You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

pooling_multi_thread.cpp 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510
  1. /**
  2. * \file dnn/test/arm_common/pooling_multi_thread.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include <vector>
  12. #include "megdnn/dtype.h"
  13. #include "test/arm_common/fixture.h"
  14. #include "test/common/pooling.h"
  15. #include "test/common/checker.h"
  16. #include "test/common/benchmarker.h"
  17. #include "test/common/rng.h"
  18. namespace megdnn {
  19. namespace test {
  20. /*********************** mutli threads *********************************/
  21. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING) {
  22. using Param = param::Pooling;
  23. for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  24. for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  25. for (size_t p: {1, 2})
  26. {
  27. Param param;
  28. param.mode = Param::Mode::MAX;
  29. param.window_h = param.window_w = 3;
  30. param.stride_h = param.stride_w = 2;
  31. param.pad_h = param.pad_w = p;
  32. Checker<Pooling> checker(handle());
  33. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  34. param.mode = Param::Mode::AVERAGE;
  35. param.window_h = param.window_w = 3;
  36. param.stride_h = param.stride_w = 2;
  37. param.pad_h = param.pad_w = p;
  38. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  39. param.mode = Param::Mode::MAX;
  40. param.window_h = param.window_w = 4;
  41. param.stride_h = param.stride_w = 2;
  42. param.pad_h = param.pad_w = p;
  43. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  44. param.mode = Param::Mode::MAX;
  45. param.window_h = param.window_w = 5;
  46. param.stride_h = param.stride_w = 2;
  47. param.pad_h = param.pad_w = p;
  48. if (ih + p * 2 >= 5 && iw + p * 2 >= 5)
  49. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  50. }
  51. }
  52. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_MAX_W3x3_NCHW44)
  53. {
  54. // clang-format off
  55. for (size_t ih: {3, 5, 10})
  56. for (size_t iw: {3, 5, 7, 9, 15, 20})
  57. for (size_t ph: {0, 1, 2})
  58. for (size_t pw: {0, 1, 2})
  59. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  60. {
  61. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  62. Checker<Pooling> checker(handle());
  63. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  64. checker.set_rng(0,&rng);
  65. param::Pooling param;
  66. param.mode = param::Pooling::Mode::MAX;
  67. param.format = param::Pooling::Format::NCHW44;
  68. param.pad_h = ph;
  69. param.pad_w = pw;
  70. param.stride_h = param.stride_w = 1;
  71. param.window_h = param.window_w = 3;
  72. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  73. param.stride_h = param.stride_w = 2;
  74. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  75. }
  76. // clang-format on
  77. }
  78. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_MAX_W2x2_NCHW44)
  79. {
  80. // clang-format off
  81. for (size_t ih: {2, 5, 10, 17})
  82. for (size_t iw: {2, 6, 8, 16, 26})
  83. for (size_t ph: {0, 1})
  84. for (size_t pw: {0, 1})
  85. if (ih+2*ph >= 2 && iw+2*pw >= 2)
  86. {
  87. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  88. Checker<Pooling> checker(handle());
  89. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  90. checker.set_rng(0,&rng);
  91. param::Pooling param;
  92. param.mode = param::Pooling::Mode::MAX;
  93. param.format = param::Pooling::Format::NCHW44;
  94. param.pad_h = ph;
  95. param.pad_w = pw;
  96. param.stride_h = param.stride_w = 1;
  97. param.window_h = param.window_w = 2;
  98. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  99. param.stride_h = param.stride_w = 2;
  100. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  101. }
  102. // clang-format on
  103. }
  104. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_MAX_W4x4_NCHW44)
  105. {
  106. // clang-format off
  107. for (size_t ih: {4, 10, 18, 25, 30})
  108. for (size_t iw: {4, 12, 17, 20, 25})
  109. for (size_t ph: {0, 1, 2})
  110. for (size_t pw: {0, 1, 2})
  111. if (ih+2*ph >= 4 && iw+2*pw >= 4)
  112. {
  113. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  114. Checker<Pooling> checker(handle());
  115. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  116. checker.set_rng(0,&rng);
  117. param::Pooling param;
  118. param.mode = param::Pooling::Mode::MAX;
  119. param.format = param::Pooling::Format::NCHW44;
  120. param.pad_h = ph;
  121. param.pad_w = pw;
  122. param.stride_h = param.stride_w = 1;
  123. param.window_h = param.window_w = 4;
  124. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  125. param.stride_h = param.stride_w = 2;
  126. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  127. }
  128. // clang-format on
  129. }
  130. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_MAX_W5x5_NCHW44)
  131. {
  132. // clang-format off
  133. for (size_t ih: {5, 9, 19, 20, 39})
  134. for (size_t iw: {5, 12, 23, 27, 39})
  135. for (size_t ph: {0, 1, 2})
  136. for (size_t pw: {0, 1, 2})
  137. if (ih+2*ph >= 5 && iw+2*pw >= 5)
  138. {
  139. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  140. Checker<Pooling> checker(handle());
  141. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  142. checker.set_rng(0,&rng);
  143. param::Pooling param;
  144. param.mode = param::Pooling::Mode::MAX;
  145. param.format = param::Pooling::Format::NCHW44;
  146. param.pad_h = ph;
  147. param.pad_w = pw;
  148. param.stride_h = param.stride_w = 1;
  149. param.window_h = param.window_w = 5;
  150. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  151. param.stride_h = param.stride_w = 2;
  152. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  153. }
  154. // clang-format on
  155. }
  156. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W3x3_S2x2)
  157. {
  158. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  159. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  160. for (size_t ph: {0, 1, 2})
  161. for (size_t pw: {0, 1, 2})
  162. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  163. {
  164. Checker<Pooling> checker(handle());
  165. checker.set_dtype(0, dtype::Int8());
  166. param::Pooling param;
  167. param.mode = param::Pooling::Mode::MAX;
  168. param.pad_h = ph;
  169. param.pad_w = pw;
  170. param.stride_h = param.stride_w = 2;
  171. param.window_h = param.window_w = 3;
  172. checker.set_param(param).exec(TensorShapeArray{
  173. {2, 3, ih, iw}, {}});
  174. }
  175. }
  176. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W2x2_S2x2)
  177. {
  178. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  179. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  180. for (size_t ph: {0, 1})
  181. for (size_t pw: {0, 1})
  182. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  183. {
  184. Checker<Pooling> checker(handle());
  185. checker.set_dtype(0, dtype::Int8());
  186. param::Pooling param;
  187. param.mode = param::Pooling::Mode::MAX;
  188. param.pad_h = ph;
  189. param.pad_w = pw;
  190. param.stride_h = param.stride_w = 2;
  191. param.window_h = param.window_w = 2;
  192. checker.set_param(param).exec(TensorShapeArray{
  193. {2, 3, ih, iw}, {}});
  194. }
  195. }
  196. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  197. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FP16) {
  198. Checker<Pooling> checker(handle());
  199. checker.set_dtype(0, dtype::Float16{})
  200. .set_dtype(1, dtype::Float16{})
  201. .set_epsilon(3e-3);
  202. using Param = param::Pooling;
  203. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  204. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  205. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  206. for (size_t window : {2, 3}) {
  207. Param param;
  208. param.mode = mode;
  209. param.window_h = param.window_w = window;
  210. param.stride_h = param.stride_w = 1;
  211. param.pad_h = param.pad_w = window / 2;
  212. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 || FH
  213. //! == 3)
  214. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  215. //! test for SH = SW = 2 && FH = FW = 2
  216. param.stride_h = param.stride_w = 2;
  217. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  218. }
  219. }
  220. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  221. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  222. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  223. for (size_t ph : {0, 1, 2})
  224. for (size_t pw : {0, 1, 2})
  225. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  226. param::Pooling param;
  227. param.mode = param::Pooling::Mode::MAX;
  228. param.pad_h = ph;
  229. param.pad_w = pw;
  230. param.stride_h = param.stride_w = 2;
  231. param.window_h = param.window_w = 3;
  232. checker.set_param(param).exec(
  233. TensorShapeArray{{2, 3, ih, iw}, {}});
  234. }
  235. //! test for SH == 2 && SW == 2 && FH = FW = 4 max pooling
  236. for (size_t ih :
  237. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  238. for (size_t iw :
  239. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  240. for (size_t p : {1, 2}) {
  241. Param param;
  242. param.mode = Param::Mode::MAX;
  243. param.window_h = param.window_w = 4;
  244. param.stride_h = param.stride_w = 2;
  245. param.pad_h = param.pad_w = p;
  246. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  247. }
  248. //! test for SH == 2 && SW == 2 && FH = FW = 5 max pooling
  249. for (size_t ih :
  250. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  251. for (size_t iw :
  252. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  253. for (size_t p : {1, 2}) {
  254. Param param;
  255. param.mode = Param::Mode::MAX;
  256. param.window_h = param.window_w = 5;
  257. param.stride_h = param.stride_w = 2;
  258. param.pad_h = param.pad_w = p;
  259. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  260. }
  261. }
  262. #endif
  263. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_QUANTIZED) {
  264. Checker<Pooling> checker(handle());
  265. UniformIntRNG rng1{INT8_MIN >> 1, INT8_MAX >> 1};
  266. UniformIntRNG rng2{0, UINT8_MAX >> 1};
  267. using Param = param::Pooling;
  268. for (auto type : std::vector<DType>{
  269. dtype::QuantizedS8(1.1f),
  270. dtype::Quantized8Asymm(1.1f, static_cast<uint8_t>(3))}) {
  271. if (type.enumv() == DTypeEnum::QuantizedS8) {
  272. checker.set_rng(0, &rng1);
  273. } else {
  274. megdnn_assert(type.enumv() == DTypeEnum::Quantized8Asymm);
  275. checker.set_rng(0, &rng2);
  276. }
  277. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  278. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  279. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  280. for (size_t window : {2, 3}) {
  281. Param param;
  282. param.mode = mode;
  283. param.window_h = param.window_w = window;
  284. param.stride_h = param.stride_w = 1;
  285. param.pad_h = param.pad_w = window / 2;
  286. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 ||
  287. //! FH
  288. //! == 3)
  289. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  290. //! test for SH = SW = 2 && FH = FW = 2
  291. param.stride_h = param.stride_w = 2;
  292. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  293. }
  294. }
  295. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  296. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  297. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  298. for (size_t ph : {0, 1, 2})
  299. for (size_t pw : {0, 1, 2})
  300. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  301. param::Pooling param;
  302. param.mode = param::Pooling::Mode::MAX;
  303. param.pad_h = ph;
  304. param.pad_w = pw;
  305. param.window_h = param.window_w = 3;
  306. param.stride_h = param.stride_w = 2;
  307. checker.set_param(param).exec(
  308. TensorShapeArray{{2, 3, ih, iw}, {}});
  309. }
  310. //! test for SH == 2 && SW == 2 && FH == FW == 4 max pooling
  311. for (size_t ih :
  312. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  313. for (size_t iw :
  314. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  315. for (size_t p : {1, 2}) {
  316. Param param;
  317. param.mode = Param::Mode::MAX;
  318. param.window_h = param.window_w = 4;
  319. param.stride_h = param.stride_w = 2;
  320. param.pad_h = param.pad_w = p;
  321. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  322. }
  323. //! test for SH == 2 && SW == 2 && FH == FW == 5 max pooling
  324. for (size_t ih :
  325. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  326. for (size_t iw :
  327. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  328. for (size_t p : {1, 2}) {
  329. Param param;
  330. param.mode = Param::Mode::MAX;
  331. param.window_h = param.window_w = 5;
  332. param.stride_h = param.stride_w = 2;
  333. param.pad_h = param.pad_w = p;
  334. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  335. }
  336. }
  337. }
  338. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FALLBACK) {
  339. using Param = param::Pooling;
  340. for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  341. for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  342. for (size_t p: {1, 2})
  343. {
  344. Param param;
  345. param.mode = Param::Mode::MAX;
  346. param.window_h = param.window_w = 3;
  347. param.stride_h = param.stride_w = 2;
  348. param.pad_h = param.pad_w = p;
  349. Checker<Pooling> checker(handle());
  350. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  351. }
  352. }
  353. #if MEGDNN_WITH_BENCHMARK
  354. namespace {
  355. template <typename Opr>
  356. void benchmark_impl(const typename Opr::Param& param,
  357. std::vector<SmallVector<TensorShape>> shapes, size_t RUNS,
  358. TaskExecutorConfig&& multi_thread_config,
  359. TaskExecutorConfig&& single_thread_config,
  360. DType data_type) {
  361. std::vector<float> multi_thread_times, single_thread_times;
  362. {
  363. auto multi_thread_hanle =
  364. create_cpu_handle(0, true, &multi_thread_config);
  365. auto benchmarker = Benchmarker<Opr>(multi_thread_hanle.get());
  366. benchmarker.set_times(RUNS).set_display(false).set_param(param);
  367. benchmarker.set_dtype(0, data_type);
  368. for (auto shape : shapes) {
  369. multi_thread_times.push_back(benchmarker.exec(shape) / RUNS);
  370. }
  371. }
  372. {
  373. auto single_thread_handle =
  374. create_cpu_handle(0, true, &single_thread_config);
  375. auto benchmarker = Benchmarker<Opr>(single_thread_handle.get());
  376. benchmarker.set_times(RUNS).set_display(false).set_param(param);
  377. benchmarker.set_dtype(0, data_type);
  378. for (auto shape : shapes) {
  379. single_thread_times.push_back(benchmarker.exec(shape) / RUNS);
  380. }
  381. }
  382. printf("Benchmark : Multi threads %zu, ", multi_thread_config.nr_thread);
  383. printf("core_ids:");
  384. for (size_t i = 0; i < multi_thread_config.affinity_core_set.size(); i++) {
  385. printf("%zu ", multi_thread_config.affinity_core_set[i]);
  386. }
  387. printf(", Single thread core_id %zu\n",
  388. single_thread_config.affinity_core_set[0]);
  389. for (size_t i = 0; i < shapes.size(); i++) {
  390. auto shape = shapes[i];
  391. printf("Case: ");
  392. for (auto sh : shape)
  393. printf("%s ", sh.to_string().c_str());
  394. printf("%zu threads time: %f,\n single thread time: "
  395. "%f. spead up = %f, speedup/cores=%f\n",
  396. multi_thread_config.nr_thread, multi_thread_times[i],
  397. single_thread_times[i],
  398. single_thread_times[i] / multi_thread_times[i],
  399. single_thread_times[i] / multi_thread_times[i] /
  400. multi_thread_config.nr_thread);
  401. }
  402. }
  403. } // namespace
  404. TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_POOLING) {
  405. constexpr size_t RUNS = 50;
  406. using Param = param::Pooling;
  407. Param param;
  408. param.window_h = param.window_w = 3;
  409. param.stride_h = param.stride_w = 2;
  410. param.pad_h = param.pad_w = 1;
  411. std::vector<SmallVector<TensorShape>> shapes;
  412. shapes.push_back({{32, 32, 215, 215}, {}});
  413. shapes.push_back({{32, 32, 128, 128}, {}});
  414. shapes.push_back({{8, 256, 100, 100}, {}});
  415. shapes.push_back({{1, 256, 100, 100}, {}});
  416. shapes.push_back({{1, 32, 100, 100}, {}});
  417. shapes.push_back({{1, 256, 80, 80}, {}});
  418. shapes.push_back({{1, 256, 60, 60}, {}});
  419. shapes.push_back({{1, 256, 30, 30}, {}});
  420. param.window_h = param.window_w = 3;
  421. param.stride_h = param.stride_w = 2;
  422. param.pad_h = param.pad_w = 1;
  423. printf("Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n", param.window_h,
  424. param.window_w, param.stride_h, static_cast<int>(param.mode));
  425. benchmark_impl<Pooling>(param, shapes, RUNS, {4, {0, 1, 2, 3}}, {1, {0}}, dtype::Float32());
  426. benchmark_impl<Pooling>(param, shapes, RUNS, {4, {4, 5, 6, 7}}, {1, {4}}, dtype::Float32());
  427. benchmark_impl<Pooling>(param, shapes, RUNS, {2, {0, 1}}, {1, {0}}, dtype::Float32());
  428. }
  429. TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_POOLING_NCHW44) {
  430. constexpr size_t RUNS = 50;
  431. using Param = param::Pooling;
  432. Param param;
  433. param.pad_h = param.pad_w = 0;
  434. param.mode = Param::Mode::MAX;
  435. std::vector<SmallVector<TensorShape>> shapes;
  436. std::vector<std::vector<size_t>> filter_and_stride = {
  437. {2, 1}, {2, 2}, {3, 1}, {3, 2}, {4, 1}, {4, 2}, {5, 1}, {5, 2}};
  438. for(auto filter:filter_and_stride){
  439. shapes.push_back({{1, 32 * 4, 215, 215}, {}});
  440. shapes.push_back({{1, 32 * 4, 128, 128}, {}});
  441. shapes.push_back({{1, 16 * 4, 56, 56}, {}});
  442. param.window_h = param.window_w = filter[0];
  443. param.stride_h = param.stride_w = filter[1];
  444. param.format = Param::Format::NCHW;
  445. printf("NCHW Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n", param.window_h,
  446. param.window_h, param.stride_h, static_cast<int>(param.mode));
  447. benchmark_impl<Pooling>(param, shapes, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
  448. dtype::QuantizedS8(1.1f));
  449. shapes.clear();
  450. shapes.push_back({{1, 32, 215, 215,4}, {}});
  451. shapes.push_back({{1, 32, 128, 128,4}, {}});
  452. shapes.push_back({{1, 16, 56, 56, 4}, {}});
  453. param.format = Param::Format::NCHW44;
  454. printf("NCHW44 Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n", param.window_h,
  455. param.window_w, param.stride_h, static_cast<int>(param.mode));
  456. benchmark_impl<Pooling>(param, shapes, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
  457. dtype::QuantizedS8(1.1f));
  458. shapes.clear();
  459. }
  460. }
  461. #endif
  462. } // namespace test
  463. } // namespace megdnn
  464. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台