- # -*- coding: utf-8 -*-
- from typing import Iterable, Optional, Tuple, Union
-
- import numpy as np
-
- from ..core import _config
- from ..core._imperative_rt.core2 import apply
- from ..core.ops import builtin
- from ..core.tensor import megbrain_graph, utils
- from ..core.tensor.utils import astensor1d
- from ..tensor import Tensor
- from .elemwise import floor
- from .math import argsort
- from .tensor import broadcast_to, concat, expand_dims, reshape, transpose
-
- __all__ = [
- "correlation",
- "cvt_color",
- "interpolate",
- "nms",
- "nvof",
- "remap",
- "roi_align",
- "roi_pooling",
- "warp_affine",
- "warp_perspective",
- ]
-
-
- def cvt_color(inp: Tensor, mode: str = ""):
- r"""Convert images from one format to another
-
- Args:
- inp: input images.
- mode: format mode.
-
- Returns:
- convert result.
-
- Note:
- There are different supported modes for different combinations of :attr:`~.Tensor.device` and :attr:`~.Tensor.dtype`.
-
- x86/ARM:
-
- float32:
- "RGB2GRAY", "RGB2YUV", "YUV2RGB", "GRAY2RGB", "BGR2GRAY"
-
- uint8:
- "RGB2GRAY", "RGB2YUV", "YUV2RGB", "GRAY2RGB", "RGBA2RGB", "RGBA2BGR",
- "RGBA2GRAY", "RGB2BGR", "BGR2GRAY", "BGR2RGB", "YUV2GRAY_NV21", "YUV2RGB_NV21",
- "YUV2BGR_NV21", "YUV2GRAY_NV12", "YUV2RGB_NV12", "YUV2BGR_NV12", "YUV2GRAY_YV12",
- "YUV2RGB_YV12", "YUV2BGR_YV12", "YUV2GRAY_YU12", "YUV2RGB_YU12", "YUV2BGR_YU12",
- "YCrCb2RGB", "YCrCb2BGR", "BT601_YUV2RGB_NV21", "BT601_YUV2BGR_NV21", "BT601_YUV2RGB_NV12",
- "BT601_YUV2BGR_NV12", "BT601_YUV2RGB_YV12", "BT601_YUV2BGR_YV12" ,"BT601_YUV2RGB_YU12",
- "BT601_YUV2BGR_YU12"
-
-
- CUDA:
-
- float32:
- "RGB2GRAY", "BGR2GRAY", "RGB2YUV", "YUV2RGB", "GRAY2RGB"
-
- uint8:
- "RGB2GRAY", "BGR2GRAY", "RGB2YUV", "YUV2RGB", "GRAY2RGB",
- "YUV2GRAY_NV12", "YUV2GRAY_NV21", "YUV2GRAY_YU12"
- "YUV2GRAY_YV12", "YUV2RGB_NV12", "YUV2RGB_NV21", "YUV2BGR_NV12"
- "YUV2BGR_NV21", "YUV2RGB_YU12", "YUV2RGB_YV12", "YUV2BGR_YU12",
- "YUV2BGR_YV12"
-
-
- Examples:
- >>> import numpy as np
- >>> x = mge.tensor(np.array([[[[-0.58675045, 1.7526233, 0.10702174]]]]).astype(np.float32))
- >>> y = F.vision.cvt_color(x, mode="RGB2GRAY")
- >>> y.numpy()
- array([[[[0.86555195]]]], dtype=float32)
- """
- mode = mode.upper() if "YCrCb" not in mode else mode
- assert mode in builtin.CvtColor.Mode.__dict__, "unspport mode for cvt_color"
- mode = getattr(builtin.CvtColor.Mode, mode)
- assert isinstance(mode, builtin.CvtColor.Mode)
- op = builtin.CvtColor(mode=mode)
- (out,) = apply(op, inp)
- return out
-
-
- def roi_pooling(
- inp: Tensor,
- rois: Tensor,
- output_shape: Union[int, tuple, list],
- mode: str = "max",
- scale: float = 1.0,
- ) -> Tensor:
- r"""Applies RoI (Region of Interest) pooling on input feature, as described in Faster RCNN.
-
- .. seealso::
-
- * `Region of interest pooling explained <https://deepsense.ai/region-of-interest-pooling-explained/>`_
- * `Faster R-CNN <https://arxiv.org/abs/1506.01497>`_
-
- Args:
- inp: the input tensor that represents the input feature with ``(n, c, h, w)`` shape.
- rois: a tensor represents Regions of Interest with shape ``(K, 5)``, which means total ``K`` box coordinates in ``(idx, x1, y1, x2, y2)`` format where the regions will be taken from.
- The coordinate including ``(x1, y1)`` and ``(x2, y2)`` must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
- The first column ``idx`` should contain the index of the corresponding element in the input batch, i.e. a number in ``[0, n - 1]``.
- mode: "max" or "average", the pooling mode to be used. Default: "max"
- scale: It is a scale that maps output rois feature to input feature. For example, if the output is 224 * 224 image, and the input is a 112 * 112 feature map, then the scale should be set to 0.5. The default value is 1.0
-
- Returns:
- output tensor. ``(K, C, output_shape[0], output_shape[1])`` feature of rois.
-
- Examples:
- >>> import numpy as np
- >>> np.random.seed(42)
- >>> inp = Tensor(np.random.randn(1, 1, 128, 128))
- >>> rois = Tensor(np.random.random((4, 5)))
- >>> y = F.vision.roi_pooling(inp, rois, (2, 2))
- >>> y.numpy()[0].round(decimals=4)
- array([[[-0.1383, -0.1383],
- [-0.5035, -0.5035]]], dtype=float32)
- """
- assert mode.lower() in ["max", "average"], "only max/average mode is supported"
- if isinstance(output_shape, int):
- output_shape = (output_shape, output_shape)
-
- op = builtin.ROIPooling(mode=mode, scale=scale)
- result, _ = apply(
- op, inp, rois, Tensor(output_shape, dtype="int32", device=inp.device)
- )
- return result
-
-
- def correlation(
- data1: Tensor,
- data2: Tensor,
- kernel_size: int = 1,
- max_displacement: int = 1,
- stride1: int = 1,
- stride2: int = 1,
- pad_size: int = 0,
- is_multiply: bool = True,
- ) -> Tensor:
- r"""Applies correlation to inputs.
-
- Args:
- data1: Input data1 to the correlation. format must be nchw
- data2: Input data2 to the correlation. format must be nchw
- kernel_size: int (non-negative), optional, default=1) – kernel size for Correlation must be an odd number
- max_displacement: int (non-negative), optional, default=1) – Max displacement of Correlation
- stride1: int (non-negative), optional, default=1) – stride1 quantize data1 globally
- stride2: int (non-negative), optional, default=1) – stride2 quantize data2 within the neighborhood centered around data1
- pad_size: int (non-negative), optional, default=0) – pad for Correlation
- is_multiply: boolean, optional, default=True) – operation type is either multiplication or absolute difference
- """
- # Currently correlation only support NCHW mode
- format = "NCHW"
-
- op = builtin.Correlation(
- format=format,
- kernel_size=kernel_size,
- max_displacement=max_displacement,
- stride1=stride1,
- stride2=stride2,
- pad_size=pad_size,
- is_multiply=is_multiply,
- )
-
- result, *_ = apply(op, data1, data2)
- return result
-
-
- def roi_align(
- inp: Tensor,
- rois: Tensor,
- output_shape: Union[int, tuple, list],
- mode: str = "average",
- spatial_scale: float = 1.0,
- sample_points: Union[int, tuple, list] = 2,
- aligned: bool = True,
- ) -> Tensor:
- r"""Applies RoI (Region of Interest) align on input feature, as described in Mask R-CNN.
-
- .. seealso::
-
- * `RoIAlign <https://paperswithcode.com/method/roi-align>`_
- * `Mask R-CNN <https://arxiv.org/abs/1703.06870v3>`_
-
- Args:
- inp: the input tensor that represents the input feature with ``(n, c, h, w)`` shape.
- rois: a tensor represents Regions of Interest with shape ``(K, 5)``, which means total ``K`` box coordinates in ``(idx, x1, y1, x2, y2)`` format where the regions will be taken from.
- The coordinate including ``(x1, y1)`` and ``(x2, y2)`` must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
- The first column ``idx`` should contain the index of the corresponding element in the input batch, i.e. a number in ``[0, n - 1]``.
- output_shape: ``(height, width)`` shape of output rois feature.
- mode: "max" or "average", use max/average align just like max/average pooling. Default: "average"
- spatial_scale: scale the input boxes by this number. Default: 1.0
- sample_points: number of inputs samples to take for each output sample.
- 0 to take samples densely. Default: 2
- aligned: wheather to align the input feature, with ``aligned=True``,
- we first appropriately scale the ROI and then shift it by -0.5. Default: True
-
- Returns:
- output tensor.
-
- Examples:
- >>> import numpy as np
- >>> np.random.seed(42)
- >>> inp = Tensor(np.random.randn(1, 1, 128, 128))
- >>> rois = Tensor(np.random.random((4, 5)))
- >>> y = F.vision.roi_align(inp, rois, (2, 2))
- >>> y.numpy()[0].round(decimals=4)
- array([[[0.175 , 0.175 ],
- [0.1359, 0.1359]]], dtype=float32)
- """
- if inp.dtype != np.float32:
- inp = inp.astype(np.float32)
- mode = mode.lower()
- assert mode in ["max", "average"], "only max/average mode is supported"
- if isinstance(output_shape, int):
- output_shape = (output_shape, output_shape)
- pooled_height, pooled_width = output_shape
- if isinstance(sample_points, int):
- sample_points = (sample_points, sample_points)
- sample_height, sample_width = sample_points
- offset = 0.5 if aligned else 0.0
-
- # Currently roi_align only support NCHW mode
- format = "NCHW"
-
- op = builtin.ROIAlign(
- mode=mode,
- format=format,
- spatial_scale=spatial_scale,
- offset=offset,
- pooled_height=pooled_height,
- pooled_width=pooled_width,
- sample_height=sample_height,
- sample_width=sample_width,
- )
- result, *_ = apply(op, inp, rois)
- return result
-
-
- def nms(
- boxes: Tensor, scores: Tensor, iou_thresh: float, max_output: Optional[int] = None
- ) -> Tensor:
- r"""Performs non-maximum suppression (NMS) on the boxes according to their intersection-over-union(IoU).
-
- Args:
- boxes: tensor of shape ``(N, 4)``; the boxes to perform nms on; each box is expected to be in ``(x1, y1, x2, y2)`` format.
- iou_thresh: IoU threshold for overlapping.
- scores: tensor of shape ``(N,)``, the score of boxes.
- max_output: the maximum number of boxes to keep; it is optional if this operator is not traced
- otherwise it required to be specified; if it is not specified, all boxes are kept.
-
- Returns:
- indices of the elements that have been kept by NMS, sorted by scores.
-
- Note:
- max_output should be specified and should have valid positive value under tracing.
-
- Examples:
- >>> import numpy as np
- >>> x = np.zeros((100,4))
- >>> np.random.seed(42)
- >>> x[:,:2] = np.random.rand(100,2)*20
- >>> x[:,2:] = np.random.rand(100,2)*20 + 100
- >>> scores = Tensor(np.random.rand(100))
- >>> inp = Tensor(x)
- >>> F.vision.nms(inp, scores, iou_thresh=0.7)
- Tensor([75 69], dtype=int32, device=xpux:0)
- """
- assert (
- boxes.ndim == 2 and boxes.shape[1] == 4
- ), "the expected shape of boxes is (N, 4)"
- assert scores.ndim == 1, "the expected shape of scores is (N,)"
- assert (
- boxes.shape[0] == scores.shape[0]
- ), "number of boxes and scores are not matched"
-
- boxes = boxes.detach()
- scores = scores.detach()
- sorted_idx = argsort(scores, descending=True)
- boxes = boxes[sorted_idx]
-
- if max_output is None:
- max_output = boxes.shape[0]
-
- op = builtin.NMSKeep(iou_thresh, max_output)
- inp = (boxes.reshape(1, -1, 4),)
- indices, count = apply(op, *inp)
- indices = indices[0][: count[0]]
- keep_inds = sorted_idx[indices]
- return keep_inds
-
-
- def remap(
- inp: Tensor,
- map_xy: Tensor,
- border_mode: str = "replicate",
- scalar: float = 0.0,
- interp_mode: str = "linear",
- ) -> Tensor:
- r"""Applies remap transformation to batched 2D images. Remap is an operation that relocates pixels in a image to another location in a new image.
-
- The input images are transformed to the output images by the tensor ``map_xy``.
- The output's H and W are same as ``map_xy``'s H and W.
-
- Args:
- inp: input image, its shape represents ``[b, c, in_h, in_w]``.
- map_xy: transformation matrix, its shape shoule be ``[b, o_h, o_w, 2]``. The shape of output is determined by o_h and o_w.
- For each element in output, its value is determined by inp and ``map_xy``.
- ``map_xy[..., 0]`` and ``map_xy[..., 1]`` are the positions of
- the current element in inp, respectively. Therefore, their ranges are ``[0, in_w - 1]`` and ``[0, in_h - 1]``.
- border_mode: pixel extrapolation method. Default: "replicate". Currently also support "constant", "reflect", "reflect_101", "wrap".
- "replicate": repeatedly fills the edge pixel values of the duplicate image, expanding the new boundary pixel values with
- the edge pixel values.
- "constant": fills the edges of the image with a fixed numeric value.
- scalar: value used in case of a constant border. Default: 0
- interp_mode: interpolation methods. Default: "linear". Currently also support "nearest" mode.
-
- Returns:
- output tensor. [b, c, o_h, o_w]
-
- Examples:
- >>> import numpy as np
- >>> inp_shape = (1, 1, 4, 4)
- >>> inp = Tensor(np.arange(16, dtype=np.float32).reshape(inp_shape))
- >>> map_xy_shape = (1, 2, 2, 2)
- >>> map_xy = Tensor(np.array([[[1., 0.],[0., 1.]],
- ... [[0., 1.],[0., 1.]]],
- ... dtype=np.float32).reshape(map_xy_shape))
- >>> out = F.vision.remap(inp, map_xy)
- >>> out.numpy()
- array([[[[1., 4.],
- [4., 4.]]]], dtype=float32)
- """
- format = "NCHW"
-
- op = builtin.Remap(
- imode=interp_mode, border_type=border_mode, format=format, scalar=scalar
- )
- assert isinstance(inp, (Tensor, megbrain_graph.VarNode)), "inp must be Tensor type"
- (result,) = apply(op, inp, map_xy)
- return result
-
-
- def warp_affine(
- inp: Tensor,
- mat: Tensor,
- out_shape: Union[Tuple[int, int], int, Tensor],
- border_mode: str = "replicate",
- border_val: float = 0.0,
- format: str = "NHWC",
- interp_mode: str = "linear",
- ) -> Tensor:
- r"""Batched affine transformation on 2D images. Affine transformation is a linear transformation between two-dimensional coordinates.
-
- Args:
- inp: input image.
- mat: `(batch, 2, 3)` transformation matrix.
- out_shape: output tensor shape.
- border_mode: pixel extrapolation method.
- Default: "replicate". Currently "constant", "reflect",
- "reflect_101", "isolated", "wrap", "replicate", "transparent" are supported.
- border_val: value used in case of a constant border. Default: 0
- format: NHWC" as default based on historical concerns,
- "NCHW" is also supported. Default: "NHWC".
- interp_mode: interpolation methods. Could be "linear", "nearest", "cubic", "area".
- Default: "linear".
-
- Returns:
- output tensor.
-
- Note:
- Here all available options for params are listed,
- however it does not mean that you can use all the combinations.
- On different platforms, different combinations are supported.
- ``warp_affine`` only support forward inference, Please refer to ``warp_perspective`` if backward is needed.
- """
- op = builtin.WarpAffine(
- border_mode=border_mode,
- border_val=border_val,
- format=format,
- imode=interp_mode,
- )
- out_shape = utils.astensor1d(out_shape, inp, dtype="int32", device=inp.device)
- (result,) = apply(op, inp, mat, out_shape)
- return result
-
-
- def warp_perspective(
- inp: Tensor,
- mat: Tensor,
- out_shape: Union[Tuple[int, int], int, Tensor],
- mat_idx: Optional[Union[Iterable[int], Tensor]] = None,
- border_mode: str = "replicate",
- border_val: float = 0.0,
- format: str = "NCHW",
- interp_mode: str = "linear",
- ) -> Tensor:
- r"""Applies perspective transformation to batched 2D images. A perspective transformation is a projection of a image onto a new view plane.
-
- The input images are transformed to the output images by the transformation matrix:
-
- .. math::
- \text{output}(n, c, h, w) = \text{input} \left( n, c,
- \frac{M_{00}w + M_{01}h + M_{02}}{M_{20}w + M_{21}h + M_{22}},
- \frac{M_{10}w + M_{11}h + M_{12}}{M_{20}w + M_{21}h + M_{22}}
- \right)
-
- Optionally, we can set ``mat_idx`` to assign different transformations to the same image,
- otherwise the input images and transformations should be one-to-one correnspondence.
-
- Args:
- inp: input image.
- mat: ``(batch, 3, 3)`` transformation matrix.
- out_shape: ``(h, w)`` size of the output image.
- mat_idx: image batch idx assigned to each matrix. Default: None
- border_mode: pixel extrapolation method.
- Default: "replicate". Currently also support "constant", "reflect",
- "reflect_101", "wrap".
- border_val: value used in case of a constant border. Default: 0
- format: NHWC" is also supported. Default: "NCHW".
- interp_mode: interpolation methods.
- Default: "linear". Currently only support "linear" mode.
-
- Returns:
- output tensor.
-
- Note:
- The transformation matrix is the inverse of that used by ``cv2.warpPerspective``.
-
- Examples:
- >>> import numpy as np
- >>> inp_shape = (1, 1, 4, 4)
- >>> x = Tensor(np.arange(16, dtype=np.float32).reshape(inp_shape))
- >>> M_shape = (1, 3, 3)
- >>> # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1)
- >>> M = Tensor(np.array([[1., 0., 1.],
- ... [0., 1., 1.],
- ... [0., 0., 1.]], dtype=np.float32).reshape(M_shape))
- >>> out = F.vision.warp_perspective(x, M, (2, 2))
- >>> out.numpy()
- array([[[[ 5., 6.],
- [ 9., 10.]]]], dtype=float32)
- """
- if inp.dtype == np.float32:
- mat = mat.astype("float32")
- if inp.dtype == np.float16:
- inp = inp.astype("float32")
- op = builtin.WarpPerspective(
- imode=interp_mode, bmode=border_mode, format=format, border_val=border_val
- )
- out_shape = astensor1d(out_shape, inp, dtype="int32", device=inp.device)
- if mat_idx is not None:
- mat_idx = astensor1d(mat_idx, inp, dtype="int32", device=inp.device)
- (result,) = apply(op, inp, mat, mat_idx, out_shape)
- return result
- (result,) = apply(op, inp, mat, out_shape)
- return result
-
-
- def interpolate(
- inp: Tensor,
- size: Optional[Union[int, Tuple[int, int]]] = None,
- scale_factor: Optional[Union[float, Tuple[float, float]]] = None,
- mode: str = "bilinear",
- align_corners: Optional[bool] = None,
- ) -> Tensor:
- r"""Down/up samples the input tensor to either the given size or with the given scale_factor. ``size`` can not coexist with ``scale_factor``.
-
- Args:
- inp: input tensor.
- size: the size of the output tensor. Default: None
- scale_factor: scaling factor of the output tensor. Default: None
- mode: interpolation methods, acceptable values are:
- "bilinear", "linear", "bicubic" and "nearest". Default: "bilinear"
- align_corners: This only has an effect when ``mode``
- is "bilinear" or "linear". Geometrically, we consider the pixels of the input
- and output as squares rather than points. If set to ``True``, the input
- and output tensors are aligned by the center points of their corner
- pixels, preserving the values at the corner pixels. If set to ``False``,
- the input and output tensors are aligned by the corner points of their
- corner pixels, and the interpolation uses edge value padding for
- out-of-boundary values, making this operation *independent* of input size
-
- Returns:
- output tensor
-
- Examples:
- >>> import numpy as np
- >>> x = Tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))
- >>> out = F.vision.interpolate(x, [4, 4], align_corners=False)
- >>> out.numpy()
- array([[[[1. , 1.25, 1.75, 2. ],
- [1.5 , 1.75, 2.25, 2.5 ],
- [2.5 , 2.75, 3.25, 3.5 ],
- [3. , 3.25, 3.75, 4. ]]]], dtype=float32)
- >>> out2 = F.vision.interpolate(x, scale_factor=2.)
- >>> np.testing.assert_allclose(out.numpy(), out2.numpy())
- """
- mode = mode.lower()
- if mode not in ["bilinear", "linear", "bicubic", "nearest"]:
- raise ValueError("unsupported interpolate mode: {}".format(mode))
- if mode not in ["bilinear", "linear"]:
- if align_corners is not None:
- raise ValueError(
- "align_corners option can only be set in the bilinear/linear interpolating mode"
- )
- else:
- if align_corners is None:
- align_corners = False
-
- if mode == "linear":
- inp = expand_dims(inp, 3)
-
- if inp.ndim != 4:
- raise ValueError("shape of input tensor must correspond to the operartion mode")
-
- def get_dsize(scale_factor):
- if isinstance(scale_factor, (float, int)):
- scale_factor = float(scale_factor)
- if mode == "linear":
- scale_factor = (scale_factor, float(1))
- else:
- scale_factor = (scale_factor, scale_factor)
- else:
- if mode == "linear":
- raise ValueError(
- "under linear mode, scale_factor can only be single value"
- )
-
- assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )"
- assert isinstance(scale_factor[0], float) and isinstance(
- scale_factor[1], float
- ), "scale_factor must be float type"
- dsize = tuple(
- floor(
- Tensor(
- inp.shape[i + 2] * scale_factor[i],
- dtype="float32",
- device=inp.device,
- )
- )
- for i in range(2)
- )
- dsize = concat([dsize[0], dsize[1]], axis=0)
- return dsize
-
- if size is None:
- if scale_factor is None:
- raise ValueError("scale_factor must not be None when size is None")
- dsize = get_dsize(scale_factor)
-
- else:
- if scale_factor is not None:
- raise ValueError("scale_factor must be None when size is provided")
-
- if isinstance(size, int):
- size = (size, 1)
- else:
- if mode == "linear":
- raise ValueError("under linear mode, size can only be single value")
- dsize = size
-
- if not align_corners:
- # fastpath for interpolate
- mode_map = {
- "linear": "linear",
- "bilinear": "linear",
- "nearest": "nearest",
- "bicubic": "cubic",
- }
- if inp.dtype == np.float16:
- inp = inp.astype("float32")
- # Currently resize only support NCHW mode
- format = "NCHW"
- op = builtin.Resize(imode=mode_map[mode], format=format)
- shape = astensor1d(dsize, inp, dtype="int32", device=inp.device)
- (ret,) = apply(op, inp, shape)
- else:
- assert mode in [
- "linear",
- "bilinear",
- ], "align_corners only support linear or bilinear mode"
- oh, ow = dsize[0], dsize[1]
- ih, iw = inp.shape[2], inp.shape[3]
- hscale = (ih - 1.0) / (oh - 1.0)
- wscale = 1.0 * iw / ow
- if mode != "linear":
- wscale = (iw - 1.0) / (ow - 1.0)
- row0 = concat(
- [
- Tensor(wscale, dtype="float32", device=inp.device),
- Tensor([0, 0], dtype="float32", device=inp.device),
- ],
- axis=0,
- ).reshape(1, 3)
- zeros = Tensor([0], dtype="float32", device=inp.device)
- row1 = concat(
- [zeros, Tensor(hscale, dtype="float32", device=inp.device), zeros], axis=0,
- ).reshape(1, 3)
- weight = concat(
- [row0, row1, Tensor([[0, 0, 1]], dtype="float32", device=inp.device)],
- axis=0,
- ).reshape(1, 3, 3)
- weight = broadcast_to(weight, (inp.shape[0], 3, 3))
-
- ret = warp_perspective(inp, weight, dsize, interp_mode="linear")
-
- if mode == "linear":
- ret = reshape(ret, ret.shape[0:3])
- return ret
-
-
- def nvof(src: Tensor, precision: int = 1) -> Tensor:
- r"""Implements NVIDIA Optical Flow SDK.
-
- Args:
- src: input tensor with shape (n, t, h, w, c4) and unit8 dtype.
- precision: 0:NV_OF_PERF_LEVEL_SLOW 1:NV_OF_PERF_LEVEL_MEDIUM 2:NV_OF_PERF_LEVEL_FAST.
-
- Returns:
- output tensor with shape: ``(n, t-1, (h+out_grid_size-1)//out_grid_size, (w+out_grid_size-1)//out_grid_size, c2)``.
- By default, out_grid_size = 4. dtype: int16.
- """
- assert src.ndim == 5 and src.shape[4] == 4
-
- src = src.detach()
-
- op = builtin.NvOf(precision=precision)
- return apply(op, src)[0]
|