new :class:`NodeFilter` object
  572. :raises TypeError: if type check failed
  573. """
  574. return NodeFilterCheckType(self, node_type)
  575. def not_type(self, node_type):
  576. """remove oprs of specific type
  577. :param node_type: node type class
  578. :return: a new :class:`NodeFilter` object
  579. """
  580. return NodeFilterNotType(self, node_type)
  581. def param_provider(self):
  582. """get :class:`.ParamProvider` oprs; shorthand for
  583. ``.type(ParamProvider)``"""
  584. return self.type(ImmutableTensor)
  585. def data_provider(self):
  586. """get :class:`.DataProvider` oprs; shorthand for
  587. ``.type(DataProvider)``"""
  588. return self.type(Host2DeviceCopy)
  589. def name(self, pattern, ignorecase=True):
  590. """filter by node name
  591. :param pattern: a string in glob syntax that can contain ``?`` and
  592. ``*`` to match a single or arbitrary characters.
  593. :type pattern: :class:`str`
  594. :param ignorecase: whether to ignroe case
  595. :type ignorecase: bool
  596. :return: a new :class:`NodeFilter` object
  597. """
  598. return NodeFilterName(self, pattern, ignorecase)
  599. def has_input(self, var):
  600. """an opr is kept if it has given var as one of its inputs
  601. :param var: var node to checked
  602. :return: a new :class:`NodeFilter` object
  603. """
  604. return NodeFilterHasInput(self, var)
  605. def as_list(self):
  606. """consume this iterator and return its content as a list
  607. :rtype: [:class:`.GraphNodeBase`]
  608. """
  609. return list(self)
  610. def as_unique(self):
  611. """assert that this iterator yields only one node and return it
  612. :return: the unique node
  613. :rtype: :class:`.GraphNodeBase`
  614. :raises ValueError: if this iterator does not yield a unique node
  615. """
  616. (opr,) = self
  617. return opr
  618. def as_dict(self):
  619. """construct an ordered dict to map from node names to objects in
  620. this iterator
  621. :rtype: :class:`OrderedDict`
  622. """
  623. return collections.OrderedDict((i.name, i) for i in self)
  624. def as_count(self):
  625. """consume this iterator and get the number of elements
  626. :rtype: int
  627. """
  628. return sum(1 for _ in self)
  629. class NodeFilterType(NodeFilter):
  630. """see :meth:`NodeFilter.type`"""
  631. _node_type = None
  632. def __init__(self, node_iter, node_type):
  633. assert issubclass(node_type, NetworkNode), "bad opr type: {}".format(node_type)
  634. super().__init__(node_iter)
  635. self._node_type = node_type
  636. def __iter__(self):
  637. for i in self._iter:
  638. if isinstance(i, self._node_type):
  639. yield i
  640. class NodeFilterNotType(NodeFilterType):
  641. """see :meth:`NodeFilter.not_type`"""
  642. def __iter__(self):
  643. for i in self._iter:
  644. if not isinstance(i, self._node_type):
  645. yield i
  646. class NodeFilterCheckType(NodeFilterType):
  647. """see :meth:`NodeFilter.check_type`"""
  648. def __iter__(self):
  649. for i in self._iter:
  650. if not isinstance(i, self._node_type):
  651. raise TypeError(
  652. "all nodes should be {}; got {!r}".format(self._node_type, i)
  653. )
  654. yield i
  655. class NodeFilterHasInput(NodeFilter):
  656. """see :meth:`NodeFilter.has_input`"""
  657. _var = None
  658. def __init__(self, node_iter, var):
  659. var = as_varnode(var)
  660. super().__init__(node_iter)
  661. self.var = var
  662. def __iter__(self):
  663. for i in self._iter:
  664. assert isinstance(
  665. i, OpNode
  666. ), "has_input() must be used with OpNode; " "got {!r}".format(i)
  667. if any(self.var is _ for _ in i.inputs):
  668. yield i
  669. class NodeFilterName(NodeFilter):
  670. """see :meth:`NodeFilter.name`"""
  671. _re = None
  672. def __init__(self, node_iter, pattern, ignorecase):
  673. super().__init__(node_iter)
  674. self.pattern = pattern
  675. self._re = self.make_re(pattern, ignorecase)
  676. @classmethod
  677. def make_re(cls, pattern, ignorecase=True):
  678. assert isinstance(pattern, str), "bad pattern: {!r}".format(pattern)
  679. assert isinstance(ignorecase, bool)
  680. flags = 0
  681. if ignorecase:
  682. flags |= re.IGNORECASE
  683. return re.compile(fnmatch.translate(pattern), flags=flags)
  684. def __iter__(self):
  685. for i in self._iter:
  686. if self.pattern == i.name or self._re.match(i.name):
  687. yield i

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台