You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

network_visualize.py 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336
  1. #! /usr/bin/env python3
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import argparse
  10. import logging
  11. import re
  12. from collections import namedtuple
  13. import numpy as np
  14. from tqdm import tqdm
  15. import megengine as mge
  16. from megengine.core.tensor.dtype import is_quantize
  17. from megengine.logger import _imperative_rt_logger, get_logger, set_mgb_log_level
  18. from megengine.utils.module_stats import (
  19. enable_receptive_field,
  20. get_activation_stats,
  21. get_op_stats,
  22. get_param_stats,
  23. print_activations_stats,
  24. print_op_stats,
  25. print_param_stats,
  26. print_summary,
  27. sizeof_fmt,
  28. sum_activations_stats,
  29. sum_op_stats,
  30. sum_param_stats,
  31. )
  32. from megengine.utils.network import Network
  33. logger = get_logger(__name__)
  34. def visualize(
  35. model_path: str,
  36. log_path: str,
  37. input: np.ndarray = None,
  38. inp_dict: dict = None,
  39. cal_params: bool = True,
  40. cal_flops: bool = True,
  41. cal_activations: bool = True,
  42. logging_to_stdout: bool = True,
  43. bar_length_max: int = 20,
  44. ):
  45. r"""
  46. Load megengine dumped model and visualize graph structure with tensorboard log files.
  47. Can also record and print model's statistics like :func:`~.module_stats`
  48. :param model_path: dir path for megengine dumped model.
  49. :param log_path: dir path for tensorboard graph log.
  50. :param input: user defined input data for running model and calculating stats, alternative with inp_dict, used when the model has only one input.
  51. :param inp_dict: input dict for running model and calculating stats, alternative with input, used when the model has more than one input. When both input and inp_dict are None, a random input will be used.
  52. :param cal_params: whether calculate and record params size.
  53. :param cal_flops: whether calculate and record op flops.
  54. :param cal_activations: whether calculate and record op activations.
  55. :param logging_to_stdout: whether print all calculated statistic details.
  56. :param bar_length_max: size of bar indicating max flops or parameter size in net stats.
  57. """
  58. if log_path:
  59. try:
  60. from tensorboard.compat.proto.attr_value_pb2 import AttrValue
  61. from tensorboard.compat.proto.config_pb2 import RunMetadata
  62. from tensorboard.compat.proto.graph_pb2 import GraphDef
  63. from tensorboard.compat.proto.node_def_pb2 import NodeDef
  64. from tensorboard.compat.proto.step_stats_pb2 import (
  65. AllocatorMemoryUsed,
  66. DeviceStepStats,
  67. NodeExecStats,
  68. StepStats,
  69. )
  70. from tensorboard.compat.proto.tensor_shape_pb2 import TensorShapeProto
  71. from tensorboard.compat.proto.versions_pb2 import VersionDef
  72. from tensorboardX import SummaryWriter
  73. except ImportError:
  74. logger.error(
  75. "TensorBoard and TensorboardX are required for visualize.",
  76. exc_info=True,
  77. )
  78. return
  79. enable_receptive_field()
  80. graph = Network.load(model_path)
  81. graph.reset_batch_size(1)
  82. has_input = False
  83. if input is not None or inp_dict is not None:
  84. has_input = True
  85. repl_dict = {}
  86. inp_vars = graph.input_vars
  87. if inp_dict is not None:
  88. assert len(inp_dict) == len(
  89. inp_vars
  90. ), "Inputs are not sufficient for calculation."
  91. for v in inp_vars:
  92. new_input = graph.make_const(inp_dict[v.name], name=v.name)
  93. repl_dict[v] = new_input
  94. else:
  95. assert len(inp_vars) == 1, "The graph needs more than one input."
  96. inp_var = inp_vars[0]
  97. repl_dict[inp_var] = graph.make_const(input, name=inp_var.name)
  98. graph.replace_vars(repl_dict=repl_dict)
  99. graph._compile()
  100. def process_name(name):
  101. # nodes that start with point or contain float const will lead to display bug
  102. if not re.match(r"^[+-]?\d*\.\d*", name):
  103. name = name.replace(".", "/")
  104. return name.encode(encoding="utf-8")
  105. summary = [["item", "value"]]
  106. node_list = []
  107. flops_list = []
  108. params_list = []
  109. activations_list = []
  110. total_stats = namedtuple(
  111. "total_stats", ["param_size", "param_dims", "flops", "act_size", "act_dims"]
  112. )
  113. stats_details = namedtuple("module_stats", ["params", "flops", "activations"])
  114. for node in tqdm(graph.all_oprs):
  115. if hasattr(node, "output_idx"):
  116. node_oup = node.outputs[node.output_idx]
  117. else:
  118. if len(node.outputs) != 1:
  119. logger.warning(
  120. "OpNode {} has more than one output and not has 'output_idx' attr.".format(
  121. node
  122. )
  123. )
  124. node_oup = node.outputs[0]
  125. inp_list = [process_name(var.owner.name) for var in node.inputs]
  126. if log_path:
  127. # detail format see tensorboard/compat/proto/attr_value.proto
  128. attr = {
  129. "_output_shapes": AttrValue(
  130. list=AttrValue.ListValue(
  131. shape=[
  132. TensorShapeProto(
  133. dim=[
  134. TensorShapeProto.Dim(size=d) for d in node_oup.shape
  135. ]
  136. )
  137. ]
  138. )
  139. ),
  140. "params": AttrValue(s=str(node.params).encode(encoding="utf-8")),
  141. "dtype": AttrValue(s=str(node_oup.dtype).encode(encoding="utf-8")),
  142. }
  143. if cal_flops:
  144. flops_stats = get_op_stats(node, node.inputs, node.outputs)
  145. if flops_stats is not None:
  146. # add op flops attr
  147. if log_path and hasattr(flops_stats, "flops_num"):
  148. attr["flops"] = AttrValue(
  149. s=sizeof_fmt(flops_stats["flops"]).encode(encoding="utf-8")
  150. )
  151. flops_stats["name"] = node.name
  152. flops_stats["class_name"] = node.type
  153. flops_list.append(flops_stats)
  154. if cal_activations:
  155. acts = get_activation_stats(node_oup, has_input=has_input)
  156. acts["name"] = node.name
  157. acts["class_name"] = node.type
  158. activations_list.append(acts)
  159. if cal_params:
  160. if node.type == "ImmutableTensor":
  161. param_stats = get_param_stats(node_oup)
  162. # add tensor size attr
  163. if log_path:
  164. attr["size"] = AttrValue(
  165. s=sizeof_fmt(param_stats["size"]).encode(encoding="utf-8")
  166. )
  167. param_stats["name"] = node.name
  168. params_list.append(param_stats)
  169. if log_path:
  170. node_list.append(
  171. NodeDef(
  172. name=process_name(node.name),
  173. op=node.type,
  174. input=inp_list,
  175. attr=attr,
  176. )
  177. )
  178. # summary
  179. extra_info = {
  180. "#ops": len(graph.all_oprs),
  181. "#params": len(params_list),
  182. }
  183. (
  184. total_flops,
  185. total_param_dims,
  186. total_param_size,
  187. total_act_dims,
  188. total_act_size,
  189. ) = (0, 0, 0, 0, 0)
  190. if cal_params:
  191. total_param_dims, total_param_size, params_list = sum_param_stats(
  192. params_list, bar_length_max
  193. )
  194. extra_info["total_param_dims"] = sizeof_fmt(total_param_dims, suffix="")
  195. extra_info["total_param_size"] = sizeof_fmt(total_param_size)
  196. if logging_to_stdout:
  197. print_param_stats(params_list)
  198. if cal_flops:
  199. total_flops, flops_list = sum_op_stats(flops_list, bar_length_max)
  200. extra_info["total_flops"] = sizeof_fmt(total_flops, suffix="OPs")
  201. if logging_to_stdout:
  202. print_op_stats(flops_list)
  203. if cal_activations:
  204. total_act_dims, total_act_size, activations_list = sum_activations_stats(
  205. activations_list, bar_length_max
  206. )
  207. extra_info["total_act_dims"] = sizeof_fmt(total_act_dims, suffix="")
  208. extra_info["total_act_size"] = sizeof_fmt(total_act_size)
  209. if logging_to_stdout:
  210. print_activations_stats(activations_list, has_input=has_input)
  211. if cal_flops and cal_params:
  212. extra_info["flops/param_size"] = "{:3.3f}".format(
  213. total_flops / total_param_size
  214. )
  215. if log_path:
  216. graph_def = GraphDef(node=node_list, versions=VersionDef(producer=22))
  217. device = "/device:CPU:0"
  218. stepstats = RunMetadata(
  219. step_stats=StepStats(dev_stats=[DeviceStepStats(device=device)])
  220. )
  221. writer = SummaryWriter(log_path)
  222. writer._get_file_writer().add_graph((graph_def, stepstats))
  223. print_summary(**extra_info)
  224. return (
  225. total_stats(
  226. param_size=total_param_size,
  227. param_dims=total_param_dims,
  228. flops=total_flops,
  229. act_size=total_act_size,
  230. act_dims=total_act_dims,
  231. ),
  232. stats_details(
  233. params=params_list, flops=flops_list, activations=activations_list
  234. ),
  235. )
  236. def main():
  237. parser = argparse.ArgumentParser(
  238. description="load a megengine dumped model and export log file for tensorboard visualization.",
  239. formatter_class=argparse.ArgumentDefaultsHelpFormatter,
  240. )
  241. parser.add_argument("model_path", help="dumped model path.")
  242. parser.add_argument("--log_path", help="tensorboard log path.")
  243. parser.add_argument(
  244. "--load_input_data",
  245. help="load input data from pickle file; it should be a numpy array or a dict of numpy array",
  246. )
  247. parser.add_argument(
  248. "--bar_length_max",
  249. type=int,
  250. default=20,
  251. help="size of bar indicating max flops or parameter size in net stats.",
  252. )
  253. parser.add_argument(
  254. "--cal_params",
  255. action="store_true",
  256. help="whether calculate and record params size.",
  257. )
  258. parser.add_argument(
  259. "--cal_flops",
  260. action="store_true",
  261. help="whether calculate and record op flops.",
  262. )
  263. parser.add_argument(
  264. "--cal_activations",
  265. action="store_true",
  266. help="whether calculate and record op activations.",
  267. )
  268. parser.add_argument(
  269. "--logging_to_stdout",
  270. action="store_true",
  271. help="whether print all calculated statistic details.",
  272. )
  273. parser.add_argument(
  274. "--all",
  275. action="store_true",
  276. help="whether print all stats. Tensorboard logs will be placed in './log' if not specified.",
  277. )
  278. args = parser.parse_args()
  279. if args.load_input_data:
  280. logger.info("load data from {}".format(args.load_input_data))
  281. data = mge.load(args.load_input_data)
  282. if isinstance(data, dict):
  283. for v in data.values():
  284. assert isinstance(
  285. v, np.ndarray
  286. ), "data should provide ndarray; got {} instead".format(v)
  287. args.inp_dict = data
  288. elif isinstance(data, np.ndarray):
  289. args.input = data
  290. else:
  291. logger.error("input data should be a numpy array or a dict of numpy array")
  292. if args.all:
  293. args.cal_params = True
  294. args.cal_flops = True
  295. args.cal_activations = True
  296. args.logging_to_stdout = True
  297. if not args.log_path:
  298. args.log_path = "./log"
  299. kwargs = vars(args)
  300. kwargs.pop("all")
  301. kwargs.pop("load_input_data")
  302. visualize(**kwargs)
  303. if __name__ == "__main__":
  304. main()

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台