You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_pre_dataloader.py 9.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import gc
  10. import os
  11. import platform
  12. import time
  13. import numpy as np
  14. import pytest
  15. from megengine.data.collator import Collator
  16. from megengine.data.dataloader import DataLoader
  17. from megengine.data.dataset import ArrayDataset, StreamDataset
  18. from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler
  19. from megengine.data.transform import (
  20. Compose,
  21. Normalize,
  22. PseudoTransform,
  23. ToMode,
  24. Transform,
  25. )
  26. def init_dataset():
  27. sample_num = 100
  28. rand_data = np.random.randint(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8)
  29. label = np.random.randint(0, 10, size=(sample_num,), dtype=int)
  30. dataset = ArrayDataset(rand_data, label)
  31. return dataset
  32. def test_dataloader_init():
  33. dataset = init_dataset()
  34. with pytest.raises(ValueError):
  35. dataloader = DataLoader(dataset, num_workers=2, divide=True)
  36. with pytest.raises(ValueError):
  37. dataloader = DataLoader(dataset, num_workers=-1)
  38. with pytest.raises(ValueError):
  39. dataloader = DataLoader(dataset, timeout=-1)
  40. with pytest.raises(ValueError):
  41. dataloader = DataLoader(dataset, num_workers=0, divide=True)
  42. dataloader = DataLoader(dataset, preload=True)
  43. assert isinstance(dataloader.sampler, SequentialSampler)
  44. assert isinstance(dataloader.transform, PseudoTransform)
  45. assert isinstance(dataloader.collator, Collator)
  46. dataloader = DataLoader(
  47. dataset,
  48. sampler=RandomSampler(dataset, batch_size=6, drop_last=False),
  49. preload=True,
  50. )
  51. assert len(dataloader) == 17
  52. dataloader = DataLoader(
  53. dataset,
  54. sampler=RandomSampler(dataset, batch_size=6, drop_last=True),
  55. preload=True,
  56. )
  57. assert len(dataloader) == 16
  58. class MyStream(StreamDataset):
  59. def __init__(self, number, batch=False, error_foramt=False, block=False):
  60. self.number = number
  61. self.batch = batch
  62. self.error_format = error_foramt
  63. self.block = block
  64. def __iter__(self):
  65. for cnt in range(self.number):
  66. if self.block:
  67. for _ in range(10):
  68. time.sleep(1)
  69. if self.batch:
  70. data = np.random.randint(0, 256, (2, 2, 2, 3), dtype="uint8")
  71. yield (True, (data, [cnt, cnt - self.number]))
  72. else:
  73. data = np.random.randint(0, 256, (2, 2, 3), dtype="uint8")
  74. if self.error_format:
  75. yield (data, cnt)
  76. else:
  77. yield (False, (data, cnt))
  78. raise StopIteration
  79. @pytest.mark.parametrize("batch", [True, False])
  80. @pytest.mark.parametrize("num_workers", [0, 2])
  81. def test_stream_dataloader(batch, num_workers):
  82. dataset = MyStream(100, batch=batch)
  83. sampler = StreamSampler(batch_size=4)
  84. dataloader = DataLoader(
  85. dataset,
  86. sampler,
  87. Compose([Normalize(mean=(103, 116, 123), std=(57, 57, 58)), ToMode("CHW")]),
  88. num_workers=num_workers,
  89. preload=True,
  90. )
  91. check_set = set()
  92. for step, data in enumerate(dataloader):
  93. if step == 10:
  94. break
  95. assert data[0]._tuple_shape == (4, 3, 2, 2)
  96. assert data[1]._tuple_shape == (4,)
  97. for i in data[1]:
  98. assert i not in check_set
  99. check_set.add(i)
  100. def test_stream_dataloader_error():
  101. dataset = MyStream(100, error_foramt=True)
  102. sampler = StreamSampler(batch_size=4)
  103. dataloader = DataLoader(dataset, sampler, preload=True)
  104. with pytest.raises(AssertionError, match=r".*tuple.*"):
  105. data_iter = iter(dataloader)
  106. next(data_iter)
  107. @pytest.mark.parametrize("num_workers", [0, 2])
  108. def test_stream_dataloader_timeout(num_workers):
  109. dataset = MyStream(100, False, block=True)
  110. sampler = StreamSampler(batch_size=4)
  111. dataloader = DataLoader(
  112. dataset, sampler, num_workers=num_workers, timeout=2, preload=True
  113. )
  114. with pytest.raises(RuntimeError, match=r".*timeout.*"):
  115. data_iter = iter(dataloader)
  116. next(data_iter)
  117. def test_dataloader_serial():
  118. dataset = init_dataset()
  119. dataloader = DataLoader(
  120. dataset,
  121. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  122. preload=True,
  123. )
  124. for (data, label) in dataloader:
  125. assert data._tuple_shape == (4, 1, 32, 32)
  126. assert label._tuple_shape == (4,)
  127. def test_dataloader_parallel():
  128. # set max shared memory to 100M
  129. os.environ["MGE_PLASMA_MEMORY"] = "100000000"
  130. dataset = init_dataset()
  131. dataloader = DataLoader(
  132. dataset,
  133. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  134. num_workers=2,
  135. divide=False,
  136. preload=True,
  137. )
  138. for (data, label) in dataloader:
  139. assert data._tuple_shape == (4, 1, 32, 32)
  140. assert label._tuple_shape == (4,)
  141. dataloader = DataLoader(
  142. dataset,
  143. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  144. num_workers=2,
  145. divide=True,
  146. preload=True,
  147. )
  148. for (data, label) in dataloader:
  149. assert data._tuple_shape == (4, 1, 32, 32)
  150. assert label._tuple_shape == (4,)
  151. @pytest.mark.skipif(
  152. platform.system() == "Windows",
  153. reason="dataloader do not support parallel on windows",
  154. )
  155. def test_dataloader_parallel_timeout():
  156. dataset = init_dataset()
  157. class TimeoutTransform(Transform):
  158. def __init__(self):
  159. pass
  160. def apply(self, input):
  161. time.sleep(10)
  162. return input
  163. dataloader = DataLoader(
  164. dataset,
  165. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  166. transform=TimeoutTransform(),
  167. num_workers=2,
  168. timeout=2,
  169. preload=True,
  170. )
  171. with pytest.raises(RuntimeError, match=r".*timeout.*"):
  172. data_iter = iter(dataloader)
  173. batch_data = next(data_iter)
  174. @pytest.mark.skipif(
  175. platform.system() == "Windows",
  176. reason="dataloader do not support parallel on windows",
  177. )
  178. def test_dataloader_parallel_worker_exception():
  179. print("in target")
  180. dataset = init_dataset()
  181. class FakeErrorTransform(Transform):
  182. def __init__(self):
  183. pass
  184. def apply(self, input):
  185. y = x + 1
  186. return input
  187. dataloader = DataLoader(
  188. dataset,
  189. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  190. transform=FakeErrorTransform(),
  191. num_workers=2,
  192. preload=True,
  193. )
  194. with pytest.raises(RuntimeError, match=r"worker.*died"):
  195. data_iter = iter(dataloader)
  196. batch_data = next(data_iter)
  197. def _multi_instances_parallel_dataloader_worker():
  198. dataset = init_dataset()
  199. for divide_flag in [True, False]:
  200. train_dataloader = DataLoader(
  201. dataset,
  202. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  203. num_workers=2,
  204. divide=divide_flag,
  205. preload=True,
  206. )
  207. val_dataloader = DataLoader(
  208. dataset,
  209. sampler=RandomSampler(dataset, batch_size=10, drop_last=False),
  210. num_workers=2,
  211. divide=divide_flag,
  212. preload=True,
  213. )
  214. for idx, (data, label) in enumerate(train_dataloader):
  215. assert data._tuple_shape == (4, 1, 32, 32)
  216. assert label._tuple_shape == (4,)
  217. if idx % 5 == 0:
  218. for val_data, val_label in val_dataloader:
  219. assert val_data._tuple_shape == (10, 1, 32, 32)
  220. assert val_label._tuple_shape == (10,)
  221. def test_dataloader_parallel_multi_instances():
  222. # set max shared memory to 100M
  223. os.environ["MGE_PLASMA_MEMORY"] = "100000000"
  224. _multi_instances_parallel_dataloader_worker()
  225. @pytest.mark.isolated_distributed
  226. def test_dataloader_parallel_multi_instances_multiprocessing():
  227. gc.collect()
  228. # set max shared memory to 100M
  229. os.environ["MGE_PLASMA_MEMORY"] = "100000000"
  230. import multiprocessing as mp
  231. # mp.set_start_method("spawn")
  232. processes = []
  233. for i in range(4):
  234. p = mp.Process(target=_multi_instances_parallel_dataloader_worker)
  235. p.start()
  236. processes.append(p)
  237. for p in processes:
  238. p.join()
  239. assert p.exitcode == 0
  240. @pytest.mark.parametrize("num_workers", [0, 2])
  241. def test_timeout_event(num_workers):
  242. def cb():
  243. return (True, (np.zeros(shape=(2, 2, 2, 3)), np.ones(shape=(2,))))
  244. dataset = MyStream(100, block=True)
  245. sampler = StreamSampler(batch_size=4)
  246. dataloader = DataLoader(
  247. dataset,
  248. sampler,
  249. num_workers=num_workers,
  250. timeout=2,
  251. timeout_event=cb,
  252. preload=True,
  253. )
  254. for _, data in enumerate(dataloader):
  255. np.testing.assert_equal(data[0], np.zeros(shape=(4, 2, 2, 3)))
  256. np.testing.assert_equal(data[1], np.ones(shape=(4,)))
  257. break

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台