You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

linear.py 2.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960
  1. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  2. #
  3. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  4. #
  5. # Unless required by applicable law or agreed to in writing,
  6. # software distributed under the License is distributed on an
  7. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  8. import numpy as np
  9. import megengine._internal as mgb
  10. from ... import functional as F
  11. from ... import module as Float
  12. from ...core import Parameter
  13. from ...quantization.utils import register_method_to_class
  14. from ..module import Module
  15. class Linear(Module):
  16. r"""Applies a quantized linear transformation to the input. The module
  17. usually convert from QAT module by to_quantized method.
  18. :param dtype: output data type.
  19. """
  20. def __init__(
  21. self, dtype: np.dtype = None,
  22. ):
  23. super().__init__()
  24. self.weight = None
  25. self.bias = None
  26. self.output_dtype = dtype
  27. def forward(self, inp):
  28. if self.training:
  29. raise ValueError("quantized module only support inference.")
  30. inp_scale = mgb.dtype.get_scale(inp.dtype)
  31. w_scale = mgb.dtype.get_scale(self.weight.dtype)
  32. bias_dtype = mgb.dtype.qint32(inp_scale * w_scale)
  33. return F.linear(
  34. inp,
  35. self.weight,
  36. None if self.bias is None else self.bias.astype(bias_dtype),
  37. ).astype(self.output_dtype)
  38. @register_method_to_class(Float.Linear)
  39. def to_quantized(float_module):
  40. r"""
  41. Replace :class:`~.module.QATModule`'s ``to_quantized`` method.
  42. implemented here to avoid circular import.
  43. """
  44. output_dtype = float_module.act_observer.get_dtype()
  45. qmod = Linear(dtype=output_dtype,)
  46. weight = float_module.weight.astype(float_module.weight_observer.get_dtype())
  47. qmod.weight = Parameter(weight.numpy())
  48. if float_module.bias is not None:
  49. qmod.bias = Parameter(float_module.bias.numpy())
  50. return qmod

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台