|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210 |
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import argparse
- import json
- import os
- import subprocess
- import sys
- import time
-
- import numpy as np
-
- import megengine as mge
- import megengine.distributed as dist
- import megengine.functional as F
- from megengine._internal.plugin import CompGraphProfiler
- from megengine.core import Graph, tensor
- from megengine.core.graph import get_default_graph
- from megengine.functional.debug_param import (
- get_conv_execution_strategy,
- set_conv_execution_strategy,
- )
- from megengine.jit import trace
- from megengine.module import BatchNorm2d, Conv2d, Linear, MaxPool2d, Module
- from megengine.optimizer import SGD
-
- sys.path.append(os.path.join(os.path.dirname(__file__), "..", "..", "..", "examples"))
-
-
- def init_profiler(comp_graph=get_default_graph()):
- profiler = CompGraphProfiler(comp_graph)
- return profiler
-
-
- def dump_profiler(profiler, filename):
- with open(filename, "w") as fout:
- json.dump(profiler.get(), fout, indent=2)
-
-
- def print_gpu_usage():
- stdout = subprocess.getoutput("nvidia-smi")
- for line in stdout.split("\n"):
- for item in line.split(" "):
- if "MiB" in item:
- print("Finish with GPU Usage", item)
- break
-
-
- def run_perf(
- batch_size=64,
- warm_up=True,
- dump_prof=None,
- opt_level=2,
- conv_fastrun=False,
- run_step=True,
- track_bn_stats=True,
- warm_up_iter=20,
- run_iter=100,
- num_gpu=None,
- device=0,
- server=None,
- port=None,
- scale_batch_size=False,
- eager=False,
- ):
-
- # pylint: disable = import-outside-toplevel
- from resnet50 import Resnet50
-
- if conv_fastrun:
- set_conv_execution_strategy("PROFILE")
-
- if num_gpu:
- dist.init_process_group(args.server, args.port, num_gpu, device, device)
- if scale_batch_size:
- batch_size = batch_size // num_gpu
- print("Run with data parallel, batch size = {} per GPU".format(batch_size))
-
- data = tensor(np.random.randn(batch_size, 3, 224, 224).astype("float32"))
- label = tensor(np.random.randint(1000, size=[batch_size,], dtype=np.int32))
-
- net = Resnet50(track_bn_stats=track_bn_stats)
- opt = SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=1e-4)
-
- def train_func(data, label):
- logits = net(data)
- loss = F.cross_entropy_with_softmax(logits, label)
-
- if num_gpu:
- loss = loss / num_gpu
-
- opt.zero_grad()
- opt.backward(loss)
- return loss
-
- train_func = trace(
- train_func,
- symbolic=(not eager),
- opt_level=opt_level,
- profiling=not (dump_prof is None),
- )
-
- if warm_up:
- print("Warm up ...")
- for _ in range(warm_up_iter):
- opt.zero_grad()
- train_func(data, label)
- if run_step:
- opt.step()
- print_gpu_usage()
- print("Running train ...")
- start = time.time()
- for _ in range(run_iter):
- opt.zero_grad()
- train_func(data, label)
- if run_step:
- opt.step()
-
- time_used = time.time() - start
-
- if dump_prof:
- with open(dump_prof, "w") as fout:
- json.dump(train_func.get_profile(), fout, indent=2)
-
- return time_used / run_iter
-
-
- def str2bool(v):
- if isinstance(v, bool):
- return v
- if v.lower() in ("yes", "true", "t", "y", "1"):
- return True
- elif v.lower() in ("no", "false", "f", "n", "0"):
- return False
- else:
- raise argparse.ArgumentTypeError("Boolean value expected.")
-
-
- if __name__ == "__main__":
- parser = argparse.ArgumentParser(
- description="Running regression test on Resnet 50",
- formatter_class=argparse.ArgumentDefaultsHelpFormatter,
- )
- parser.add_argument("--batch-size", type=int, default=64, help="batch size ")
- parser.add_argument(
- "--warm-up", type=str2bool, default=True, help="whether to warm up"
- )
- parser.add_argument(
- "--dump-prof",
- type=str,
- default=None,
- help="pass the json file path to dump the profiling result",
- )
- parser.add_argument("--opt-level", type=int, default=2, help="graph opt level")
- parser.add_argument(
- "--conv-fastrun",
- type=str2bool,
- default=False,
- help="whether to use conv fastrun mode",
- )
- parser.add_argument(
- "--run-step",
- type=str2bool,
- default=True,
- help="whether to run optimizer.step()",
- )
- parser.add_argument(
- "--track-bn-stats",
- type=str2bool,
- default=True,
- help="whether to track bn stats",
- )
- parser.add_argument(
- "--warm-up-iter", type=int, default=20, help="number of iters to warm up"
- )
- parser.add_argument(
- "--run-iter", type=int, default=100, help="number of iters to collect wall time"
- )
- parser.add_argument("--server", default="0.0.0.0")
- parser.add_argument("--port", type=int, default=2222)
- parser.add_argument(
- "--scale-batch-size",
- type=str2bool,
- default=False,
- help="whether to divide batch size by number of GPUs",
- )
- parser.add_argument(
- "--eager", type=str2bool, default=False, help="whether to use eager mode"
- )
-
- # Data parallel related
- parser.add_argument("--num-gpu", type=int, default=None)
- parser.add_argument("--device", type=int, default=0)
- args = parser.parse_args()
-
- print(vars(args))
-
- os.environ["MGB_JIT_BACKEND"] = "NVRTC"
-
- t = run_perf(**vars(args))
-
- print("**********************************")
- print("Wall time per iter {:.0f} ms".format(t * 1000))
- print("**********************************")
- get_default_graph().clear_device_memory()
|