You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

quant_dequant.py 1.7 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455
  1. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  2. #
  3. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  4. #
  5. # Unless required by applicable law or agreed to in writing,
  6. # software distributed under the License is distributed on an
  7. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  8. from ... import _internal as mgb
  9. from ... import module as Float
  10. from ...quantization.utils import register_method_to_class
  11. from ..module import Module
  12. class QuantStub(Module):
  13. r"""
  14. A helper quantize operation on input and inference only.
  15. """
  16. def __init__(self, dtype=None):
  17. super().__init__()
  18. self.output_dtype = dtype
  19. def forward(self, inp):
  20. if self.training:
  21. raise ValueError("quantized module only support inference.")
  22. return inp.astype(self.output_dtype)
  23. class DequantStub(Module):
  24. r"""
  25. A helper de-quantize operation and inference only.
  26. """
  27. def forward(self, inp):
  28. if self.training:
  29. raise ValueError("quantized module only support inference.")
  30. return inp.astype("float32")
  31. @register_method_to_class(Float.QuantStub)
  32. def to_quantized(float_module):
  33. r"""
  34. Replace :class:`~.module.QATModule`'s ``to_quantized`` method.
  35. implemented here to avoid circular import.
  36. """
  37. return QuantStub(float_module.act_observer.get_dtype())
  38. @register_method_to_class(Float.DequantStub)
  39. def to_quantized(float_module):
  40. r"""
  41. Replace :class:`~.module.QATModule`'s ``to_quantized`` method.
  42. implemented here to avoid circular import.
  43. """
  44. return DequantStub()

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台