You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_dataloader.py 5.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import os
  10. import time
  11. import numpy as np
  12. import pytest
  13. from megengine.data.collator import Collator
  14. from megengine.data.dataloader import DataLoader
  15. from megengine.data.dataset import ArrayDataset
  16. from megengine.data.sampler import RandomSampler, SequentialSampler
  17. from megengine.data.transform import PseudoTransform, Transform
  18. def init_dataset():
  19. sample_num = 100
  20. rand_data = np.random.randint(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8)
  21. label = np.random.randint(0, 10, size=(sample_num,), dtype=int)
  22. dataset = ArrayDataset(rand_data, label)
  23. return dataset
  24. def test_dataloader_init():
  25. dataset = init_dataset()
  26. with pytest.raises(ValueError):
  27. dataloader = DataLoader(dataset, num_workers=2, divide=True)
  28. with pytest.raises(ValueError):
  29. dataloader = DataLoader(dataset, num_workers=-1)
  30. with pytest.raises(ValueError):
  31. dataloader = DataLoader(dataset, timeout=-1)
  32. with pytest.raises(ValueError):
  33. dataloader = DataLoader(dataset, num_workers=0, divide=True)
  34. dataloader = DataLoader(dataset)
  35. assert isinstance(dataloader.sampler, SequentialSampler)
  36. assert isinstance(dataloader.transform, PseudoTransform)
  37. assert isinstance(dataloader.collator, Collator)
  38. dataloader = DataLoader(
  39. dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=False)
  40. )
  41. assert len(dataloader) == 17
  42. dataloader = DataLoader(
  43. dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=True)
  44. )
  45. assert len(dataloader) == 16
  46. def test_dataloader_serial():
  47. dataset = init_dataset()
  48. dataloader = DataLoader(
  49. dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False)
  50. )
  51. for (data, label) in dataloader:
  52. assert data.shape == (4, 1, 32, 32)
  53. assert label.shape == (4,)
  54. def test_dataloader_parallel():
  55. # set max shared memory to 100M
  56. os.environ["MGE_PLASMA_MEMORY"] = "100000000"
  57. dataset = init_dataset()
  58. dataloader = DataLoader(
  59. dataset,
  60. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  61. num_workers=2,
  62. divide=False,
  63. )
  64. for (data, label) in dataloader:
  65. assert data.shape == (4, 1, 32, 32)
  66. assert label.shape == (4,)
  67. dataloader = DataLoader(
  68. dataset,
  69. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  70. num_workers=2,
  71. divide=True,
  72. )
  73. for (data, label) in dataloader:
  74. assert data.shape == (4, 1, 32, 32)
  75. assert label.shape == (4,)
  76. def test_dataloader_parallel_timeout():
  77. dataset = init_dataset()
  78. class TimeoutTransform(Transform):
  79. def __init__(self):
  80. pass
  81. def apply(self, input):
  82. time.sleep(10)
  83. return input
  84. dataloader = DataLoader(
  85. dataset,
  86. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  87. transform=TimeoutTransform(),
  88. num_workers=2,
  89. timeout=2,
  90. )
  91. with pytest.raises(RuntimeError, match=r".*timeout.*"):
  92. data_iter = iter(dataloader)
  93. batch_data = next(data_iter)
  94. def test_dataloader_parallel_worker_exception():
  95. dataset = init_dataset()
  96. class FakeErrorTransform(Transform):
  97. def __init__(self):
  98. pass
  99. def apply(self, input):
  100. y = x + 1
  101. return input
  102. dataloader = DataLoader(
  103. dataset,
  104. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  105. transform=FakeErrorTransform(),
  106. num_workers=2,
  107. )
  108. with pytest.raises(RuntimeError, match=r"worker.*died"):
  109. data_iter = iter(dataloader)
  110. batch_data = next(data_iter)
  111. def _multi_instances_parallel_dataloader_worker():
  112. dataset = init_dataset()
  113. for divide_flag in [True, False]:
  114. train_dataloader = DataLoader(
  115. dataset,
  116. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  117. num_workers=2,
  118. divide=divide_flag,
  119. )
  120. val_dataloader = DataLoader(
  121. dataset,
  122. sampler=RandomSampler(dataset, batch_size=10, drop_last=False),
  123. num_workers=2,
  124. divide=divide_flag,
  125. )
  126. for idx, (data, label) in enumerate(train_dataloader):
  127. assert data.shape == (4, 1, 32, 32)
  128. assert label.shape == (4,)
  129. if idx % 5 == 0:
  130. for val_data, val_label in val_dataloader:
  131. assert val_data.shape == (10, 1, 32, 32)
  132. assert val_label.shape == (10,)
  133. def test_dataloader_parallel_multi_instances():
  134. # set max shared memory to 100M
  135. os.environ["MGE_PLASMA_MEMORY"] = "100000000"
  136. _multi_instances_parallel_dataloader_worker()
  137. def test_dataloader_parallel_multi_instances_multiprocessing():
  138. # set max shared memory to 100M
  139. os.environ["MGE_PLASMA_MEMORY"] = "100000000"
  140. import multiprocessing as mp
  141. # mp.set_start_method("spawn")
  142. processes = []
  143. for i in range(4):
  144. p = mp.Process(target=_multi_instances_parallel_dataloader_worker)
  145. p.start()
  146. processes.append(p)
  147. for p in processes:
  148. p.join()

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台