You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

network_visualize.py 8.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256
  1. #! /usr/bin/env python3
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import argparse
  10. import logging
  11. import re
  12. from collections import namedtuple
  13. import numpy as np
  14. from megengine.core.tensor.dtype import is_quantize
  15. from megengine.logger import _imperative_rt_logger, get_logger, set_mgb_log_level
  16. from megengine.utils.module_stats import (
  17. enable_receptive_field,
  18. get_activation_stats,
  19. get_op_stats,
  20. get_param_stats,
  21. print_activations_stats,
  22. print_op_stats,
  23. print_param_stats,
  24. print_summary,
  25. sizeof_fmt,
  26. sum_activations_stats,
  27. sum_op_stats,
  28. sum_param_stats,
  29. )
  30. from megengine.utils.network import Network
  31. logger = get_logger(__name__)
  32. def visualize(
  33. model_path: str,
  34. log_path: str,
  35. bar_length_max: int = 20,
  36. log_params: bool = True,
  37. log_flops: bool = True,
  38. log_activations: bool = True,
  39. ):
  40. r"""
  41. Load megengine dumped model and visualize graph structure with tensorboard log files.
  42. Can also record and print model's statistics like :func:`~.module_stats`
  43. :param model_path: dir path for megengine dumped model.
  44. :param log_path: dir path for tensorboard graph log.
  45. :param bar_length_max: size of bar indicating max flops or parameter size in net stats.
  46. :param log_params: whether print and record params size.
  47. :param log_flops: whether print and record op flops.
  48. :param log_activations: whether print and record op activations.
  49. """
  50. if log_path:
  51. try:
  52. from tensorboard.compat.proto.attr_value_pb2 import AttrValue
  53. from tensorboard.compat.proto.config_pb2 import RunMetadata
  54. from tensorboard.compat.proto.graph_pb2 import GraphDef
  55. from tensorboard.compat.proto.node_def_pb2 import NodeDef
  56. from tensorboard.compat.proto.step_stats_pb2 import (
  57. AllocatorMemoryUsed,
  58. DeviceStepStats,
  59. NodeExecStats,
  60. StepStats,
  61. )
  62. from tensorboard.compat.proto.tensor_shape_pb2 import TensorShapeProto
  63. from tensorboard.compat.proto.versions_pb2 import VersionDef
  64. from tensorboardX import SummaryWriter
  65. except ImportError:
  66. logger.error(
  67. "TensorBoard and TensorboardX are required for visualize.",
  68. exc_info=True,
  69. )
  70. return
  71. enable_receptive_field()
  72. graph = Network.load(model_path)
  73. def process_name(name):
  74. # nodes that start with point or contain float const will lead to display bug
  75. if not re.match(r"^[+-]?\d*\.\d*", name):
  76. name = name.replace(".", "/")
  77. return name.encode(encoding="utf-8")
  78. summary = [["item", "value"]]
  79. node_list = []
  80. flops_list = []
  81. params_list = []
  82. activations_list = []
  83. total_stats = namedtuple("total_stats", ["param_size", "flops", "act_size"])
  84. stats_details = namedtuple("module_stats", ["params", "flops", "activations"])
  85. for node in graph.all_oprs:
  86. if hasattr(node, "output_idx"):
  87. node_oup = node.outputs[node.output_idx]
  88. else:
  89. if len(node.outputs) != 1:
  90. logger.warning(
  91. "OpNode {} has more than one output and not has 'output_idx' attr.".format(
  92. node
  93. )
  94. )
  95. node_oup = node.outputs[0]
  96. inp_list = [process_name(var.owner.name) for var in node.inputs]
  97. if log_path:
  98. # detail format see tensorboard/compat/proto/attr_value.proto
  99. attr = {
  100. "_output_shapes": AttrValue(
  101. list=AttrValue.ListValue(
  102. shape=[
  103. TensorShapeProto(
  104. dim=[
  105. TensorShapeProto.Dim(size=d) for d in node_oup.shape
  106. ]
  107. )
  108. ]
  109. )
  110. ),
  111. "params": AttrValue(s=str(node.params).encode(encoding="utf-8")),
  112. "dtype": AttrValue(s=str(node_oup.dtype).encode(encoding="utf-8")),
  113. }
  114. flops_stats = get_op_stats(node, node.inputs, node.outputs)
  115. if flops_stats is not None:
  116. # add op flops attr
  117. if log_path and hasattr(flops_stats, "flops_num"):
  118. attr["flops"] = AttrValue(
  119. s=sizeof_fmt(flops_stats["flops"]).encode(encoding="utf-8")
  120. )
  121. flops_stats["name"] = node.name
  122. flops_stats["class_name"] = node.type
  123. flops_list.append(flops_stats)
  124. acts = get_activation_stats(node_oup)
  125. acts["name"] = node.name
  126. acts["class_name"] = node.type
  127. activations_list.append(acts)
  128. if node.type == "ImmutableTensor":
  129. param_stats = get_param_stats(node_oup)
  130. # add tensor size attr
  131. if log_path:
  132. attr["size"] = AttrValue(
  133. s=sizeof_fmt(param_stats["size"]).encode(encoding="utf-8")
  134. )
  135. param_stats["name"] = node.name
  136. params_list.append(param_stats)
  137. if log_path:
  138. node_list.append(
  139. NodeDef(
  140. name=process_name(node.name),
  141. op=node.type,
  142. input=inp_list,
  143. attr=attr,
  144. )
  145. )
  146. # summary
  147. extra_info = {
  148. "#ops": len(graph.all_oprs),
  149. "#params": len(params_list),
  150. }
  151. (
  152. total_flops,
  153. total_param_dims,
  154. total_param_size,
  155. total_act_dims,
  156. total_param_size,
  157. ) = (0, 0, 0, 0, 0)
  158. total_param_dims, total_param_size, params = sum_param_stats(
  159. params_list, bar_length_max
  160. )
  161. extra_info["total_param_dims"] = sizeof_fmt(total_param_dims, suffix="")
  162. extra_info["total_param_size"] = sizeof_fmt(total_param_size)
  163. if log_params:
  164. print_param_stats(params)
  165. total_flops, flops = sum_op_stats(flops_list, bar_length_max)
  166. extra_info["total_flops"] = sizeof_fmt(total_flops, suffix="OPs")
  167. if log_flops:
  168. print_op_stats(flops)
  169. total_act_dims, total_act_size, activations = sum_activations_stats(
  170. activations_list, bar_length_max
  171. )
  172. extra_info["total_act_dims"] = sizeof_fmt(total_act_dims, suffix="")
  173. extra_info["total_act_size"] = sizeof_fmt(total_act_size)
  174. if log_activations:
  175. print_activations_stats(activations)
  176. extra_info["flops/param_size"] = "{:3.3f}".format(total_flops / total_param_size)
  177. if log_path:
  178. graph_def = GraphDef(node=node_list, versions=VersionDef(producer=22))
  179. device = "/device:CPU:0"
  180. stepstats = RunMetadata(
  181. step_stats=StepStats(dev_stats=[DeviceStepStats(device=device)])
  182. )
  183. writer = SummaryWriter(log_path)
  184. writer._get_file_writer().add_graph((graph_def, stepstats))
  185. print_summary(**extra_info)
  186. return (
  187. total_stats(
  188. param_size=total_param_size, flops=total_flops, act_size=total_act_size,
  189. ),
  190. stats_details(params=params, flops=flops, activations=activations),
  191. )
  192. def main():
  193. parser = argparse.ArgumentParser(
  194. description="load a megengine dumped model and export log file for tensorboard visualization.",
  195. formatter_class=argparse.ArgumentDefaultsHelpFormatter,
  196. )
  197. parser.add_argument("model_path", help="dumped model path.")
  198. parser.add_argument("--log_path", help="tensorboard log path.")
  199. parser.add_argument(
  200. "--bar_length_max",
  201. type=int,
  202. default=20,
  203. help="size of bar indicating max flops or parameter size in net stats.",
  204. )
  205. parser.add_argument(
  206. "--log_params",
  207. action="store_true",
  208. help="whether print and record params size.",
  209. )
  210. parser.add_argument(
  211. "--log_flops", action="store_true", help="whether print and record op flops.",
  212. )
  213. parser.add_argument(
  214. "--all",
  215. action="store_true",
  216. help="whether print all stats. Tensorboard logs will be placed in './log' if not specified.",
  217. )
  218. args = parser.parse_args()
  219. if args.all:
  220. args.log_params = True
  221. args.log_flops = True
  222. if not args.log_path:
  223. args.log_path = "./log"
  224. kwargs = vars(args)
  225. kwargs.pop("all")
  226. visualize(**kwargs)
  227. if __name__ == "__main__":
  228. main()

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台