|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029 |
- /**
- * \file dnn/test/arm_common/conv_bias_multi_thread.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
- #include "test/arm_common/fixture.h"
- #include "test/common/benchmarker.h"
- #include "test/common/conv_bias.h"
-
- using namespace megdnn;
- using namespace test;
- using namespace conv_bias;
-
- std::vector<conv_bias::TestArg> get_int8_quint8_conv_bias_args(
- std::vector<size_t> kernel, size_t stride, bool no_pad, bool no_bias,
- bool no_nonlinemode) {
- using namespace conv_bias;
- using Param = param::ConvBias;
- using NLMode = param::ConvBias::NonlineMode;
- std::vector<TestArg> args;
-
- auto pack = [&](size_t n, size_t oc, size_t ic, size_t w, size_t h,
- size_t kernel, size_t stride, NLMode nlmode) {
- Param param;
- param.stride_h = stride;
- param.stride_w = stride;
- if (!no_pad) {
- param.pad_h = kernel / 2;
- param.pad_w = kernel / 2;
- } else {
- param.pad_h = 0;
- param.pad_w = 0;
- }
- param.nonlineMode = nlmode;
-
- args.emplace_back(param, TensorShape{n, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- if (!no_bias) {
- args.emplace_back(param, TensorShape{n, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- }
- };
-
- std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
- if (!no_nonlinemode) {
- nonlinemode.emplace_back(NLMode::RELU);
- nonlinemode.emplace_back(NLMode::H_SWISH);
- }
-
- for (size_t n : {1, 2}) {
- for (auto nlmode : nonlinemode) {
- for (size_t ic : {1, 3, 7}) {
- for (size_t oc : {1, 3, 7}) {
- for (size_t size : {4, 6, 8, 14, 16, 18}) {
- for (size_t kern : kernel) {
- pack(n, oc, ic, size, size, kern, stride, nlmode);
- }
- }
- }
- }
- }
- }
- return args;
- }
- std::vector<conv_bias::TestArg> get_nchw44_conv_bias_args(
- std::vector<size_t> kernel_vec, size_t stride, bool no_pad = false,
- bool no_bias = false, bool no_nonlinemode = false,
- bool is_input_nchw = false, bool is_nchw44_dot = false,
- bool support_full_bias = false, bool support_sigmoid = false,
- bool only_no_bias = false) {
- using namespace conv_bias;
- using NLMode = param::ConvBias::NonlineMode;
-
- std::vector<TestArg> args;
- MEGDNN_MARK_USED_VAR(no_pad);
-
- auto pack = [&](size_t n, size_t oc, size_t ic, size_t h, size_t w,
- size_t kernel, size_t stride, size_t group, NLMode nlmode,
- megdnn::BiasMode bias_mode, int any_pad = -1) {
- constexpr int pack_c = 4;
- const size_t pad = any_pad >= 0 ? any_pad : kernel / 2;
- auto oc_per_group = oc / group;
- auto ic_per_group = ic / group;
- bool ok_group = (oc % group == 0 && ic % group == 0) &&
- oc_per_group % pack_c == 0 && oc_per_group > 0 &&
- ic_per_group > 0;
- bool nchw_disable = group > 1 || ic_per_group >= 4;
- bool nchw44_disable = ic_per_group % pack_c != 0;
- bool invalid_pad = (w + 2 * pad < kernel) || (h + 2 * pad < kernel);
- if (!(ok_group) || invalid_pad) {
- return;
- }
- if ((is_input_nchw && nchw_disable) ||
- (!is_input_nchw && nchw44_disable)) {
- return;
- }
-
- size_t kernel_h = kernel;
- size_t kernel_w = kernel;
- param::ConvBias param;
- if (!is_nchw44_dot) {
- param.format = param::ConvBias::Format::NCHW44;
- } else {
- param.format = param::ConvBias::Format::NCHW44_DOT;
- }
- param.stride_h = stride;
- param.stride_w = stride;
- param.pad_h = pad;
- param.pad_w = pad;
- param.nonlineMode = nlmode;
-
- auto src_tensor_shape = TensorShape{n, ic / pack_c, h, w, pack_c};
- auto weight_tensor_shape = TensorShape{
- oc / pack_c, ic / pack_c, kernel_h, kernel_w, pack_c, pack_c};
- auto bias_tensor_shape = TensorShape{};
- if (bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) {
- bias_tensor_shape = {1, oc / pack_c, 1, 1, pack_c};
- } else if (bias_mode == megdnn::BiasMode::BIAS) {
- bias_tensor_shape = {n, oc / pack_c,
- (h + 2 * pad - kernel) / stride + 1,
- (w + 2 * pad - kernel) / stride + 1, pack_c};
- }
- if (group == 1) {
- param.sparse = param::ConvBias::Sparse::DENSE;
- } else if (group > 1 && ic / group == 1 && oc / group == 1) {
- megdnn_assert(0, "not support channel wise");
- param.sparse = param::ConvBias::Sparse::GROUP;
- weight_tensor_shape = TensorShape{group / pack_c, 1, 1,
- kernel_h, kernel_w, pack_c};
- } else if (group > 1 && oc_per_group % pack_c == 0 && oc / group > 0 &&
- ic_per_group % pack_c == 0 && ic / group > 0) {
- param.sparse = param::ConvBias::Sparse::GROUP;
- weight_tensor_shape = TensorShape{group,
- oc_per_group / pack_c,
- ic_per_group / pack_c,
- kernel_h,
- kernel_w,
- pack_c,
- pack_c};
- }
- if (is_input_nchw) {
- src_tensor_shape = TensorShape{n, ic, h, w};
- weight_tensor_shape =
- TensorShape{oc / pack_c, kernel_h, kernel_w, ic, pack_c};
- }
- args.emplace_back(param, src_tensor_shape, weight_tensor_shape,
- bias_tensor_shape);
- };
-
- std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
- if (!no_nonlinemode) {
- nonlinemode.emplace_back(NLMode::RELU);
- nonlinemode.emplace_back(NLMode::H_SWISH);
- }
- if (support_sigmoid) {
- nonlinemode.emplace_back(NLMode::SIGMOID);
- }
-
- std::vector<megdnn::BiasMode> bias_mode;
- if (!only_no_bias) {
- bias_mode.emplace_back(megdnn::BiasMode::BROADCAST_CHANNEL_BIAS);
- if (no_bias) {
- bias_mode.emplace_back(megdnn::BiasMode::NO_BIAS);
- }
- } else {
- bias_mode.emplace_back(megdnn::BiasMode::NO_BIAS);
- }
- if (support_full_bias) {
- bias_mode.emplace_back(megdnn::BiasMode::BIAS);
- }
- for (auto bias : bias_mode)
- for (auto nlmode : nonlinemode)
- for (size_t n : {1, 2})
- for (size_t kernel : kernel_vec)
- for (size_t oc : {4, 12})
- for (size_t ic : {1, 3, 4, 12})
- for (size_t h : {1, 3, 12})
- for (size_t w : {1, 16, 23}) {
- for (size_t group = 1;
- group <=
- std::min(std::min(oc, ic), 4_z);
- ++group) {
- if (kernel != 1 && (h == 1 || w == 1)) {
- continue;
- }
- pack(n, oc, ic, h, w, kernel, stride,
- group, nlmode, bias);
- }
- }
- return args;
- }
-
- std::vector<conv_bias::TestArg> get_nchw44_channel_wise_args(
- std::vector<size_t> kernel, size_t stride, bool no_bias,
- bool no_nonlinemode, bool no_full_bias) {
- using namespace conv_bias;
- using Param = param::ConvBias;
- using NLMode = param::ConvBias::NonlineMode;
- std::vector<TestArg> args;
-
- auto pack = [&](size_t n, size_t group, size_t w, size_t h, size_t kernel,
- size_t stride, NLMode nlmode, bool pad) {
- Param param;
- param.stride_h = stride;
- param.stride_w = stride;
- if (pad) {
- param.pad_h = kernel / 2;
- param.pad_w = kernel / 2;
- } else {
- param.pad_h = 0;
- param.pad_w = 0;
- }
- param.nonlineMode = nlmode;
- param.format = param::ConvBias::Format::NCHW44;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- args.emplace_back(param, TensorShape{n, group, h, w, 4},
- TensorShape{group, 1, 1, kernel, kernel, 4},
- TensorShape{});
- if (!no_bias) {
- args.emplace_back(param, TensorShape{n, group, h, w, 4},
- TensorShape{group, 1, 1, kernel, kernel, 4},
- TensorShape{1, group, 1, 1, 4});
- }
- if (!no_full_bias) {
- args.emplace_back(
- param, TensorShape{n, group, h, w, 4},
- TensorShape{group, 1, 1, kernel, kernel, 4},
- TensorShape{n, group,
- (h + 2 * param.pad_w - kernel) / stride + 1,
- (w + 2 * param.pad_w - kernel) / stride + 1,
- 4});
- }
- };
-
- std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
- if (!no_nonlinemode) {
- nonlinemode.emplace_back(NLMode::RELU);
- nonlinemode.emplace_back(NLMode::H_SWISH);
- }
- for (size_t n : {1, 2}) {
- for (auto nlmode : nonlinemode) {
- for (bool pad : {true}) {
- for (size_t group : {1, 2, 4, 7, 128}) {
- for (size_t size : {4, 6, 7, 9, 15, 40}) {
- for (size_t kern : kernel) {
- pack(n, group, size, size, kern, stride, nlmode,
- pad);
- }
- }
- }
- }
- for (bool pad : {false}) {
- for (size_t group : {1, 2, 7, 128}) {
- for (size_t size : {7, 9, 15, 40}) {
- for (size_t kern : kernel) {
- pack(n, group, size, size, kern, stride, nlmode,
- pad);
- }
- }
- }
- }
- }
- }
- return args;
- }
-
- void checker_conv_bias_qint8x8x8(std::vector<conv_bias::TestArg> args,
- Handle* handle, const char* algo_name) {
- Checker<ConvBias> checker(handle);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
- #if MEGDNN_ARMV7
- checker.set_epsilon(1);
- #endif
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::QuantizedS8(0.41113496f))
- .set_dtype(1, dtype::QuantizedS8(0.01887994f))
- .set_dtype(2, dtype::QuantizedS32(0.41113496f * 0.01887994f))
- .set_dtype(4, dtype::QuantizedS8(0.49550694f))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
- }
- }
- void checker_conv_bias_qint8x8x32(std::vector<conv_bias::TestArg> args,
- Handle* handle, const char* algo_name) {
- Checker<ConvBias> checker(handle);
-
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, {});
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
- }
- }
- void checker_conv_bias_quint8x8x8(std::vector<conv_bias::TestArg> args,
- Handle* handle, const char* algo_name) {
- Checker<ConvBias> checker(handle);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
- UniformIntRNG rng(0, 255);
- checker.set_dtype(0, dtype::Quantized8Asymm(0.2f, 100))
- .set_dtype(1, dtype::Quantized8Asymm(0.2f, 120))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4, dtype::Quantized8Asymm(1.4f, 110))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
-
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
- }
- }
- void checker_conv_bias_quint8x8x32(std::vector<conv_bias::TestArg> args,
- Handle* handle, const char* algo_name) {
- Checker<ConvBias> checker(handle);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
-
- NormalRNG rng(128.f);
- checker.set_rng(0, &rng).set_rng(1, &rng);
- checker.set_dtype(0, dtype::Quantized8Asymm(1.2f, (uint8_t)127))
- .set_dtype(1, dtype::Quantized8Asymm(1.3f, (uint8_t)129))
- .set_dtype(2, dtype::QuantizedS32(1.2 * 1.3))
- .set_dtype(4, {});
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
- }
- }
- void checker_conv_bias_int8x8x32_multi(std::vector<conv_bias::TestArg> args,
- Handle* handle, const char* algo_name) {
- Checker<ConvBias> checker(handle);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
- checker.set_dtype(0, dtype::Int8());
- checker.set_dtype(1, dtype::Int8());
- checker.set_dtype(2, dtype::Int32());
- checker.set_dtype(4, dtype::Int32());
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
- }
- }
-
- /**********************************F32 direct************************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32) {
- check_conv_bias(
- get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
- handle(), "F32DIRECT");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S1_K7) {
- check_conv_bias(get_nchw44_conv_bias_args({7}, 1, false, true, true, false,
- false, false),
- handle(), "F32_CONV_NCHW44_DIRECT");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S1_K2K3) {
- check_conv_bias(get_nchw44_conv_bias_args({2, 3}, 1, false, false, false,
- false, false, true, true),
- handle(), "F32_CONV_NCHW44_DIRECT");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S1_K5) {
- check_conv_bias(get_nchw44_conv_bias_args({5}, 1, false, false, false,
- false, false, true, true),
- handle(), "F32_CONV_NCHW44_DIRECT");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S2) {
- check_conv_bias(get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false,
- false, false, false, true, true),
- handle(), "F32_CONV_NCHW44_DIRECT");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR1) {
- check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 1, false, false, false),
- handle(), "F32STRD1");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR2) {
- check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 2, false, false, false),
- handle(), "F32STRD2");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_NCHW_NCHW44_F32_S2) {
- check_conv_bias(get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false,
- false, true),
- handle(), "F32_CONV_NCHW_NCHW44");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_NCHW_NCHW44_F32_S1) {
- check_conv_bias(get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false,
- false, true),
- handle(), "F32_CONV_NCHW_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_CHANNEL_WISE_STRIDE1_FP32_NCHW44_1) {
- check_conv_bias(
- get_nchw44_channel_wise_args({2, 3}, 1, false, false, false),
- handle(), "F32_CHANNEL_WISE_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_CHANNEL_WISE_STRIDE1_FP32_NCHW44_2) {
- check_conv_bias(get_nchw44_channel_wise_args({5}, 1, false, false, false),
- handle(), "F32_CHANNEL_WISE_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_CHANNEL_WISE_STRIDE2_FP32_NCHW44) {
- check_conv_bias(
- get_nchw44_channel_wise_args({2, 3, 5}, 2, false, false, false),
- handle(), "F32_CHANNEL_WISE_NCHW44");
- }
-
- /**********************************F16 direct************************/
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16) {
- NormalRNG rng(1);
- checker_conv_bias_f16(
- get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
- handle(), rng, "F16DIRECT", 0.03);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_STR1) {
- NormalRNG rng(1);
- checker_conv_bias_f16(get_conv_bias_args({2, 3, 5}, 1, false, false, false),
- handle(), rng, "F16STRD1", 0.03);
- }
- #endif
-
- /**********************************algo 8816 direct************************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_DIRECT) {
- checker_conv_bias_int8x8x16(
- get_conv_bias_args({2, 3, 5}, 1, false, true, true), handle(),
- "I8816DIRECT");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_STRIDE2) {
- checker_conv_bias_int8x8x16(
- get_conv_bias_args({2, 3, 5}, 2, false, true, true), handle(),
- "I8816STRD2");
- }
-
- /**********************************algo 8-8-32 direct************************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE1) {
- checker_conv_bias_int8x8x32_multi(
- get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
- "S8STRD1");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE2) {
- checker_conv_bias_int8x8x32_multi(
- get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
- "S8STRD2");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_INT8_INT8_INT32_CHANNEL_WISE_DIRECT1_NCHW44) {
- checker_conv_bias_int8x8x32_multi(
- get_nchw44_channel_wise_args({2, 3, 5}, 1, false, true, true),
- handle(), "S8_CHAN_WISE_STRD1_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_INT8_INT8_INT32_CHANNEL_WISE_DIRECT2_NCHW44) {
- checker_conv_bias_int8x8x32_multi(
- get_nchw44_channel_wise_args({2, 3, 5}, 2, false, true, true),
- handle(), "S8_CHAN_WISE_STRD2_NCHW44");
- }
-
- /********************************qint8 direct******************************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 1, false, false, false),
- handle(), "S8STRD1");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 2, false, false, false),
- handle(), "S8STRD2");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1_NCHW44) {
- checker_conv_bias_qint8x8x8(
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false, false),
- handle(), "S8_NCHW44_DIRECT");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1_NCHW44_8832) {
- checker_conv_bias_qint8x8x32(
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false, true),
- handle(), "S8_NCHW44_DIRECT");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2_NCHW44_8832) {
- checker_conv_bias_qint8x8x32(
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false, true),
- handle(), "S8_NCHW44_DIRECT");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2_NCHW44) {
- checker_conv_bias_qint8x8x8(
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false, false),
- handle(), "S8_NCHW44_DIRECT");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QS8_CHANNEL_WISE_DIRECT1_NCHW44) {
- checker_conv_bias_qint8x8x8(
- get_nchw44_channel_wise_args({2, 3, 5}, 1, false, false, true),
- handle(), "S8_CHAN_WISE_STRD1_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QS8_CHANNEL_WISE_DIRECT2_NCHW44) {
- checker_conv_bias_qint8x8x8(
- get_nchw44_channel_wise_args({2, 3, 5}, 2, false, false, true),
- handle(), "S8_CHAN_WISE_STRD2_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_NCHW_NCHW44_S1) {
- checker_conv_bias_qint8x8x8(
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false, false,
- true),
- handle(), "S8_CONV_NCHW_NCHW44");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_NCHW_NCHW44_S2) {
- checker_conv_bias_qint8x8x8(
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false, false,
- true),
- handle(), "S8_CONV_NCHW_NCHW44");
- }
-
- /*****************************quint8 direct****************************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE1) {
- checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 1, false, false, false),
- handle(), "QU8STRD1");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE2) {
- checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 2, false, false, false),
- handle(), "QU8STRD2");
- }
-
- /****************************dot qint8 direct*************************/
- #if __ARM_FEATURE_DOTPROD
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_DOT_NCHW_NCHW44) {
- auto args = get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false, false,
- true);
- for (auto&& arg : args) {
- arg.param.format = param::ConvBias::Format::NCHW44_DOT;
- }
- checker_conv_bias_qint8x8x8(args, handle(), "ARMDOTS8_NCHW_NCHW44");
-
- args = get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false, false,
- true);
- for (auto&& arg : args) {
- arg.param.format = param::ConvBias::Format::NCHW44_DOT;
- }
- checker_conv_bias_qint8x8x8(args, handle(), "ARMDOTS8_NCHW_NCHW44");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1_WITHDOTPROD) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 1, false, false, false),
- handle(), "ARMDOTS8STRD1");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2_WITHDOTPROD) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 2, false, false, false),
- handle(), "ARMDOTS8STRD2");
- }
- /****************************dot 8-8-32 direct*************************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD1_WITHDOT) {
- checker_conv_bias_qint8x8x32(
- get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
- "ARMDOTS8STRD1");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD2_WITHDOT) {
- checker_conv_bias_qint8x8x32(
- get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
- "ARMDOTS8STRD2");
- }
- /******************************dot quint8*****************************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE1_WITHDOTPROD) {
- checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 1, false, false, false),
- handle(), "ARMDOTU8STRD1");
- }
- //! TODO: this test without test kernel size=3, add it will case buss error now
- //! in armv7
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE2_WITHDOTPROD) {
- checker_conv_bias_quint8x8x8(
- get_int8_quint8_conv_bias_args({2, 5, 7}, 2, false, false, false),
- handle(), "ARMDOTU8STRD2");
- }
-
- /******************************dot quint8x8x32***********************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE1) {
- checker_conv_bias_quint8x8x32(
- get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
- "ARMDOTU8STRD1");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE2) {
- checker_conv_bias_quint8x8x32(
- get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
- "ARMDOTU8STRD2");
- }
- /******************************dot int8x8x8 nchw44 ***********************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_DIRECT_DOT_NCHW44_S1_Q8x8x8) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_nchw44_conv_bias_args({2, 3, 5, 7}, 1);
- for (auto&& arg : args)
- arg.param.format = param::ConvBias::Format::NCHW44_DOT;
- checker_conv_bias_qint8x8x8(args, handle(), "ARMDOTS8DIRECT_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_DIRECT_DOT_NCHW44_S1_Q8x8x32) {
- using namespace conv_bias;
- std::vector<TestArg> args =
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, true, true);
- for (auto&& arg : args)
- arg.param.format = param::ConvBias::Format::NCHW44_DOT;
- checker_conv_bias_qint8x8x32(args, handle(), "ARMDOTS8DIRECT_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_DIRECT_DOT_NCHW44_S1_8x8x32) {
- using namespace conv_bias;
- std::vector<TestArg> args =
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, true, true);
- for (auto&& arg : args)
- arg.param.format = param::ConvBias::Format::NCHW44_DOT;
- checker_conv_bias_int8x8x32_multi(args, handle(), "ARMDOTS8DIRECT_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_DIRECT_DOT_NCHW44_S2_Q8x8x8) {
- using namespace conv_bias;
- //! test qint8x8x8
- std::vector<TestArg> args = get_nchw44_conv_bias_args({2, 3, 5, 7}, 2);
- for (auto&& arg : args)
- arg.param.format = param::ConvBias::Format::NCHW44_DOT;
- checker_conv_bias_qint8x8x8(args, handle(), "ARMDOTS8DIRECT_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_DIRECT_DOT_NCHW44_S2_Q8x8x32) {
- using namespace conv_bias;
- //! test qint8x8x8
- std::vector<TestArg> args =
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, true, true);
- for (auto&& arg : args)
- arg.param.format = param::ConvBias::Format::NCHW44_DOT;
- checker_conv_bias_qint8x8x32(args, handle(), "ARMDOTS8DIRECT_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_DIRECT_DOT_NCHW44_S2_8x8x32) {
- using namespace conv_bias;
- //! test qint8x8x8
- std::vector<TestArg> args =
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, true, true);
- for (auto&& arg : args)
- arg.param.format = param::ConvBias::Format::NCHW44_DOT;
- checker_conv_bias_int8x8x32_multi(args, handle(), "ARMDOTS8DIRECT_NCHW44");
- }
-
- #endif
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F23_4) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args();
- Checker<ConvBiasForward> checker(handle());
-
- check_winograd("4:2:32", checker, args, param::MatrixMul::Format::MK4);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F23_4_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args();
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- check_winograd("4:2:32", checker, args, param::MatrixMul::Format::MK4);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F23_4_NCHW44) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_nchw44_conv_bias_args({3}, 1);
- Checker<ConvBiasForward> checker(handle());
- check_winograd("4:2:32", checker, args, param::MatrixMul::Format::MK4,
- param::ConvBias::Format::NCHW44);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_WINOGRAD_F23_4_NCHW44_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_nchw44_conv_bias_args({3}, 1);
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- check_winograd("4:2:32", checker, args, param::MatrixMul::Format::MK4,
- param::ConvBias::Format::NCHW44);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(3);
- Checker<ConvBiasForward> checker(handle());
-
- check_winograd("1:6:32", checker, args);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(3);
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- check_winograd("1:6:32", checker, args);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63_4) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args();
- Checker<ConvBiasForward> checker(handle());
-
- check_winograd("4:6:16", checker, args, param::MatrixMul::Format::MK4);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63_4_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args();
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
-
- check_winograd("4:6:16", checker, args, param::MatrixMul::Format::MK4);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63_4_NCHW44) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_nchw44_conv_bias_args({3}, 1);
- Checker<ConvBiasForward> checker(handle());
- check_winograd("4:6:16", checker, args, param::MatrixMul::Format::MK4,
- param::ConvBias::Format::NCHW44);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_WINOGRAD_F63_4_NCHW44_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_nchw44_conv_bias_args({3}, 1);
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- check_winograd("4:6:16", checker, args, param::MatrixMul::Format::MK4,
- param::ConvBias::Format::NCHW44);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F54) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(4);
- Checker<ConvBiasForward> checker(handle());
-
- check_winograd("1:5:32", checker, args);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F54_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(4);
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- check_winograd("1:5:32", checker, args);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F45) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(5);
- Checker<ConvBiasForward> checker(handle());
-
- check_winograd("1:4:32", checker, args);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F45_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(5);
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- check_winograd("1:4:32", checker, args);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(3);
-
- Checker<ConvBiasForward> checker(handle());
-
- auto extra_impl = [](const TensorNDArray& tensors, uint32_t m,
- param::ConvBias param, Handle* handle) {
- megdnn_assert(param.format == param::ConvBias::Format::NCHW);
- auto winograd_preprocess_opr =
- handle->create_operator<WinogradFilterPreprocess>();
- winograd_preprocess_opr->param().output_block_size = m;
- TensorLayout filter_transform_layout;
- winograd_preprocess_opr->deduce_layout(tensors[1].layout,
- filter_transform_layout);
- size_t winograd_preprocess_workspace_in_bytes =
- winograd_preprocess_opr->get_workspace_in_bytes(
- tensors[1].layout, filter_transform_layout);
-
- auto conv_bias_opr = handle->create_operator<ConvBias>();
- conv_bias_opr->param() = param;
- conv_bias_opr->param().format = param::ConvBias::Format::NCHW_WINOGRAD;
- conv_bias_opr->param().output_block_size = m;
- size_t conv_bias_workspace_in_bytes =
- conv_bias_opr->get_workspace_in_bytes(
- tensors[0].layout, filter_transform_layout,
- tensors[2].layout, tensors[3].layout, tensors[4].layout,
- nullptr);
-
- WorkspaceBundle wb(nullptr, {filter_transform_layout.span().dist_byte(),
- conv_bias_workspace_in_bytes,
- winograd_preprocess_workspace_in_bytes});
- wb.set(malloc(wb.total_size_in_bytes()));
-
- TensorND filter_transform_tensor(wb.get(0),
- std::move(filter_transform_layout));
- winograd_preprocess_opr->exec(tensors[1], filter_transform_tensor,
- wb.get_workspace(2));
- conv_bias_opr->exec(tensors[0], filter_transform_tensor, tensors[2],
- tensors[3], tensors[4], nullptr,
- wb.get_workspace(1));
-
- free(wb.ptr());
- };
-
- auto run = [&checker, &extra_impl](
- Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- const float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(extra_impl,
- std::placeholders::_1, m,
- arg.param, handle));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
- run(handle(), args, {6}, dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32(), 1e-3f);
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng);
- run(handle(), args, {6}, dtype::Float16(), dtype::Float16(),
- dtype::Float16(), dtype::Float16(), 0.35f);
- #endif
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_PREPROCESS_NCHW44) {
- using namespace conv_bias;
- std::vector<TestArg> nchw44_args = get_nchw44_conv_bias_args({3}, 1);
-
- Checker<ConvBiasForward> checker(handle());
-
- auto extra_impl = [](const TensorNDArray& tensors, uint32_t m,
- param::ConvBias param, Handle* handle) {
- megdnn_assert(param.format == param::ConvBias::Format::NCHW44);
- auto winograd_preprocess_opr =
- handle->create_operator<WinogradFilterPreprocess>();
- winograd_preprocess_opr->param().output_block_size = m;
- winograd_preprocess_opr->param().format = param::MatrixMul::Format::MK4;
- TensorLayout filter_transform_layout;
- winograd_preprocess_opr->deduce_layout(tensors[1].layout,
- filter_transform_layout);
- size_t winograd_preprocess_workspace_in_bytes =
- winograd_preprocess_opr->get_workspace_in_bytes(
- tensors[1].layout, filter_transform_layout);
-
- auto conv_bias_opr = handle->create_operator<ConvBias>();
- conv_bias_opr->param() = param;
- conv_bias_opr->param().format =
- param::ConvBias::Format::NCHW44_WINOGRAD;
- conv_bias_opr->param().output_block_size = m;
- size_t conv_bias_workspace_in_bytes =
- conv_bias_opr->get_workspace_in_bytes(
- tensors[0].layout, filter_transform_layout,
- tensors[2].layout, tensors[3].layout, tensors[4].layout,
- nullptr);
-
- WorkspaceBundle wb(nullptr, {filter_transform_layout.span().dist_byte(),
- conv_bias_workspace_in_bytes,
- winograd_preprocess_workspace_in_bytes});
- wb.set(malloc(wb.total_size_in_bytes()));
-
- TensorND filter_transform_tensor(wb.get(0),
- std::move(filter_transform_layout));
- winograd_preprocess_opr->exec(tensors[1], filter_transform_tensor,
- wb.get_workspace(2));
- conv_bias_opr->exec(tensors[0], filter_transform_tensor, tensors[2],
- tensors[3], tensors[4], nullptr,
- wb.get_workspace(1));
- free(wb.ptr());
- };
-
- auto run = [&checker, &extra_impl](
- Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- const float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(extra_impl,
- std::placeholders::_1, m,
- arg.param, handle));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
- run(handle(), nchw44_args, {2, 6}, dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32(), 1e-3f);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F32_1) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward> checker(handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- std::vector<TestArg> args_first_half(args.begin(),
- args.begin() + args.size() / 2);
- run(handle(), args_first_half, {2, 6}, dtype::Float32{}, dtype::Float32{},
- dtype::Float32{}, dtype::Float32{}, param::MatrixMul::Format::MK4,
- 1e-3f);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_WINOGRAD_MK_PACKED_F32_1_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- std::vector<TestArg> args_first_half(args.begin(),
- args.begin() + args.size() / 2);
- run(handle(), args_first_half, {2, 6}, dtype::Float32{}, dtype::Float32{},
- dtype::Float32{}, dtype::Float32{}, param::MatrixMul::Format::MK4,
- 1e-3f);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F32_2) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward> checker(handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- std::vector<TestArg> args_second_half(args.begin() + args.size() / 2,
- args.end());
- run(handle(), args_second_half, {2, 6}, dtype::Float32{}, dtype::Float32{},
- dtype::Float32{}, dtype::Float32{}, param::MatrixMul::Format::MK4,
- 1e-3f);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_WINOGRAD_MK_PACKED_F32_2_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- std::vector<TestArg> args_second_half(args.begin() + args.size() / 2,
- args.end());
- run(handle(), args_second_half, {2, 6}, dtype::Float32{}, dtype::Float32{},
- dtype::Float32{}, dtype::Float32{}, param::MatrixMul::Format::MK4,
- 1e-3f);
- }
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F16) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward> checker(handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
-
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng);
- run(handle(), args, {2}, dtype::Float16{}, dtype::Float16{},
- dtype::Float16{}, dtype::Float16{}, param::MatrixMul::Format::MK8,
- 0.25);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_WINOGRAD_MK_PACKED_F16_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
-
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng);
- run(handle(), args, {2}, dtype::Float16{}, dtype::Float16{},
- dtype::Float16{}, dtype::Float16{}, param::MatrixMul::Format::MK8,
- 0.25);
- }
- #endif
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_INT8) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward> checker(handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
-
- #if MEGDNN_AARCH64
- const char* matmul_name = "AARCH64_INT16X16X32_MK8_8X8";
- #else
- const char* matmul_name = "ARMV7_INT16X16X32_MK8_4X8";
- #endif
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ssprintf("WINOGRAD:%s:8:2:32", matmul_name).c_str()));
-
- std::vector<TestArg> quantized_args =
- get_quantized_winograd_mk_packed_args(8);
- UniformIntRNG int_rng{-50, 50};
- checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
- run(handle(), quantized_args, {2}, dtype::QuantizedS8(2.5f),
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),
- dtype::QuantizedS8(60.25f), param::MatrixMul::Format::MK8, 1e-3);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_NCHW44_MK_PACKED_INT8) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward> checker(handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
-
- #if MEGDNN_AARCH64
- const char* matmul_name = "AARCH64_INT16X16X32_MK8_8X8";
- #else
- const char* matmul_name = "ARMV7_INT16X16X32_MK8_4X8";
- #endif
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ssprintf("WINOGRAD_NCHW44:%s:8:2:32", matmul_name).c_str()));
-
- std::vector<TestArg> quantized_args = get_int8_nchw44_args(3, 4);
- UniformIntRNG int_rng{-50, 50};
- checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
- run(handle(), quantized_args, {2}, dtype::QuantizedS8(2.5f),
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),
- dtype::QuantizedS8(60.25f), param::MatrixMul::Format::MK8, 1e-3);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_WINOGRAD_NCHW44_MK_PACKED_INT8_GROUPMODE) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward> checker(handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
-
- #if MEGDNN_AARCH64
- const char* matmul_name = "AARCH64_INT16X16X32_MK8_8X8";
- #else
- const char* matmul_name = "ARMV7_INT16X16X32_MK8_4X8";
- #endif
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ssprintf("WINOGRAD_NCHW44:%s:8:2:32", matmul_name).c_str()));
-
- std::vector<TestArg> quantized_args =
- get_int8_nchw44_args(3, 4, false, true);
- UniformIntRNG int_rng{-50, 50};
- checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
- run(handle(), quantized_args, {2}, dtype::QuantizedS8(2.5f),
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),
- dtype::QuantizedS8(60.25f), param::MatrixMul::Format::MK8, 1e-3);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_WINOGRAD_NCHW44_MK_PACKED_INT8_COMP_F32) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward> checker(handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- const char* matmul_name = "AARCH64_F32_MK4_4x16";
- #else
- const char* matmul_name = "ARMV7_F32_MK4_4x8";
- #endif
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ssprintf("WINOGRAD_NCHW44:%s:4:2:32", matmul_name).c_str()));
- std::vector<TestArg> quantized_args = get_int8_nchw44_args(3, 4, true);
- UniformIntRNG int_rng{-50, 50};
- checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
- run(handle(), quantized_args, {2}, dtype::QuantizedS8(0.41113496f),
- dtype::QuantizedS8(0.01887994f),
- dtype::QuantizedS32(0.41113496f * 0.01887994f),
- dtype::QuantizedS8(0.49550694f), param::MatrixMul::Format::MK4,
- epsilon);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_WINOGRAD_NCHW44_MK_PACKED_INT8_COMP_F32_GROUPMODE) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward> checker(handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- const char* matmul_name = "AARCH64_F32_MK4_4x16";
- #else
- const char* matmul_name = "ARMV7_F32_MK4_4x8";
- #endif
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ssprintf("WINOGRAD_NCHW44:%s:4:2:32", matmul_name).c_str()));
- std::vector<TestArg> quantized_args =
- get_int8_nchw44_args(3, 4, true, true);
- UniformIntRNG int_rng{-50, 50};
- checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
- run(handle(), quantized_args, {2}, dtype::QuantizedS8(0.41113496f),
- dtype::QuantizedS8(0.01887994f),
- dtype::QuantizedS32(0.41113496f * 0.01887994f),
- dtype::QuantizedS8(0.49550694f), param::MatrixMul::Format::MK4,
- epsilon);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_WINOGRAD_MK_PACKED_INT8_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
-
- #if MEGDNN_AARCH64
- const char* matmul_name = "AARCH64_INT16X16X32_MK8_8X8";
- #else
- const char* matmul_name = "ARMV7_INT16X16X32_MK8_4X8";
- #endif
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ssprintf("WINOGRAD:%s:8:2:32", matmul_name).c_str()));
-
- std::vector<TestArg> quantized_args =
- get_quantized_winograd_mk_packed_args(8);
- UniformIntRNG int_rng{-50, 50};
- checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
- run(handle(), quantized_args, {2}, dtype::QuantizedS8(2.5f),
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),
- dtype::QuantizedS8(60.25f), param::MatrixMul::Format::MK8, 1e-3);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_WINOGRAD_NCHW44_MK_PACKED_INT8_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
-
- #if MEGDNN_AARCH64
- const char* matmul_name = "AARCH64_INT16X16X32_MK8_8X8";
- #else
- const char* matmul_name = "ARMV7_INT16X16X32_MK8_4X8";
- #endif
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ssprintf("WINOGRAD_NCHW44:%s:8:2:32", matmul_name).c_str()));
-
- std::vector<TestArg> quantized_args = get_int8_nchw44_args(3, 4);
- UniformIntRNG int_rng{-50, 50};
- checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
- run(handle(), quantized_args, {2}, dtype::QuantizedS8(2.5f),
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),
- dtype::QuantizedS8(60.25f), param::MatrixMul::Format::MK8, 1e-3);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_WINOGRAD_NCHW44_MK_PACKED_INT8_GROUPMODE_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
-
- #if MEGDNN_AARCH64
- const char* matmul_name = "AARCH64_INT16X16X32_MK8_8X8";
- #else
- const char* matmul_name = "ARMV7_INT16X16X32_MK8_4X8";
- #endif
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ssprintf("WINOGRAD_NCHW44:%s:8:2:32", matmul_name).c_str()));
-
- std::vector<TestArg> quantized_args =
- get_int8_nchw44_args(3, 4, false, true);
- UniformIntRNG int_rng{-50, 50};
- checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
- run(handle(), quantized_args, {2}, dtype::QuantizedS8(2.5f),
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),
- dtype::QuantizedS8(60.25f), param::MatrixMul::Format::MK8, 1e-3);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_WINOGRAD_NCHW44_MK_PACKED_INT8_COMP_F32_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- const char* matmul_name = "AARCH64_F32_MK4_4x16";
- #else
- const char* matmul_name = "ARMV7_F32_MK4_4x8";
- #endif
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ssprintf("WINOGRAD_NCHW44:%s:4:2:32", matmul_name).c_str()));
- std::vector<TestArg> quantized_args = get_int8_nchw44_args(3, 4, true);
- UniformIntRNG int_rng{-50, 50};
- checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
- run(handle(), quantized_args, {2}, dtype::QuantizedS8(0.41113496f),
- dtype::QuantizedS8(0.01887994f),
- dtype::QuantizedS32(0.41113496f * 0.01887994f),
- dtype::QuantizedS8(0.49550694f), param::MatrixMul::Format::MK4,
- epsilon);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- WINOGRAD_NCHW44_MK_PACKED_INT8_COMP_F32_GROUPMODE_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- const char* matmul_name = "AARCH64_F32_MK4_4x16";
- #else
- const char* matmul_name = "ARMV7_F32_MK4_4x8";
- #endif
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ssprintf("WINOGRAD_NCHW44:%s:4:2:32", matmul_name).c_str()));
- std::vector<TestArg> quantized_args =
- get_int8_nchw44_args(3, 4, true, true);
- UniformIntRNG int_rng{-50, 50};
- checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
- run(handle(), quantized_args, {2}, dtype::QuantizedS8(0.41113496f),
- dtype::QuantizedS8(0.01887994f),
- dtype::QuantizedS32(0.41113496f * 0.01887994f),
- dtype::QuantizedS8(0.49550694f), param::MatrixMul::Format::MK4,
- epsilon);
- }
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F23) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args();
- Checker<ConvBiasForward> checker(handle());
- check_winograd_fp16("1:2:32", checker, args, NULL, 0.08);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F45_1) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(5);
- std::vector<TestArg> args_head_half(args.begin(),
- args.begin() + args.size() / 2);
- Checker<ConvBiasForward> checker(handle());
- //! fp16 range -1.0 ~ 1.0
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- check_winograd_fp16("1:4:32", checker, args_head_half, rng, 0.25);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F45_2) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(5);
- std::vector<TestArg> args_back_half(args.begin() + args.size() / 2,
- args.end());
- Checker<ConvBiasForward> checker(handle());
- //! fp16 range -1.0 ~ 1.0
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- check_winograd_fp16("1:4:32", checker, args_back_half, rng, 0.25);
- }
- //! FIXME: This test may be failed if run `ARM_COMMON.CONV_BIAS_WINOGRAD*`, but
- //! it will pass when run single testcase
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F63) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(3);
- Checker<ConvBiasForward> checker(handle());
- //! fp16 range -1.0 ~ 1.0
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- check_winograd_fp16("1:6:32", checker, args, rng, 0.3);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_8x8_1) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- std::vector<TestArg> args_head_half(args.begin(),
- args.begin() + args.size() / 2);
- Checker<ConvBiasForward> checker(handle());
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- check_winograd_fp16("8:2:32", checker, args_head_half, rng, 0.25,
- param::MatrixMul::Format::MK8);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_8x8_2) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- std::vector<TestArg> args_back_half(args.begin() + args.size() / 2,
- args.end());
- Checker<ConvBiasForward> checker(handle());
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- check_winograd_fp16("8:2:32", checker, args_back_half, rng, 0.25,
- param::MatrixMul::Format::MK8);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F23_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args();
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- check_winograd_fp16("1:2:32", checker, args, NULL, 0.08);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_WINOGRAD_F16_F45_1_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(5);
- std::vector<TestArg> args_head_half(args.begin(),
- args.begin() + args.size() / 2);
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- //! fp16 range -1.0 ~ 1.0
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- check_winograd_fp16("1:4:32", checker, args_head_half, rng, 0.25);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_WINOGRAD_F16_F45_2_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(5);
- std::vector<TestArg> args_back_half(args.begin() + args.size() / 2,
- args.end());
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- //! fp16 range -1.0 ~ 1.0
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- check_winograd_fp16("1:4:32", checker, args_back_half, rng, 0.25);
- }
- //! FIXME: This test may be failed if run `ARM_COMMON.CONV_BIAS_WINOGRAD*`, but
- //! it will pass when run single testcase
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F63_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(3);
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- //! fp16 range -1.0 ~ 1.0
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- check_winograd_fp16("1:6:32", checker, args, rng, 0.3);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_WINOGRAD_F16_8x8_1_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- std::vector<TestArg> args_head_half(args.begin(),
- args.begin() + args.size() / 2);
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- check_winograd_fp16("8:2:32", checker, args_head_half, rng, 0.25,
- param::MatrixMul::Format::MK8);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_WINOGRAD_F16_8x8_2_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- std::vector<TestArg> args_back_half(args.begin() + args.size() / 2,
- args.end());
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- check_winograd_fp16("8:2:32", checker, args_back_half, rng, 0.25,
- param::MatrixMul::Format::MK8);
- }
- #endif
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_INT8_8X8) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_quantized_winograd_mk_packed_args(8);
- Checker<ConvBiasForward> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
-
- check_winograd("8:2:32", checker, args, param::MatrixMul::Format::MK8);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_WINOGRAD_INT8_8X8_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_quantized_winograd_mk_packed_args(8);
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
-
- check_winograd("8:2:32", checker, args, param::MatrixMul::Format::MK8);
- }
-
- void checker_conv_bias(std::vector<conv_bias::TestArg> args, Handle* handle,
- RNG* rng, float epsilon, DType type0, DType type1,
- DType type2, DType type3, const char* algo_name) {
- using namespace conv_bias;
-
- Checker<ConvBias> checker(handle);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
- checker.set_dtype(0, type0);
- checker.set_dtype(1, type1);
- checker.set_dtype(2, type2);
- checker.set_dtype(4, type3);
- checker.set_epsilon(epsilon);
- if (NULL != rng) {
- checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng).set_rng(3, rng);
- }
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COL_FP32_STRIDE2_PREPROCESS) {
- #define cb(name) \
- check_conv_bias_preprocess( \
- get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 2, false, false, false), \
- handle(), nullptr, 0.001, dtype::Float32(), dtype::Float32(), \
- dtype::Float32(), dtype::Float32(), name);
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_F32K8X12X1")
- cb("IM2COLMATMUL:AARCH64_F32K4X16X1")
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARMV7_F32")
- #endif
- #undef cb
- }
- // clang-format off
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COL_FP32_STRIDE2) {
- #define cb(name) \
- check_conv_bias( \
- get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 2, false, false, false), \
- handle(), name);
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_F32K8X12X1")
- cb("IM2COLMATMUL:AARCH64_F32K4X16X1")
- cb("IM2COLMATMUL:FB_F32_K8X12X1")
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARMV7_F32")
- #endif
- #undef cb
-
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COL_FP32_STRIDE1_PREPROCESS) {
- #define cb(name) \
- check_conv_bias_preprocess( \
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, false), \
- handle(), nullptr, 0.001, dtype::Float32(), dtype::Float32(), \
- dtype::Float32(), dtype::Float32(), name);
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_F32K8X12X1")
- cb("IM2COLMATMUL:AARCH64_F32K4X16X1")
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARMV7_F32")
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COL_FP32_STRIDE1) {
- #define cb(name) \
- check_conv_bias( \
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, false), \
- handle(), name);
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_F32K8X12X1")
- cb("IM2COLMATMUL:AARCH64_F32K4X16X1")
- cb("IM2COLMATMUL:FB_F32_K8X12X1")
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARMV7_F32")
- cb("IM2COLMATMUL:FB_F32_K8X12X1")
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias(get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \
- false, true, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name); \
- checker_conv_bias( \
- get_conv_bias_args({1}, 2, false, false, false, true, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X12X4_DOTPROD");
- #else
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X8X8");
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16");
- #endif
- #elif MEGDNN_ARMV7
- epsilon = 1;
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_PREPROCESS) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- check_conv_bias_preprocess(get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \
- false, true, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name); \
- check_conv_bias_preprocess( \
- get_conv_bias_args({1}, 2, false, false, false, true, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X12X4_DOTPROD");
- #else
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X8X8");
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16");
- #endif
- #elif MEGDNN_ARMV7
- epsilon = 1;
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8");
- #endif
- #undef cb
- }
-
-
- #if __ARM_FEATURE_DOTPROD
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_MK4_DOT) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias(get_nchw44_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, \
- false, false, false, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name); \
- checker_conv_bias( \
- get_nchw44_conv_bias_args({1}, 2, false, true, true, false, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:AARCH32_INT8_MK4_8X4X4_DOTPROD:96");
- #endif
- #undef cb
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_MK4_DOT_PREPROCESS) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- check_conv_bias_preprocess(get_nchw44_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, \
- false, false, false, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name); \
- checker_conv_bias( \
- get_nchw44_conv_bias_args({1}, 2, false, true, true, false, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:AARCH32_INT8_MK4_8X4X4_DOTPROD:96");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_MK4_DOT_S2_FUSE) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias(get_nchw44_conv_bias_args({3}, 2, false, \
- false, false, false, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name); \
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:AARCH32_INT8_MK4_8X4X4_DOTPROD:96");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_S8x8x32_MK4_DOT) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias( \
- get_nchw44_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \
- true, false, true, false, false, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), {}, name); \
- checker_conv_bias( \
- get_nchw44_conv_bias_args({1}, 2, false, true, true, false, true, \
- false, false, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), {}, name);
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:AARCH32_INT8_MK4_8X4X4_DOTPROD:96");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_S8x8x32_MK4_DOT_PREPROCESS) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- check_conv_bias_preprocess( \
- get_nchw44_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \
- true, false, true, false, false, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), {}, name); \
- check_conv_bias_preprocess( \
- get_nchw44_conv_bias_args({1}, 2, false, true, true, false, true, \
- false, false, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), {}, name);
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:AARCH32_INT8_MK4_8X4X4_DOTPROD:96");
- #endif
- #undef cb
- }
-
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32_MK4_DOT) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias( \
- get_nchw44_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \
- true, false, true, false, false, true), \
- handle(), &rng, epsilon, dtype::Int8(), dtype::Int8(), \
- dtype::Int32(), {}, name); \
- checker_conv_bias( \
- get_nchw44_conv_bias_args({1}, 2, false, true, true, false, true, \
- false, false, true), \
- handle(), &rng, epsilon, dtype::Int8(), dtype::Int8(), \
- dtype::Int32(), {}, name);
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:AARCH32_INT8_MK4_8X4X4_DOTPROD:96");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32_MK4_DOT_PREPROCESS) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- check_conv_bias_preprocess( \
- get_nchw44_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \
- true, false, true, false, false, true), \
- handle(), &rng, epsilon, dtype::Int8(), dtype::Int8(), \
- dtype::Int32(), {}, name); \
- check_conv_bias_preprocess( \
- get_nchw44_conv_bias_args({1}, 2, false, true, true, false, true, \
- false, false, true), \
- handle(), &rng, epsilon, dtype::Int8(), dtype::Int8(), \
- dtype::Int32(), {}, name);
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:AARCH32_INT8_MK4_8X4X4_DOTPROD:96");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_CONV1x1_QUANTIZEDSYM_MK4_DOT) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias( \
- get_nchw44_conv_bias_args({1}, 1, true, true, false, false, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name); \
- checker_conv_bias( \
- get_nchw44_conv_bias_args({1}, 1, true, true, true, false, true, \
- false, false, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), {}, name); \
- checker_conv_bias( \
- get_nchw44_conv_bias_args({1}, 1, true, true, true, false, true, \
- false, false, true), \
- handle(), &rng, epsilon, dtype::Int8(), dtype::Int8(), \
- dtype::Int32(), {}, name);
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- cb("CONV1x1:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD");
- #elif MEGDNN_ARMV7
- cb("CONV1x1:AARCH32_INT8_MK4_8X4X4_DOTPROD");
- #endif
- #undef cb
- }
- #endif
-
- // clang-format on
- #if MEGDNN_AARCH64 || MEGDNN_ARMV7
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDASYM) {
- NormalRNG rng(128.f);
-
- #define cb(name) \
- checker_conv_bias(get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \
- false, true, true), \
- handle(), &rng, epsilon, \
- dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), \
- dtype::Quantized8Asymm(50.3f, (uint8_t)120), name); \
- checker_conv_bias( \
- get_conv_bias_args({1}, 2, false, false, false, true, true), \
- handle(), &rng, epsilon, \
- dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), \
- dtype::Quantized8Asymm(50.3f, (uint8_t)120), name);
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X4_DOTPROD");
- #else
- cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X8");
- #endif
- #elif MEGDNN_ARMV7
- epsilon = 1;
- cb("IM2COLMATMUL:ARMV7_QUINT8_K4X8X8");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_IM2COLMATMUL_QUANTIZEDASYM_FILTERPREPROCESS) {
- NormalRNG rng(128.f);
-
- #define cb(name) \
- check_conv_bias_preprocess( \
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, false, \
- true, true), \
- handle(), &rng, epsilon, \
- dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), \
- dtype::Quantized8Asymm(50.3f, (uint8_t)120), name); \
- check_conv_bias_preprocess( \
- get_conv_bias_args({1}, 2, false, false, false, true, true), \
- handle(), &rng, epsilon, \
- dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), \
- dtype::Quantized8Asymm(50.3f, (uint8_t)120), name);
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X4_DOTPROD");
- #else
- cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X8");
- #endif
- #elif MEGDNN_ARMV7
- epsilon = 1;
- cb("IM2COLMATMUL:ARMV7_QUINT8_K4X8X8");
- #endif
- #undef cb
- }
-
- #endif
-
- #if MEGDNN_AARCH64 || MEGDNN_ARMV7
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUINT8x8x32) {
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- #define cb(name) \
- checker_conv_bias( \
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true), \
- handle(), &rng, epsilon, \
- dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), {}, name); \
- checker_conv_bias(get_conv_bias_args({1}, 2, false, true, true), handle(), \
- &rng, epsilon, \
- dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), {}, name);
-
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X4_DOTPROD");
- #else
- cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X8");
- #endif
- #elif MEGDNN_ARMV7
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH32_QUINT8_K4X8X4");
- #endif
- cb("IM2COLMATMUL:ARMV7_QUINT8_K4X8X8");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUINT8x8x32_FILTERPREPROCESS) {
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- #define cb(name) \
- check_conv_bias_preprocess( \
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true), \
- handle(), &rng, epsilon, \
- dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), {}, name); \
- check_conv_bias_preprocess(get_conv_bias_args({1}, 2, false, true, true), \
- handle(), &rng, epsilon, \
- dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), {}, name);
-
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X4_DOTPROD");
- #else
- cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X8");
- #endif
- #elif MEGDNN_ARMV7
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH32_QUINT8_K4X8X4");
- #endif
- cb("IM2COLMATMUL:ARMV7_QUINT8_K4X8X8");
- #endif
- #undef cb
- }
-
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COLMATMUL_INT8x8x16) {
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- std::vector<conv_bias::TestArg> args_nchw44 =
- get_nchw44_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, true, true, true,
- false, false, false, false, true);
- std::vector<conv_bias::TestArg> args_nchw44_1x1s2 =
- get_nchw44_conv_bias_args({1}, 2, true, true, true, false, false,
- false, false, true);
- #define cb(name) \
- checker_conv_bias( \
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true), \
- handle(), &rng, epsilon, dtype::Int8{}, dtype::Int8{}, \
- dtype::Int16{}, dtype::Int16{}, name); \
- checker_conv_bias(get_conv_bias_args({1}, 2, false, true, true), handle(), \
- &rng, epsilon, dtype::Int8{}, dtype::Int8{}, \
- dtype::Int16{}, dtype::Int16{}, name);
-
- #define cb_nchw44(name) \
- checker_conv_bias(args_nchw44, handle(), &rng, epsilon, dtype::Int8{}, \
- dtype::Int8{}, dtype::Int16{}, dtype::Int16{}, name); \
- checker_conv_bias(args_nchw44_1x1s2, handle(), &rng, epsilon, \
- dtype::Int8{}, dtype::Int8{}, dtype::Int16{}, \
- dtype::Int16{}, name);
-
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X16_K8X8X8");
- cb("IM2COLMATMUL:AARCH64_INT8X8X16_K4X4X16");
- cb("IM2COLMATMUL:ARM_COMMON_INT8X8X16");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARM_COMMON_INT8X8X16");
- cb("IM2COLMATMUL:ARMV7_INT8X8X16_K4X8X8");
- cb("IM2COLMATMUL:ARMV7_INT8X8X16_K4X2X16");
- cb_nchw44("IM2COLMATMUL:ARMV7_INT8X8X16_MK4_K8X8X4");
- #endif
-
- #undef cb
- #undef cb_nchw44
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COLMATMUL_INT8x8x16_FILTERPREPROCESS) {
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- #define cb(name) \
- check_conv_bias_preprocess( \
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true), \
- handle(), &rng, epsilon, dtype::Int8{}, dtype::Int8{}, \
- dtype::Int16{}, dtype::Int16{}, name); \
- check_conv_bias_preprocess(get_conv_bias_args({1}, 2, false, true, true), \
- handle(), &rng, epsilon, dtype::Int8{}, \
- dtype::Int8{}, dtype::Int16{}, dtype::Int16{}, \
- name);
-
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X16_K8X8X8");
- cb("IM2COLMATMUL:AARCH64_INT8X8X16_K4X4X16");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARMV7_INT8X8X16_K4X8X8");
- cb("IM2COLMATMUL:ARMV7_INT8X8X16_K4X2X16");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COLMATMUL_INT8x8x16_NOPACK_FILTERPREPROCESS) {
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- #define cb(name) \
- check_conv_bias_preprocess( \
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true), \
- handle(), &rng, epsilon, dtype::Int8{}, dtype::Int8{}, \
- dtype::Int16{}, dtype::Int16{}, name); \
- check_conv_bias_preprocess(get_conv_bias_args({1}, 2, false, true, true), \
- handle(), &rng, epsilon, dtype::Int8{}, \
- dtype::Int8{}, dtype::Int16{}, dtype::Int16{}, \
- name);
-
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:ARM_COMMON_INT8X8X16");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARM_COMMON_INT8X8X16");
- #endif
- #undef cb
- }
-
- #endif
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP16) {
- using namespace conv_bias;
-
- param::ConvBias cur_param;
-
- std::vector<conv_bias::TestArg> args =
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, false);
- std::vector<conv_bias::TestArg> args1 =
- get_conv_bias_args({1}, 2, false, false, false);
- args.insert(args.begin(), args1.begin(), args1.end());
-
- NormalRNG rng(1);
- #define cb(name) \
- checker_conv_bias(args, handle(), &rng, 0.03, dtype::Float16{}, \
- dtype::Float16{}, dtype::Float16{}, dtype::Float16{}, \
- name);
-
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_F16_K8X24X1");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:AARCH32_F16_K4X16X1");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP16_FILTERPREPROCESS) {
- using namespace conv_bias;
-
- param::ConvBias cur_param;
-
- std::vector<conv_bias::TestArg> args =
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, false);
- std::vector<conv_bias::TestArg> args1 =
- get_conv_bias_args({1}, 2, false, false, false);
- args.insert(args.begin(), args1.begin(), args1.end());
-
- NormalRNG rng(1);
- #define cb(name) \
- check_conv_bias_preprocess(args, handle(), &rng, 0.03, dtype::Float16{}, \
- dtype::Float16{}, dtype::Float16{}, \
- dtype::Float16{}, name);
-
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_F16_K8X24X1");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:AARCH32_F16_K4X16X1");
- #endif
- #undef cb
- }
- #endif
-
- void checker_conv_bias_mul_int8x8x32(std::vector<conv_bias::TestArg> args,
- Handle* handle, const char* algo_name) {
- using namespace conv_bias;
-
- Checker<ConvBias> checker(handle);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
- checker.set_dtype(0, dtype::Int8());
- checker.set_dtype(1, dtype::Int8());
- checker.set_dtype(2, dtype::Int32());
- checker.set_dtype(4, dtype::Int32());
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
- }
-
- UniformIntRNG rng{-50, 50};
- for (auto&& arg : args) {
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, {})
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, {}, {}, {}});
- }
- }
-
- void checker_conv_bias_int8x8x32_preprocess(std::vector<conv_bias::TestArg> args,
- Handle* handle, const char* algo_name) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
- checker.set_dtype(0, dtype::Int8());
- checker.set_dtype(1, dtype::Int8());
- checker.set_dtype(2, dtype::Int32());
- checker.set_dtype(4, dtype::Int32());
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
- }
-
- UniformIntRNG rng{-50, 50};
- for (auto&& arg : args) {
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, {})
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, {}, {}, {}});
- }
- }
-
- #if MEGDNN_AARCH64 || MEGDNN_ARMV7
- #if !__ARM_FEATURE_DOTPROD
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32NCHW44_S2) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_nchw44_conv_bias_args({2, 5, 7}, 2, false, true, true);
-
- #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
- #else
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32NCHW44_S2_PREPROCESS) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_nchw44_conv_bias_args({2, 5, 7}, 2, false, true, true);
-
- #define cb(name) checker_conv_bias_int8x8x32_preprocess(args, handle(), name);
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
- #else
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32NCHW44_S1) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_nchw44_conv_bias_args({3, 4, 6}, 1, false, true, true);
-
- #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
- #else
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
- #endif
-
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32NCHW44_S1_PREPROCESS) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_nchw44_conv_bias_args({3, 4, 6}, 1, false, true, true);
-
- #define cb(name) checker_conv_bias_int8x8x32_preprocess(args, handle(), name);
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
- #else
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
- #endif
-
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_S2) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias(get_nchw44_conv_bias_args({3, 4, 6}, 2), handle(), &rng, \
- epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
- #else
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_S2_PREPROCESS) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- check_conv_bias_preprocess( \
- get_nchw44_conv_bias_args({3, 4, 6}, 2), handle(), &rng, epsilon, \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f), name);
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
- #else
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
- #endif
- #undef cb
- }
-
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_S1) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias(get_nchw44_conv_bias_args({2, 5, 7}, 1), handle(), &rng, \
- epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
- #else
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_S1_PREPROCESS) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- check_conv_bias_preprocess( \
- get_nchw44_conv_bias_args({2, 5, 7}, 1), handle(), &rng, epsilon, \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f), name);
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
- #else
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
- #endif
- #undef cb
- }
-
- #if MEGDNN_AARCH64
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_FUSE) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias(get_nchw44_conv_bias_args({3}, 1), handle(), &rng, \
- epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
- float epsilon = 0.001;
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_FUSE_PREPROCESS) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- check_conv_bias_preprocess( \
- get_nchw44_conv_bias_args({3}, 1), handle(), &rng, epsilon, \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f), name);
- float epsilon = 0.001;
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
- #undef cb
- }
-
- #endif
- #endif
- #endif
-
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44DOT_FUSE) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias( \
- get_nchw44_conv_bias_args({3}, 1, false, false, false, false, \
- true, false, false, false), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
- float epsilon = 0.001;
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96");
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44DOT_FUSE_PREPROCESS) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- check_conv_bias_preprocess( \
- get_nchw44_conv_bias_args({3}, 1, false, false, false, false, \
- true, false, false, false), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
- float epsilon = 0.001;
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96");
- #undef cb
- }
-
- #endif
- #endif
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true);
- std::vector<conv_bias::TestArg> args1 =
- get_conv_bias_args({1}, 2, false, true, true);
- args.insert(args.begin(), args1.begin(), args1.end());
-
- #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
-
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X12X4_DOTPROD");
- #else
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X8X8");
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16");
- #endif
- #elif MEGDNN_ARMV7
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH32_INT8_K6X8X4");
- #endif
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8");
- #endif
-
- #if MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X2X16");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8X8X32_FILTER_PREPROCESS) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true);
- std::vector<conv_bias::TestArg> args1 =
- get_conv_bias_args({1}, 2, false, true, true);
- args.insert(args.begin(), args1.begin(), args1.end());
-
- #define cb(name) checker_conv_bias_int8x8x32_preprocess(args, handle(), name);
-
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X12X4_DOTPROD");
- #else
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X8X8");
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16");
- #endif
- #elif MEGDNN_ARMV7
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH32_INT8_K6X8X4");
- #endif
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8");
- #endif
-
- #if MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X2X16");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S1_MK4_PACK_F32) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args = get_nchw44_conv_bias_args(
- {2, 4, 7}, 1, false, false, false, false, false, true, true);
- #if MEGDNN_AARCH64
- check_conv_bias(args, handle(), "IM2COLMATMUL:AARCH64_F32_MK4_K8X12X1");
- #elif MEGDNN_ARMV7
- check_conv_bias(args, handle(), "IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12");
- #endif
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S1_MK4_PACK_F32_PREPROCESS) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args = get_nchw44_conv_bias_args(
- {2, 4, 7}, 1, false, false, false, false, false, true,true);
- #define cb(name) \
- check_conv_bias_preprocess(args, handle(), nullptr, 0.001, \
- dtype::Float32(), dtype::Float32(), \
- dtype::Float32(), dtype::Float32(), name);
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_F32_MK4_K8X12X1");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S2_MK4_PACK_F32) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args = get_nchw44_conv_bias_args(
- {3, 5, 6}, 2, false, false, false, false, false, true, true);
- #define cb(name) check_conv_bias(args, handle(), name);
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_F32_MK4_K8X12X1");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S2_MK4_PACK_F32_FUSE_PREPROCESS) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args = get_nchw44_conv_bias_args(
- {3}, 2, false, false, false, false, false, true, true, false);
- #define cb(name) \
- check_conv_bias_preprocess(args, handle(), nullptr, 0.001, \
- dtype::Float32(), dtype::Float32(), \
- dtype::Float32(), dtype::Float32(), name);
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_F32_MK4_K8X12X1");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S2_MK4_PACK_F32_FUSE) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args = get_nchw44_conv_bias_args(
- {3}, 2, false, false, false, false, false, true, true, false);
- #define cb(name) check_conv_bias(args, handle(), name);
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_F32_MK4_K8X12X1");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12");
- #endif
- #undef cb
- }
- /***************************** Conv1x1 Algo Test ***********************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_F32) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(false, false);
- #if MEGDNN_AARCH64
- check_conv_bias(args, handle(), "CONV1x1:AARCH64_F32K8X12X1:24");
- #elif MEGDNN_ARMV7
- check_conv_bias(args, handle(), "CONV1x1:ARMV7_F32:48");
- #endif
- std::vector<conv_bias::TestArg> gemv_args;
- for (auto&& arg : args)
- if (arg.src.shape[2] == 1 && arg.src.shape[3] == 1) {
- gemv_args.emplace_back(arg);
- }
- check_conv_bias(gemv_args, handle(), "CONV1x1_GEMV");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_MK4_PACK_F32) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_nchw44_conv_bias_args({1}, 1, true, false, false);
- #if MEGDNN_AARCH64
- check_conv_bias(args, handle(), "CONV1x1:AARCH64_F32_MK4_K8X12X1:24");
- #elif MEGDNN_ARMV7
- check_conv_bias(args, handle(), "CONV1x1:ARMV7_F32_MK4_PACK_4X12:24");
- #endif
- std::vector<conv_bias::TestArg> gemv_args;
- for (auto&& arg : args)
- if (arg.src.shape[2] == 1 && arg.src.shape[3] == 1) {
- gemv_args.emplace_back(arg);
- }
- check_conv_bias(gemv_args, handle(), "CONV1x1_GEMV");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_MK4_NO_PACK_F32) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_nchw44_conv_bias_args({1}, 1, true, false, false);
- std::vector<conv_bias::TestArg> args_of_4;
- for (auto&& arg : args) {
- if (arg.src.shape[2] * arg.src.shape[3] % 4 == 0) {
- args_of_4.push_back(arg);
- }
- }
- #if MEGDNN_AARCH64
- check_conv_bias(args_of_4, handle(), "CONV1x1:AARCH64_F32_MK4_4x16:24");
- #elif MEGDNN_ARMV7
- check_conv_bias(args_of_4, handle(), "CONV1x1:ARMV7_F32_MK4_4x8:48");
- #endif
- }
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_F16) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(false, false);
- NormalRNG rng(1);
- #if MEGDNN_AARCH64
- checker_conv_bias(args, handle(), &rng, 0.03, dtype::Float16{},
- dtype::Float16{}, dtype::Float16{}, dtype::Float16{},
- "CONV1x1:AARCH64_F16_K8X24X1:48");
- #elif MEGDNN_ARMV7
- checker_conv_bias(args, handle(), &rng, 0.03, dtype::Float16{},
- dtype::Float16{}, dtype::Float16{}, dtype::Float16{},
- "CONV1x1:AARCH32_F16_K4X16X1:24");
- #endif
- std::vector<conv_bias::TestArg> gemv_args;
- for (auto&& arg : args)
- if (arg.src.shape[2] == 1 && arg.src.shape[3] == 1) {
- gemv_args.emplace_back(arg);
- }
- check_conv_bias(gemv_args, handle(), "CONV1x1_GEMV");
- }
- #endif
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_QUANTIZEDSYM) {
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- std::vector<conv_bias::TestArg> args =
- get_conv_bias_1x1_args(false, false, true, true);
- #define cb(name) \
- checker_conv_bias(args, handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("CONV1x1:AARCH64_INT8X8X32_K8X12X4_DOTPROD:24");
- #else
- cb("CONV1x1:AARCH64_INT8X8X32_K8X8X8:24");
- cb("CONV1x1:AARCH64_INT8X8X32_K4X4X16:48");
- #endif
- #elif MEGDNN_ARMV7
- epsilon = 1;
- cb("CONV1x1:ARMV7_INT8X8X32_K4X8X8:48");
- #endif
- #undef cb
- std::vector<conv_bias::TestArg> gemv_args;
- for (auto&& arg : args)
- if (arg.src.shape[2] == 1 && arg.src.shape[3] == 1) {
- gemv_args.emplace_back(arg);
- }
- checker_conv_bias(gemv_args, handle(), &rng, epsilon,
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f),
- "CONV1x1_GEMV");
- }
-
- #if MEGDNN_AARCH64 || MEGDNN_ARMV7
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_QUANTIZEDASYM) {
- UniformIntRNG rng{-50, 50};
- std::vector<conv_bias::TestArg> args =
- get_conv_bias_1x1_args(false, false, true, true);
- #define cb(name) \
- checker_conv_bias(args, handle(), &rng, epsilon, \
- dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), \
- dtype::Quantized8Asymm(50.3f, (uint8_t)120), name);
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("CONV1x1:AARCH64_QUINT8_K8X8X4_DOTPROD:48");
- #else
- cb("CONV1x1:AARCH64_QUINT8_K8X8X8:24");
- #endif
- #elif MEGDNN_ARMV7
- epsilon = 1;
- cb("CONV1x1:ARMV7_QUINT8_K4X8X8:48");
- #endif
- #undef cb
- std::vector<conv_bias::TestArg> gemv_args;
- for (auto&& arg : args)
- if (arg.src.shape[2] == 1 && arg.src.shape[3] == 1) {
- gemv_args.emplace_back(arg);
- }
- checker_conv_bias(gemv_args, handle(), &rng, epsilon,
- dtype::Quantized8Asymm(1.2f, (uint8_t)125),
- dtype::Quantized8Asymm(1.3f, (uint8_t)129),
- dtype::QuantizedS32(1.2 * 1.3),
- dtype::Quantized8Asymm(50.3f, (uint8_t)120),
- "CONV1x1_GEMV");
- }
- #endif
-
- #if MEGDNN_AARCH64 || MEGDNN_ARMV7
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_QUINT8x8x32) {
- NormalRNG rng(128.f);
- float epsilon = 0.001;
- std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(true, true);
- #define cb(name) \
- checker_conv_bias(args, handle(), &rng, epsilon, \
- dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), {}, name);
-
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("CONV1x1:AARCH64_QUINT8_K8X8X4_DOTPROD:24");
- #else
- cb("CONV1x1:AARCH64_QUINT8_K8X8X8:48");
- #endif
- #elif MEGDNN_ARMV7
- #if __ARM_FEATURE_DOTPROD
- cb("CONV1x1:AARCH32_QUINT8_K4X8X4:48");
- #endif
- cb("CONV1x1:ARMV7_QUINT8_K4X8X8:24");
- #endif
- #undef cb
-
- std::vector<conv_bias::TestArg> gemv_args;
- for (auto&& arg : args)
- if (arg.src.shape[2] == 1 && arg.src.shape[3] == 1) {
- gemv_args.emplace_back(arg);
- }
- checker_conv_bias(gemv_args, handle(), &rng, epsilon,
- dtype::Quantized8Asymm(1.2f, (uint8_t)125),
- dtype::Quantized8Asymm(1.3f, (uint8_t)129),
- dtype::QuantizedS32(1.2 * 1.3), {}, "CONV1x1_GEMV");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_1X1_S1_INT8x8x16) {
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(true, true);
- std::vector<conv_bias::TestArg> args_nchw44 = get_nchw44_conv_bias_args(
- {1}, 1, true, true, true, false, false, false, false, true);
- #define cb(name) \
- checker_conv_bias(args, handle(), &rng, epsilon, dtype::Int8{}, \
- dtype::Int8{}, dtype::Int16{}, dtype::Int16{}, name);
-
- #define cb_nchw44(name) \
- checker_conv_bias(args_nchw44, handle(), &rng, epsilon, dtype::Int8{}, \
- dtype::Int8{}, dtype::Int16{}, dtype::Int16{}, name);
-
- #if MEGDNN_AARCH64
- cb("CONV1x1:AARCH64_INT8X8X16_K8X8X8:24");
- cb("CONV1x1:AARCH64_INT8X8X16_K4X4X16:24");
- #elif MEGDNN_ARMV7
- cb("CONV1x1:ARMV7_INT8X8X16_K4X8X8:24");
- cb("CONV1x1:ARMV7_INT8X8X16_K4X2X16:48");
- cb_nchw44("CONV1x1:ARMV7_INT8X8X16_MK4_K8X8X4:48");
- #endif
- cb("CONV1x1:ARM_COMMON_INT8X8X16:48");
-
- #undef cb
- #undef cb_nchw44
-
- std::vector<conv_bias::TestArg> gemv_args;
- for (auto&& arg : args)
- if (arg.src.shape[2] == 1 && arg.src.shape[3] == 1) {
- gemv_args.emplace_back(arg);
- }
-
- checker_conv_bias(gemv_args, handle(), &rng, epsilon, dtype::Int8{},
- dtype::Int8{}, dtype::Int16{}, dtype::Int16{},
- "CONV1x1_GEMV");
- }
- #endif
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_INT8x8x32) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(true, true);
-
- #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
-
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("CONV1x1:AARCH64_INT8X8X32_K8X12X4_DOTPROD:48");
- #else
- cb("CONV1x1:AARCH64_INT8X8X32_K8X8X8:24");
- cb("CONV1x1:AARCH64_INT8X8X32_K4X4X16:24");
- #endif
- #elif MEGDNN_ARMV7
- #if __ARM_FEATURE_DOTPROD
- cb("CONV1x1:AARCH32_INT8_K6X8X4:48");
- #endif
- cb("CONV1x1:ARMV7_INT8X8X32_K4X8X8:24");
- #endif
-
- #if MEGDNN_ARMV7
- cb("CONV1x1:ARMV7_INT8X8X32_K4X2X16:48");
- #endif
- #undef cb
-
- std::vector<conv_bias::TestArg> gemv_args;
- for (auto&& arg : args)
- if (arg.src.shape[2] == 1 && arg.src.shape[3] == 1) {
- gemv_args.emplace_back(arg);
- }
- checker_conv_bias_mul_int8x8x32(gemv_args, handle(), "CONV1x1_GEMV");
- }
-
- #ifndef __ARM_FEATURE_DOTPROD
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_INT8x8x32_MK4) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_nchw44_conv_bias_args({1}, 1, true, true, true);
-
- #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
-
- #if MEGDNN_AARCH64
- cb("CONV1x1:AARCH64_INT8X8X32_MK4_4X4X16:24");
- #elif MEGDNN_ARMV7
- cb("CONV1x1:ARMV7_INT8X8X32_MK4_4X2X16:24");
- #endif
- #undef cb
-
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- #define cb(name) \
- checker_conv_bias(get_nchw44_conv_bias_args({1}, 1, true, false, false), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
- #if MEGDNN_AARCH64
- cb("CONV1x1:AARCH64_INT8X8X32_MK4_4X4X16:24");
- #elif MEGDNN_ARMV7
- cb("CONV1x1:ARMV7_INT8X8X32_MK4_4X2X16:24");
- #endif
- #undef cb
- }
- #endif
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_INT8x8x32_NCHW44) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_nchw44_conv_bias_args({1}, 1, true, false, false);
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- std::vector<conv_bias::TestArg> gemv_args;
- for (auto&& arg : args)
- if (arg.src.shape[2] == 1 && arg.src.shape[3] == 1) {
- gemv_args.emplace_back(arg);
- }
- checker_conv_bias(gemv_args, handle(), &rng, epsilon,
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f),
- "CONV1x1_GEMV");
- }
-
- #ifdef __ARM_FEATURE_DOTPROD
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_INT8x8x32_NCHW44_DOT) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_nchw44_conv_bias_args({1}, 1, true, false, false, false, true);
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- std::vector<conv_bias::TestArg> gemv_args;
- for (auto&& arg : args)
- if (arg.src.shape[2] == 1 && arg.src.shape[3] == 1) {
- gemv_args.emplace_back(arg);
- }
- checker_conv_bias(gemv_args, handle(), &rng, epsilon,
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f),
- "CONV1x1_GEMV");
- }
- #endif
-
- // vim: syntax=cpp.doxygen
|