You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

external.py 1.6 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. # pylint: disable=redefined-builtin
  10. from typing import Sequence
  11. from ..core._imperative_rt.core2 import apply
  12. from ..core.ops import builtin
  13. def tensorrt_runtime_opr(inputs, *, data: bytes = None):
  14. # empty model will give None result
  15. if data is None:
  16. return None
  17. op = builtin.TensorRTRuntime(data, len(data))
  18. # return sequence of outputs
  19. return apply(op, *inputs)
  20. def cambricon_runtime_opr(inputs, data, symbol, tensor_dim_mutable):
  21. r"""
  22. Load a serialized Cambricon model as a runtime operator in MegEngine.
  23. :param inputs: list of input tensors.
  24. :param data: the serialized Cambricon model.
  25. :param symbol: name of the function in Cambricon model.
  26. :param tensor_dim_mutable: whether the input tensors' shapes are mutable
  27. in ``cnrtModel_t``.
  28. """
  29. op = builtin.CambriconRuntime(data, len(data), symbol, tensor_dim_mutable)
  30. return apply(op, *inputs)
  31. def atlas_runtime_opr(inputs, data):
  32. r"""
  33. Load a serialized Atlas model as a runtime operator in MegEngine.
  34. :param inputs: list of input tensors.
  35. :param data: the serialized Atlas model.
  36. """
  37. op = builtin.AtlasRuntime(data, len(data))
  38. return apply(op, *inputs)

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台