You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_elemwise.py 9.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import numpy as np
  10. import pytest
  11. import megengine.functional as F
  12. import megengine.functional.elemwise as elemwise
  13. from megengine import tensor
  14. from megengine.core.tensor import dtype
  15. from megengine.functional.elemwise import Elemwise
  16. from megengine.jit import trace
  17. def test_abs():
  18. np.testing.assert_allclose(
  19. F.abs(tensor([-3.0, -4.0, -5.0])).numpy(),
  20. np.abs(np.array([-3.0, -4.0, -5.0], dtype=np.float32)),
  21. )
  22. np.testing.assert_allclose(F.abs(-3.0).numpy(), np.abs(np.float32(-3.0)))
  23. def test_elemwise_mode_string():
  24. for key, mode in vars(Elemwise.Mode).items():
  25. if isinstance(mode, Elemwise.Mode):
  26. assert key == mode
  27. assert Elemwise(mode=key) == Elemwise(mode=mode)
  28. def test_multiply():
  29. np.testing.assert_allclose(
  30. F.mul(-3.0, -4.0).numpy(), np.multiply(np.float32(-3.0), np.float32(-4.0))
  31. )
  32. np.testing.assert_allclose(
  33. F.mul(tensor([3.0, 4.0]), 4.0).numpy(),
  34. np.multiply(np.array([3.0, 4.0], dtype=np.float32), 4.0),
  35. )
  36. np.testing.assert_allclose(
  37. F.mul(4.0, tensor([3.0, 4.0])).numpy(),
  38. np.multiply(4.0, np.array([3.0, 4.0], dtype=np.float32)),
  39. )
  40. np.testing.assert_allclose(
  41. F.mul(tensor([3.0, 4.0]), tensor([3.0, 4.0])).numpy(),
  42. np.multiply(
  43. np.array([3.0, 4.0], dtype=np.float32),
  44. np.array([3.0, 4.0], dtype=np.float32),
  45. ),
  46. )
  47. def test_div():
  48. np.testing.assert_allclose(
  49. F.div(tensor([3.0, 4.0]), 2).numpy(),
  50. np.divide(np.array([3, 4], dtype=np.float32), 2),
  51. )
  52. np.testing.assert_allclose(
  53. (tensor([3, 4]) / 2).numpy(), np.divide(np.array([3, 4], dtype=np.float32), 2),
  54. )
  55. np.testing.assert_allclose(
  56. F.floor_div(tensor([-5.0, -7.0]), 2).numpy(),
  57. np.floor_divide(np.array([-5.0, -7.0], dtype=np.float32), 2),
  58. )
  59. np.testing.assert_allclose(
  60. (tensor([-5, -7]) // 2).numpy(),
  61. np.floor_divide(np.array([-5, -7], dtype=np.int32), 2),
  62. )
  63. def test_clamp():
  64. """Fix an issue when `lower` or `upper` is 0, it will be recognized as `False` and
  65. `F.clip` will fall into wrong conditions unexpectedly.
  66. """
  67. x = np.linspace(-6, 6, dtype="float32")
  68. np.testing.assert_allclose(
  69. F.clip(tensor(x) + 3, 0, 6).numpy(), np.clip(x + 3, 0, 6)
  70. )
  71. np.testing.assert_allclose(
  72. F.clip(tensor(x) - 3, -6, 0).numpy(), np.clip(x - 3, -6, 0)
  73. )
  74. def test_isnan():
  75. for case in [[1, float("nan"), 0]]:
  76. np.testing.assert_allclose(F.isnan(tensor(case)).numpy(), np.isnan(case))
  77. def test_isinf():
  78. for case in [[1, float("inf"), 0]]:
  79. np.testing.assert_allclose(F.isinf(tensor(case)).numpy(), np.isinf(case))
  80. def test_sign():
  81. for case in [[1, -1, 0]]:
  82. x = tensor(case)
  83. np.testing.assert_allclose(F.sign(x).numpy(), np.sign(case).astype(x.dtype))
  84. def test_cosh():
  85. np.random.seed(42)
  86. x = np.random.randn(100).astype("float32")
  87. y_np = np.cosh(x)
  88. y_mge = F.cosh(tensor(x)).numpy()
  89. np.testing.assert_allclose(y_np, y_mge, rtol=1e-5)
  90. def test_sinh():
  91. np.random.seed(42)
  92. x = np.random.randn(100).astype("float32")
  93. y_np = np.sinh(x)
  94. y_mge = F.sinh(tensor(x)).numpy()
  95. np.testing.assert_allclose(y_np, y_mge, rtol=1e-5)
  96. def test_asinh():
  97. np.random.seed(42)
  98. x = np.random.randn(100).astype("float32")
  99. y_np = np.arcsinh(x)
  100. y_mge = F.asinh(tensor(x)).numpy()
  101. np.testing.assert_almost_equal(y_np, y_mge, decimal=5)
  102. def test_acosh():
  103. x = np.arange(0, 10000).astype("float32") / 100 + 1
  104. y_np = np.arccosh(x)
  105. y_mge = F.acosh(tensor(x)).numpy()
  106. np.testing.assert_almost_equal(y_np, y_mge, decimal=6)
  107. def test_atanh():
  108. np.random.seed(42)
  109. x = np.random.rand(100).astype("float32") * 2 - 1
  110. y_np = np.arctanh(x)
  111. y_mge = F.atanh(tensor(x)).numpy()
  112. np.testing.assert_almost_equal(y_np, y_mge, decimal=5)
  113. def test_hswish():
  114. np.random.seed(42)
  115. x = np.random.randn(100).astype("float32")
  116. y_np = x * np.minimum(np.maximum(x + 3, 0), 6) / 6
  117. y_mge = F.hswish(tensor(x)).numpy()
  118. np.testing.assert_almost_equal(y_np, y_mge, decimal=6)
  119. def test_silu():
  120. x = np.array([-1.5, 0.0, 1.0, 1.5]).astype("float32")
  121. y_np = x / (1 + np.exp(-x))
  122. y_mge = F.silu(tensor(x)).numpy()
  123. np.testing.assert_almost_equal(y_np, y_mge, decimal=6)
  124. def test_hsigmoid():
  125. np.random.seed(42)
  126. x = np.random.randn(100).astype("float32")
  127. y_np = np.minimum(np.maximum(x + 3, 0), 6) / 6
  128. y_mge = F.hsigmoid(tensor(x)).numpy()
  129. np.testing.assert_equal(y_np, y_mge)
  130. def test_logical_oprs():
  131. x = np.array([[True, False], [False, True]])
  132. y = np.array([[True, True], [False, False]])
  133. xx = tensor(x)
  134. yy = tensor(y)
  135. np.testing.assert_equal(~x, (F.logical_not(xx)).numpy())
  136. np.testing.assert_equal(x & y, F.logical_and(xx, yy).numpy())
  137. np.testing.assert_equal(x | y, F.logical_or(xx, yy).numpy())
  138. np.testing.assert_equal(x ^ y, F.logical_xor(xx, yy).numpy())
  139. def test_logaddexp():
  140. x = np.random.randn(2, 100)
  141. y = np.random.randn(2, 100)
  142. xx = tensor(x)
  143. yy = tensor(y)
  144. out_np = np.log(np.exp(x) + np.exp(y))
  145. out_mge = F.logaddexp(xx, yy)
  146. np.testing.assert_almost_equal(out_np, out_mge.numpy(), decimal=6)
  147. def test_qadd():
  148. inp_scale = 0.5
  149. outp_scale = 0.2
  150. x = np.arange(6).reshape(2, 3).astype("float32")
  151. y = np.arange(6).reshape(2, 3).astype("float32")
  152. x = tensor(x, dtype=dtype.qint8(inp_scale))
  153. y = tensor(y, dtype=dtype.qint8(inp_scale))
  154. result_mge = F.elemwise._elemwise_multi_type(
  155. x, y, mode="qadd", dtype=dtype.qint8(outp_scale)
  156. )
  157. result_mge = result_mge.astype("float32").numpy()
  158. result_expect = x.astype("float32").numpy() + y.astype("float32").numpy()
  159. np.testing.assert_almost_equal(result_mge, result_expect, decimal=6)
  160. def test_int32_input():
  161. x = tensor(np.array([1, 2, 3, 4, 5]), dtype="int32")
  162. for op_name in elemwise.__all__:
  163. op = getattr(elemwise, op_name)
  164. nargs = op.__code__.co_argcount
  165. if op_name == "clip":
  166. inp = (x, 0, 1)
  167. elif op_name.endswith("_shift"):
  168. inp = (x, 1)
  169. elif op_name.startswith("logical_"):
  170. continue
  171. else:
  172. inp = (x,) * nargs
  173. y = op(*inp)
  174. y.numpy()
  175. @pytest.mark.parametrize("is_trace", [True, False])
  176. def test_empty_tensor(is_trace):
  177. binary_func = []
  178. unary_func = []
  179. for op_name in elemwise.__all__:
  180. op = getattr(elemwise, op_name)
  181. nargs = op.__code__.co_argcount
  182. if op_name == "clip":
  183. unary_func.append(["clip", lambda x, f=op: f(x, lower=0, upper=1)])
  184. elif op_name.endswith("_shift"):
  185. unary_func.append(
  186. [op_name, lambda x, f=op: f(tensor(x.numpy(), dtype="int32"), 1)]
  187. )
  188. elif op_name.startswith("logical_"): # logical_xxx op only accept boolean type
  189. if nargs == 1:
  190. unary_func.append(
  191. [op_name, lambda x, f=op: f(tensor(x.numpy(), dtype="bool"))]
  192. )
  193. else:
  194. assert nargs == 2
  195. binary_func.append(
  196. [
  197. op_name,
  198. lambda x, y, f=op: f(
  199. tensor(x.numpy(), dtype="bool"),
  200. tensor(y.numpy(), dtype="bool"),
  201. ),
  202. ]
  203. )
  204. elif nargs == 1:
  205. unary_func.append([op_name, op])
  206. elif nargs == 2:
  207. binary_func.append([op_name, op])
  208. else:
  209. raise NotImplementedError("nargs {}".format(nargs))
  210. def run_test(func, args, ref_shape, is_trace, sym=False):
  211. args = [tensor(t, dtype="float32") for t in args]
  212. if is_trace:
  213. func = trace(symbolic=sym)(func)
  214. for _ in range(3):
  215. out = func(*args)
  216. assert out.numpy().shape == ref_shape
  217. else:
  218. out = func(*args)
  219. assert out.numpy().shape == ref_shape, out.numpy().shape
  220. inps = [
  221. np.array([]).astype("float32"),
  222. np.random.randn(2, 0, 3).astype("float32"),
  223. 123,
  224. ]
  225. for op_name, op in unary_func:
  226. if is_trace:
  227. for sym in [True, False]:
  228. run_test(op, [inps[0],], inps[0].shape, True, sym)
  229. run_test(op, [inps[1],], inps[1].shape, True, sym)
  230. else:
  231. run_test(op, [inps[0],], inps[0].shape, False)
  232. run_test(op, [inps[1],], inps[1].shape, False)
  233. for op_name, op in binary_func:
  234. if is_trace:
  235. for sym in [True, False]:
  236. run_test(op, [inps[0], inps[0]], (inps[0] + inps[0]).shape, True, sym)
  237. run_test(op, [inps[1], inps[1]], (inps[1] + inps[1]).shape, True, sym)
  238. run_test(op, [inps[0], inps[2]], (inps[0] + inps[2]).shape, True, sym)
  239. run_test(op, [inps[1], inps[2]], (inps[1] + inps[2]).shape, True, sym)
  240. else:
  241. run_test(op, [inps[0], inps[0]], (inps[0] + inps[0]).shape, False)
  242. run_test(op, [inps[1], inps[1]], (inps[1] + inps[1]).shape, False)
  243. run_test(op, [inps[0], inps[2]], (inps[0] + inps[2]).shape, False)
  244. run_test(op, [inps[1], inps[2]], (inps[1] + inps[2]).shape, False)