|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- from typing import Tuple, Union
-
- from ..functional import relu
- from .batchnorm import BatchNorm2d
- from .conv import ConvTranspose2d
- from .module import Module
-
-
- class _ConvTransposeBnActivation2d(Module):
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- kernel_size: Union[int, Tuple[int, int]],
- stride: Union[int, Tuple[int, int]] = 1,
- padding: Union[int, Tuple[int, int]] = 0,
- output_padding: Union[int, Tuple[int, int]] = 0,
- dilation: Union[int, Tuple[int, int]] = 1,
- groups: int = 1,
- bias: bool = True,
- conv_mode: str = "cross_correlation",
- compute_mode: str = "default",
- eps=1e-5,
- momentum=0.9,
- affine=True,
- track_running_stats=True,
- **kwargs
- ):
- super().__init__(**kwargs)
- self.conv_transpose2d = ConvTranspose2d(
- in_channels,
- out_channels,
- kernel_size,
- stride,
- padding,
- output_padding,
- dilation,
- groups,
- bias,
- conv_mode,
- compute_mode,
- **kwargs,
- )
- self.bn = BatchNorm2d(out_channels, eps, momentum, affine, track_running_stats)
-
-
- class ConvTransposeBn2d(_ConvTransposeBnActivation2d):
- r"""A fused :class:`~.Module` including :class:`~.module.ConvTranspose2d` and :class:`~.module.BatchNorm2d`.
- Could be replaced with :class:`~.QATModule` version :class:`~.qat.ConvTransposeBn2d` using:func:`~.quantize.quantize_qat`.
- """
-
- def forward(self, inp):
- return self.bn(self.conv_transpose2d(inp))
-
-
- class ConvTransposeBnRelu2d(_ConvTransposeBnActivation2d):
- r"""A fused :class:`~.Module` including :class:`~.module.ConvTranspose2d`, :class:`~.module.BatchNorm2d` and :func:`~.relu`.
- Could be replaced with :class:`~.QATModule` version :class:`~.qat.ConvTransposeBnRelu2d` using :func:`~.quantize.quantize_qat`.
- """
-
- def forward(self, inp):
- return relu(self.bn(self.conv_transpose2d(inp)))
|