You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

adam.py 3.4 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. from typing import Iterable, Tuple, Union
  10. from ..core import Buffer, Parameter
  11. from .internal import add_update_fastpath as add_update
  12. from .optimizer import Optimizer
  13. class Adam(Optimizer):
  14. r"""Implements Adam algorithm proposed in `"Adam: A Method for Stochastic Optimization" <https://arxiv.org/abs/1412.6980>`_.
  15. :param params: iterable of parameters to optimize or dicts defining
  16. parameter groups.
  17. :param lr: learning rate.
  18. :param betas: coefficients used for computing running averages of gradient
  19. and its square. Default: (0.9, 0.999)
  20. :param eps: term added to the denominator to improve numerical stability
  21. Default: 1e-8
  22. :param weight_decay: weight decay (L2 penalty). Default: 0
  23. """
  24. def __init__(
  25. self,
  26. params: Union[Iterable[Parameter], dict],
  27. lr: float,
  28. betas: Tuple[float, float] = (0.9, 0.999),
  29. eps: float = 1e-8,
  30. weight_decay: float = 0.0,
  31. ):
  32. if lr < 0.0:
  33. raise ValueError("Invalid learning rate: {}".format(lr))
  34. if weight_decay < 0.0:
  35. raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
  36. if not 0.0 <= betas[0] < 1.0:
  37. raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
  38. if not 0.0 <= betas[1] < 1.0:
  39. raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
  40. defaults = dict(lr=lr, weight_decay=weight_decay, betas=betas, eps=eps)
  41. super().__init__(params, defaults)
  42. def _create_state(self, param_group):
  43. for param in param_group["params"]:
  44. self._add_state(param, "exp_avg")
  45. self._add_state(param, "exp_avg_sq")
  46. self._add_state(param, "step", initializer=0.0)
  47. def _updates(self, param_group):
  48. lr = param_group["lr"]
  49. weight_decay = param_group["weight_decay"]
  50. eps = param_group["eps"]
  51. beta0, beta1 = param_group["betas"]
  52. for param in param_group["params"]:
  53. if not param.requires_grad:
  54. continue
  55. step = self._state[param]["step"]
  56. step = add_update(step, 1)
  57. if not isinstance(param.grad, Buffer):
  58. raise TypeError(
  59. "grad must be a Buffer, maybe you forget to call backward()?"
  60. )
  61. grad = param.grad
  62. if weight_decay != 0.0:
  63. grad = add_update(grad, param, beta=weight_decay)
  64. exp_avg = self._state[param]["exp_avg"]
  65. exp_avg_sq = self._state[param]["exp_avg_sq"]
  66. exp_avg = add_update(exp_avg, grad, alpha=beta0, beta=1 - beta0)
  67. exp_avg_sq = add_update(
  68. exp_avg_sq, grad * grad, alpha=beta1, beta=1 - beta1
  69. )
  70. add_update(
  71. param,
  72. exp_avg
  73. / (1 - beta0 ** step)
  74. / (exp_avg_sq.sqrt() / (1 - beta1 ** step).sqrt() + eps),
  75. beta=-lr,
  76. )

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台