- # -*- coding: utf-8 -*-
- from abc import abstractmethod
- from typing import Tuple, Union
-
- from ..functional import adaptive_avg_pool2d, adaptive_max_pool2d
- from ..tensor import Parameter, Tensor
- from .module import Module
-
-
- class _AdaptivePoolNd(Module):
- def __init__(self, oshp: Union[Tuple[int, int], int, Tensor], **kwargs):
- super(_AdaptivePoolNd, self).__init__(**kwargs)
- self.oshp = oshp
-
- @abstractmethod
- def forward(self, inp):
- pass
-
-
- class AdaptiveMaxPool2d(_AdaptivePoolNd):
- r"""Applies a 2D max adaptive pooling over an input.
-
- For instance, given an input of the size :math:`(N, C, H, W)` and
- an output shape :math:`(OH, OW)`, this layer generates the output of
- the size :math:`(N, C, OH, OW)` through a process described as:
-
- .. math::
- \begin{aligned}
- out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1}
- \text{input}(N_i, C_j, \text{stride[0]} \times h + m,
- \text{stride[1]} \times w + n)
- \end{aligned}
-
- ``kernel_size`` and ``stride`` can be inferred from input shape and out shape:
-
- * padding: (0, 0)
- * stride: (floor(IH / OH), floor(IW / OW))
- * kernel_size: (IH - (OH - 1) * stride_h, IW - (OW - 1) * stride_w)
-
- Examples:
- >>> import numpy as np
- >>> m = M.AdaptiveMaxPool2d((2, 2))
- >>> inp = mge.tensor(np.arange(0, 16).astype("float32").reshape(1, 1, 4, 4))
- >>> oup = m(inp)
- >>> oup.numpy()
- array([[[[ 5., 7.],
- [13., 15.]]]], dtype=float32)
- """
-
- def forward(self, inp):
- return adaptive_max_pool2d(inp, self.oshp)
-
-
- class AdaptiveAvgPool2d(_AdaptivePoolNd):
- r"""Applies a 2D average pooling over an input.
-
- For instance, given an input of the size :math:`(N, C, H, W)` and
- an output shape :math:`(OH, OW)`, this layer generates the output of
- the size :math:`(N, C, OH, OW)` through a process described as:
-
- .. math::
-
- out(N_i, C_j, h, w) = \frac{1}{kH * kW} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1}
- input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)
-
- ``kernel_size`` and ``stride`` can be inferred from input shape and out shape:
-
- * padding: (0, 0)
- * stride: (floor(IH / OH), floor(IW / OW))
- * kernel_size: (IH - (OH - 1) * stride_h, IW - (OW - 1) * stride_w)
-
- Examples:
- >>> import numpy as np
- >>> m = M.AdaptiveAvgPool2d((2, 2))
- >>> inp = mge.tensor(np.arange(0, 16).astype("float32").reshape(1, 1, 4, 4))
- >>> oup = m(inp)
- >>> oup.numpy()
- array([[[[ 2.5, 4.5],
- [10.5, 12.5]]]], dtype=float32)
- """
-
- def forward(self, inp):
- return adaptive_avg_pool2d(inp, self.oshp)
|