You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

conv_transpose_bn.py 2.1 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253
  1. from ...tensor import Parameter
  2. from ..qat import conv_transpose_bn as QAT
  3. from .conv import ConvTranspose2d
  4. class _ConvTransposeBnActivation2d(ConvTranspose2d):
  5. r"""Applies a 2D deconvolution over a quantized input tensor, used for inference only.
  6. """
  7. @classmethod
  8. def from_qat_module(cls, qat_module: QAT._ConvTransposeBnActivation2d):
  9. r"""
  10. Return a :class:`~.QuantizedModule` instance converted from a
  11. :class:`~.QATModule` instance.
  12. """
  13. output_dtype = qat_module.get_activation_dtype()
  14. qconv_transpose2d = cls(
  15. qat_module.conv_transpose2d.in_channels,
  16. qat_module.conv_transpose2d.out_channels,
  17. qat_module.conv_transpose2d.kernel_size,
  18. qat_module.conv_transpose2d.stride,
  19. qat_module.conv_transpose2d.padding,
  20. qat_module.conv_transpose2d.output_padding,
  21. qat_module.conv_transpose2d.dilation,
  22. qat_module.conv_transpose2d.groups,
  23. dtype=output_dtype,
  24. name=qat_module.name,
  25. )
  26. w_fold, b_fold = qat_module.fold_weight_bias(
  27. qat_module.bn.running_mean, qat_module.bn.running_var
  28. )
  29. weight = w_fold.astype(qat_module.get_weight_dtype())
  30. qconv_transpose2d.weight = Parameter(
  31. weight.numpy(), name=qat_module.conv_transpose2d.weight.name
  32. )
  33. qconv_transpose2d.bias = Parameter(b_fold.numpy())
  34. if qat_module.conv_transpose2d.bias is not None:
  35. qconv_transpose2d.bias.name = qat_module.conv_transpose2d.bias.name
  36. return qconv_transpose2d
  37. class ConvTransposeBn2d(_ConvTransposeBnActivation2d):
  38. r"""Quantized version of :class:`~.qat.ConvTransposeBn2d`."""
  39. def forward(self, inp):
  40. return self.calc_conv_transpose2d_quantized(inp, nonlinear_mode="identity")
  41. class ConvTransposeBnRelu2d(_ConvTransposeBnActivation2d):
  42. r"""Quantized version of :class:`~.qat.ConvTransposeBnRelu2d`."""
  43. def forward(self, inp):
  44. return self.calc_conv_transpose2d_quantized(inp, nonlinear_mode="relu")