You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cond_take.cpp 3.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120
  1. /**
  2. * \file imperative/src/impl/ops/cond_take.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "megbrain/imperative/ops/cond_take.h"
  12. #include "megbrain/imperative/ops/opr_attr.h"
  13. #include "megbrain/opr/misc.h"
  14. #include "../dnn_op_helper.h"
  15. #include "../op_trait.h"
  16. using namespace megdnn;
  17. namespace mgb::imperative {
  18. MGB_DYN_TYPE_OBJ_FINAL_IMPL(CondTake);
  19. namespace {
  20. class MegDNNDynOutMallocImpl final: public megdnn::DynOutMallocPolicy {
  21. using Output = std::array<TensorPtr, 2>;
  22. CompNode m_cn;
  23. Output m_out;
  24. public:
  25. MegDNNDynOutMallocImpl(CompNode cn): m_cn{cn} {}
  26. megdnn::TensorND alloc_output(
  27. size_t id, DType dtype, const TensorShape &shape,
  28. void *user_data) override;
  29. void* alloc_workspace(size_t sz, void *user_data) override;
  30. void free_workspace(void *ptr, void *user_data) override;
  31. TensorPtr at(size_t id);
  32. };
  33. megdnn::TensorND MegDNNDynOutMallocImpl::alloc_output(
  34. size_t id, DType dtype, const TensorShape &shape,
  35. void * /*user_data*/) {
  36. TensorLayout m_layout(shape, dtype);
  37. m_out[id] = Tensor::make(m_layout, m_cn);
  38. return m_out[id]->dev_tensor().as_megdnn();
  39. }
  40. void* MegDNNDynOutMallocImpl::alloc_workspace(size_t sz, void * /*user_data*/) {
  41. return m_cn.alloc_device(sz);
  42. }
  43. void MegDNNDynOutMallocImpl::free_workspace(void *ptr, void * /*user_data*/) {
  44. m_cn.free_device(ptr);
  45. }
  46. TensorPtr MegDNNDynOutMallocImpl::at(size_t id) {
  47. return m_out[id];
  48. }
  49. cg::OperatorNodeBase* apply_on_var_node(
  50. const OpDef& def,
  51. const VarNodeArray& inputs) {
  52. def.cast_final_safe<CondTake>();
  53. auto&& graph = inputs[0]->owner_graph();
  54. opr::CondTake::Param param;
  55. param.val = 1;
  56. cg::OperatorNodeConfig config;
  57. cg::OperatorNodeBase* opr = graph->insert_opr(
  58. std::make_unique<opr::CondTake>(
  59. inputs[0], inputs[1], param, config));
  60. return opr;
  61. }
  62. SmallVector<TensorPtr> apply_on_physical_tensor(
  63. const OpDef& def,
  64. const SmallVector<TensorPtr>& inputs) {
  65. auto opr = def.cast_final_safe<CondTake>();
  66. mgb_assert(opr.same_type<CondTake>());
  67. mgb_assert(inputs.size() == 2, "CondTake take 2 inputs, got %lu",
  68. inputs.size());
  69. auto&& inp = inputs[0];
  70. auto&& msk = inputs[1];
  71. mgb_assert(inp->layout().eq_shape(msk->layout()),
  72. "input shape does not match mask shape");
  73. mgb_assert(msk->get_value().dtype().enumv() == DTypeEnum::Bool,
  74. "mask dtype must be bool");
  75. DnnOprCaller<megdnn::CondTake> dnn_op(inp->comp_node());
  76. dnn_op.op->param().val = 1;
  77. TensorLayout m_layout({dnn_op.op->get_workspace_in_bytes(inp->layout())},
  78. dtype::Byte());
  79. auto dnn_workspace = dnn_op.create_workspace(m_layout);
  80. MegDNNDynOutMallocImpl policy{inp->comp_node()};
  81. dnn_op.op->exec(inp->dev_tensor().as_megdnn(),
  82. msk->dev_tensor().as_megdnn(),
  83. dnn_workspace,
  84. &policy);
  85. SmallVector<TensorPtr> out;
  86. out.push_back(policy.at(0));
  87. out.push_back(policy.at(1));
  88. return out;
  89. }
  90. OP_TRAIT_REG(CondTake, CondTake, opr::CondTake)
  91. .apply_on_var_node(apply_on_var_node)
  92. .apply_on_physical_tensor(apply_on_physical_tensor)
  93. .fallback();
  94. } // namespace
  95. } // namespace mgb::imperative

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台