You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_dataloader.py 8.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278
  1. # -*- coding: utf-8 -*-
  2. import os
  3. import platform
  4. import time
  5. import numpy as np
  6. import pytest
  7. from megengine.data.collator import Collator
  8. from megengine.data.dataloader import DataLoader
  9. from megengine.data.dataset import ArrayDataset, StreamDataset
  10. from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler
  11. from megengine.data.transform import (
  12. Compose,
  13. Normalize,
  14. PseudoTransform,
  15. ToMode,
  16. Transform,
  17. )
  18. def init_dataset():
  19. sample_num = 100
  20. rand_data = np.random.randint(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8)
  21. label = np.random.randint(0, 10, size=(sample_num,), dtype=int)
  22. dataset = ArrayDataset(rand_data, label)
  23. return dataset
  24. def test_dataloader_init():
  25. dataset = init_dataset()
  26. with pytest.raises(ValueError):
  27. dataloader = DataLoader(dataset, num_workers=2, divide=True)
  28. with pytest.raises(ValueError):
  29. dataloader = DataLoader(dataset, num_workers=-1)
  30. with pytest.raises(ValueError):
  31. dataloader = DataLoader(dataset, timeout=-1)
  32. with pytest.raises(ValueError):
  33. dataloader = DataLoader(dataset, num_workers=0, divide=True)
  34. dataloader = DataLoader(dataset)
  35. assert isinstance(dataloader.sampler, SequentialSampler)
  36. assert isinstance(dataloader.transform, PseudoTransform)
  37. assert isinstance(dataloader.collator, Collator)
  38. dataloader = DataLoader(
  39. dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=False)
  40. )
  41. assert len(dataloader) == 17
  42. dataloader = DataLoader(
  43. dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=True)
  44. )
  45. assert len(dataloader) == 16
  46. class MyStream(StreamDataset):
  47. def __init__(self, number, batch=False, error_foramt=False, block=False):
  48. self.number = number
  49. self.batch = batch
  50. self.error_format = error_foramt
  51. self.block = block
  52. def __iter__(self):
  53. for cnt in range(self.number):
  54. if self.block:
  55. for _ in range(10):
  56. time.sleep(1)
  57. if self.batch:
  58. data = np.random.randint(0, 256, (2, 2, 2, 3), dtype="uint8")
  59. yield (True, (data, [cnt, cnt - self.number]))
  60. else:
  61. data = np.random.randint(0, 256, (2, 2, 3), dtype="uint8")
  62. if self.error_format:
  63. yield (data, cnt)
  64. else:
  65. yield (False, (data, cnt))
  66. raise StopIteration
  67. @pytest.mark.parametrize("batch", [True, False])
  68. @pytest.mark.parametrize("num_workers", [0, 2])
  69. def test_stream_dataloader(batch, num_workers):
  70. dataset = MyStream(100, batch=batch)
  71. sampler = StreamSampler(batch_size=4)
  72. dataloader = DataLoader(
  73. dataset,
  74. sampler,
  75. Compose([Normalize(mean=(103, 116, 123), std=(57, 57, 58)), ToMode("CHW")]),
  76. num_workers=num_workers,
  77. )
  78. check_set = set()
  79. for step, data in enumerate(dataloader):
  80. if step == 10:
  81. break
  82. assert data[0].shape == (4, 3, 2, 2)
  83. assert data[1].shape == (4,)
  84. for i in data[1]:
  85. assert i not in check_set
  86. check_set.add(i)
  87. def test_stream_dataloader_error():
  88. dataset = MyStream(100, error_foramt=True)
  89. sampler = StreamSampler(batch_size=4)
  90. dataloader = DataLoader(dataset, sampler)
  91. with pytest.raises(AssertionError, match=r".*tuple.*"):
  92. data_iter = iter(dataloader)
  93. next(data_iter)
  94. @pytest.mark.parametrize("num_workers", [0, 2])
  95. def test_stream_dataloader_timeout(num_workers):
  96. dataset = MyStream(100, False, block=True)
  97. sampler = StreamSampler(batch_size=4)
  98. dataloader = DataLoader(dataset, sampler, num_workers=num_workers, timeout=2)
  99. with pytest.raises(RuntimeError, match=r".*timeout.*"):
  100. data_iter = iter(dataloader)
  101. next(data_iter)
  102. def test_dataloader_serial():
  103. dataset = init_dataset()
  104. dataloader = DataLoader(
  105. dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False)
  106. )
  107. for (data, label) in dataloader:
  108. assert data.shape == (4, 1, 32, 32)
  109. assert label.shape == (4,)
  110. def test_dataloader_parallel():
  111. # set max shared memory to 100M
  112. os.environ["MGE_PLASMA_MEMORY"] = "100000000"
  113. dataset = init_dataset()
  114. dataloader = DataLoader(
  115. dataset,
  116. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  117. num_workers=2,
  118. divide=False,
  119. )
  120. for (data, label) in dataloader:
  121. assert data.shape == (4, 1, 32, 32)
  122. assert label.shape == (4,)
  123. dataloader = DataLoader(
  124. dataset,
  125. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  126. num_workers=2,
  127. divide=True,
  128. )
  129. for (data, label) in dataloader:
  130. assert data.shape == (4, 1, 32, 32)
  131. assert label.shape == (4,)
  132. @pytest.mark.skipif(
  133. platform.system() == "Windows",
  134. reason="dataloader do not support parallel on windows",
  135. )
  136. def test_dataloader_parallel_timeout():
  137. dataset = init_dataset()
  138. class TimeoutTransform(Transform):
  139. def __init__(self):
  140. pass
  141. def apply(self, input):
  142. time.sleep(10)
  143. return input
  144. dataloader = DataLoader(
  145. dataset,
  146. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  147. transform=TimeoutTransform(),
  148. num_workers=2,
  149. timeout=2,
  150. )
  151. with pytest.raises(RuntimeError, match=r".*timeout.*"):
  152. data_iter = iter(dataloader)
  153. batch_data = next(data_iter)
  154. @pytest.mark.skipif(
  155. platform.system() == "Windows",
  156. reason="dataloader do not support parallel on windows",
  157. )
  158. def test_dataloader_parallel_worker_exception():
  159. dataset = init_dataset()
  160. class FakeErrorTransform(Transform):
  161. def __init__(self):
  162. pass
  163. def apply(self, input):
  164. raise RuntimeError("test raise error")
  165. return input
  166. dataloader = DataLoader(
  167. dataset,
  168. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  169. transform=FakeErrorTransform(),
  170. num_workers=2,
  171. )
  172. with pytest.raises(RuntimeError, match=r"worker.*died"):
  173. data_iter = iter(dataloader)
  174. batch_data = next(data_iter)
  175. def _multi_instances_parallel_dataloader_worker():
  176. dataset = init_dataset()
  177. for divide_flag in [True, False]:
  178. train_dataloader = DataLoader(
  179. dataset,
  180. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  181. num_workers=2,
  182. divide=divide_flag,
  183. )
  184. val_dataloader = DataLoader(
  185. dataset,
  186. sampler=RandomSampler(dataset, batch_size=10, drop_last=False),
  187. num_workers=2,
  188. divide=divide_flag,
  189. )
  190. for idx, (data, label) in enumerate(train_dataloader):
  191. assert data.shape == (4, 1, 32, 32)
  192. assert label.shape == (4,)
  193. if idx % 5 == 0:
  194. for val_data, val_label in val_dataloader:
  195. assert val_data.shape == (10, 1, 32, 32)
  196. assert val_label.shape == (10,)
  197. def test_dataloader_parallel_multi_instances():
  198. # set max shared memory to 100M
  199. os.environ["MGE_PLASMA_MEMORY"] = "100000000"
  200. _multi_instances_parallel_dataloader_worker()
  201. @pytest.mark.isolated_distributed
  202. def test_dataloader_parallel_multi_instances_multiprocessing():
  203. # set max shared memory to 100M
  204. os.environ["MGE_PLASMA_MEMORY"] = "100000000"
  205. import multiprocessing as mp
  206. # mp.set_start_method("spawn")
  207. processes = []
  208. for i in range(4):
  209. p = mp.Process(target=_multi_instances_parallel_dataloader_worker)
  210. p.start()
  211. processes.append(p)
  212. for p in processes:
  213. p.join()
  214. assert p.exitcode == 0
  215. @pytest.mark.parametrize("num_workers", [0, 2])
  216. def test_timeout_event(num_workers):
  217. def cb():
  218. return (True, (np.zeros(shape=(2, 2, 2, 3)), np.ones(shape=(2,))))
  219. dataset = MyStream(100, block=True)
  220. sampler = StreamSampler(batch_size=4)
  221. dataloader = DataLoader(
  222. dataset, sampler, num_workers=num_workers, timeout=2, timeout_event=cb
  223. )
  224. for _, data in enumerate(dataloader):
  225. np.testing.assert_equal(data[0], np.zeros(shape=(4, 2, 2, 3)))
  226. np.testing.assert_equal(data[1], np.ones(shape=(4,)))
  227. break