You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

inference.cpp 100 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513
  1. /**
  2. * \file src/gopt/test/inference.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "megbrain/opr/dnn/local.h"
  12. #include "megbrain/test/helper.h"
  13. #include "megbrain/gopt/inference.h"
  14. #include "megbrain/gopt/basic_arith.h"
  15. #include "megbrain/gopt/gtrans.h"
  16. #include "megbrain/opr/io.h"
  17. #include "megbrain/opr/basic_arith_wrapper.h"
  18. #include "megbrain/opr/tensor_manip.h"
  19. #include "megbrain/opr/dnn/batch_norm.h"
  20. #include "megbrain/opr/dnn/convolution.h"
  21. #include "megbrain/opr/utility.h"
  22. #include "megbrain/opr/imgproc.h"
  23. #include "megbrain/opr/tensor_manip.h"
  24. #include "megbrain/opr/nn_int.h"
  25. #include "megbrain/opr/imgproc.h"
  26. #include "megbrain/opr/dnn/pooling.h"
  27. #include "megbrain/opr/tensor_gen.h"
  28. #include "megbrain/opr/blas.h"
  29. #include "megbrain/comp_node_env.h"
  30. #include "./helper.h"
  31. #include "megdnn/tensor_format.h"
  32. #include <random>
  33. using namespace mgb;
  34. namespace {
  35. //! find first the operator of specific type; raise exception if not found
  36. template <typename T>
  37. T& find_opr(SymbolVar endpoint) {
  38. T* found = nullptr;
  39. auto cb = [&found](cg::OperatorNodeBase* opr) {
  40. if (!found && opr->same_type<T>()) {
  41. found = &opr->cast_final_safe<T>();
  42. }
  43. };
  44. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  45. mgb_assert(found);
  46. return *found;
  47. }
  48. template <typename T>
  49. size_t find_opr_num(SymbolVar endpoint) {
  50. size_t opr_num = 0;
  51. auto cb = [&opr_num](cg::OperatorNodeBase* opr) {
  52. if (opr->same_type<T>()) {
  53. opr_num++;
  54. }
  55. };
  56. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  57. return opr_num;
  58. }
  59. class NaiveMegDNNHandleScope {
  60. int m_orig_level;
  61. public:
  62. NaiveMegDNNHandleScope()
  63. : m_orig_level{MegDNNHandle::exchange_default_dbg_level(2)} {
  64. CompNode::finalize();
  65. }
  66. ~NaiveMegDNNHandleScope() {
  67. auto set = MegDNNHandle::exchange_default_dbg_level(m_orig_level);
  68. mgb_assert(set == 2);
  69. CompNode::finalize();
  70. }
  71. };
  72. #if MGB_CUDA
  73. //! this function is only used in TestGoptInference.EnableCHWN4...
  74. void warp_perspective_mat_gen(HostTensorND& mat, size_t N, size_t INP_H,
  75. size_t INP_W) {
  76. static std::mt19937 rng(next_rand_seed());
  77. auto rand_real = [&](double lo, double hi) {
  78. return rng() / (std::mt19937::max() + 1.0) * (hi - lo) + lo;
  79. };
  80. auto rand_real2 = [&](double range) { return rand_real(-range, range); };
  81. auto ptr = mat.ptr<float>();
  82. for (size_t i = 0; i < N; ++i) {
  83. auto rot = rand_real(0, M_PI * 2), scale = rand_real(0.8, 1.2),
  84. sheer = rand_real(0.9, 1.1), dy = rand_real2(INP_H * 0.5),
  85. dx = rand_real2(INP_W * 0.5), ky = rand_real2(0.1 / INP_H),
  86. kx = rand_real2(0.1 / INP_W), kb = rand_real2(0.1) + 1;
  87. ptr[0] = ptr[4] = cos(rot) * scale;
  88. ptr[1] = -(ptr[3] = sin(rot) * scale);
  89. ptr[3] *= sheer;
  90. ptr[4] *= sheer;
  91. ptr[2] = dx;
  92. ptr[5] = dy;
  93. ptr[6] = kx;
  94. ptr[7] = ky;
  95. ptr[8] = kb;
  96. ptr += 9;
  97. }
  98. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  99. }
  100. #endif
  101. } // namespace
  102. TEST(TestGoptInference, ParamFuse) {
  103. constexpr size_t SIZE = 23;
  104. HostTensorGenerator<> gen;
  105. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  106. auto graph = ComputingGraph::make();
  107. graph->options().graph_opt_level = 0;
  108. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  109. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  110. p = opr::Host2DeviceCopy::make(*graph, host_p),
  111. z = x + y, // endpoint
  112. q = x * y + p; // middle point
  113. SymbolVar z1, q1;
  114. unpack_vector(
  115. gopt::GraphOptimizer{}.
  116. add_pass<gopt::ParamFusePass>().
  117. apply({{z, q}}).endpoint_vars(),
  118. z1, q1);
  119. ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
  120. ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
  121. ASSERT_EQ(q1.node()->owner_opr()->dyn_typeinfo(),
  122. q.node()->owner_opr()->dyn_typeinfo());
  123. HostTensorND host_z, host_q;
  124. auto func = graph->compile(
  125. {make_callback_copy(z1, host_z),
  126. make_callback_copy(q1, host_q)});
  127. func->execute();
  128. int nr_opr = 0;
  129. func->iter_opr_seq([&](cg::OperatorNodeBase*op) {++ nr_opr; return true; });
  130. ASSERT_EQ(6, nr_opr);
  131. auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(),
  132. pq = host_q.ptr<float>();
  133. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
  134. for (size_t i = 0; i < SIZE; ++ i) {
  135. MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
  136. MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
  137. }
  138. }
  139. TEST(TestGoptInference, ParamFuseMultiDeviceTensorHolder) {
  140. constexpr size_t SIZE = 23;
  141. HostTensorGenerator<> gen;
  142. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  143. auto graph = ComputingGraph::make();
  144. graph->options().graph_opt_level = 0;
  145. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  146. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  147. p = opr::Host2DeviceCopy::make(*graph, host_p),
  148. z = x + y, // endpoint
  149. q = x * y + p; // middle point
  150. SymbolVar z1, q1;
  151. unpack_vector(gopt::GraphOptimizer{}
  152. .add_pass<gopt::ParamMergePass>()
  153. .apply({{z}})
  154. .endpoint_vars(),
  155. z1);
  156. ASSERT_TRUE(z1.node()
  157. ->owner_opr()->input(0)->owner_opr()
  158. ->same_type<opr::MultipleDeviceTensorHolder>());
  159. unpack_vector(
  160. gopt::GraphOptimizer{}.
  161. add_pass<gopt::ParamMergePass>().
  162. add_pass<gopt::ParamFusePass>().
  163. apply({{z, q}}).endpoint_vars(),
  164. z1, q1);
  165. ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
  166. ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
  167. ASSERT_EQ(q1.node()->owner_opr()->dyn_typeinfo(),
  168. q.node()->owner_opr()->dyn_typeinfo());
  169. HostTensorND host_z, host_q;
  170. auto func = graph->compile(
  171. {make_callback_copy(z1, host_z),
  172. make_callback_copy(q1, host_q)});
  173. func->execute();
  174. int nr_opr = 0;
  175. func->iter_opr_seq([&](cg::OperatorNodeBase*op) {++ nr_opr; return true; });
  176. ASSERT_EQ(6, nr_opr);
  177. auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(),
  178. pq = host_q.ptr<float>();
  179. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
  180. for (size_t i = 0; i < SIZE; ++ i) {
  181. MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
  182. MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
  183. }
  184. }
  185. TEST(TestGoptInference, ParamFuseMultiRead) {
  186. HostTensorGenerator<> gen;
  187. auto graph = ComputingGraph::make();
  188. graph->options().graph_opt_level = 0;
  189. auto mkvar = [&](const char *name, const TensorShape &shp) {
  190. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  191. };
  192. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  193. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  194. };
  195. auto x = mkvar("x", {23}),
  196. p0 = mkcvar("p0", {1}),
  197. p1 = mkcvar("p1", {1}),
  198. z0 = x * (p0 + p1) + x / (p0 + p1);
  199. SymbolVar z1;
  200. unpack_vector(
  201. gopt::GraphOptimizer{}.
  202. add_pass<gopt::ParamFusePass>().
  203. apply({{z0}}).endpoint_vars(),
  204. z1);
  205. ASSERT_NE(z0.node(), z1.node());
  206. ASSERT_TRUE(z1.node()->owner_opr()->input(0)->owner_opr()
  207. ->input(1)->owner_opr()->same_type<opr::SharedDeviceTensor>());
  208. ASSERT_TRUE(z1.node()->owner_opr()->input(1)->owner_opr()
  209. ->input(1)->owner_opr()->same_type<opr::SharedDeviceTensor>());
  210. HostTensorND host_z0, host_z1;
  211. graph->compile({make_callback_copy(z0, host_z0),
  212. make_callback_copy(z1, host_z1)})->execute();
  213. MGB_ASSERT_TENSOR_EQ(host_z0, host_z1);
  214. }
  215. TEST(TestGoptInference, ParamFuseStaticInfer) {
  216. HostTensorGenerator<> gen;
  217. auto graph = ComputingGraph::make();
  218. auto mkvar = [&](const char *name, const TensorShape &shp) {
  219. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  220. };
  221. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  222. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  223. };
  224. auto a = mkvar("x", {4}),
  225. b = a.reshape(opr::GetVarShape::make(mkcvar("tshp", {2, 2})));
  226. SymbolVar b1;
  227. unpack_vector(
  228. gopt::GraphOptimizer{}.
  229. add_pass<gopt::ParamFusePass>().
  230. apply({{b}}).endpoint_vars(),
  231. b1);
  232. ASSERT_EQ(b1, a.reshape({2, 2}));
  233. }
  234. TEST(TestGoptInference, ParamRedistributeConvMul) {
  235. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  236. HostTensorGenerator<> gen;
  237. auto host_x = gen({N, IC, IH, IW}), host_k = gen({IC}),
  238. host_w = gen({OC, IC, KH, KW});
  239. auto graph = ComputingGraph::make();
  240. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  241. k = opr::Dimshuffle::make(
  242. opr::SharedDeviceTensor::make(*graph, *host_k),
  243. {-1, 0, -1, -1}),
  244. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  245. y0 = opr::Convolution::make(x * k, w);
  246. SymbolVar y1;
  247. unpack_vector(
  248. gopt::GraphOptimizer{}.
  249. add_pass<gopt::ParamRedistributePass>().
  250. apply({{y0}}).endpoint_vars(),
  251. y1);
  252. ASSERT_NE(y0.node(), y1.node());
  253. HostTensorND host_y0, host_y1;
  254. auto func = graph->compile(
  255. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  256. func->execute();
  257. MGB_ASSERT_TENSOR_EQ(host_y0, host_y1);
  258. }
  259. TEST(TestGoptInference, ParamRedistributeConvMulUniqReader) {
  260. constexpr size_t N = 4, C = 3, IH = 5, IW = 4, KH = 1, KW = 1;
  261. HostTensorGenerator<> gen;
  262. auto host_x = gen({N, C, IH, IW}), host_k = gen({C}),
  263. host_w = gen({C, C, KH, KW});
  264. auto graph = ComputingGraph::make();
  265. graph->options().graph_opt_level = 0;
  266. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  267. k = opr::Dimshuffle::make(
  268. opr::SharedDeviceTensor::make(*graph, *host_k) + 2,
  269. {-1, 0, -1, -1}),
  270. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  271. // y0 should be replaced
  272. y0 = opr::powf(opr::Convolution::make(x * k, w).rename("y0") + 2, 2),
  273. y0k = (y0 * k).rename("y0k"),
  274. // y0k is accessed twice, so it should not be replaced
  275. y1 = opr::Convolution::make(y0k, w).rename("y1"),
  276. z0 = y1 / y0k;
  277. SymbolVar z1;
  278. unpack_vector(
  279. gopt::GraphOptimizer{}.
  280. add_pass<gopt::ParamRedistributePass>().
  281. apply({{z0}}).endpoint_vars(),
  282. z1);
  283. ASSERT_NE(z0.node(), z1.node());
  284. auto y1_repl = z1.node()->owner_opr()->input(0)->owner_opr();
  285. ASSERT_TRUE(y1_repl->same_type<opr::Convolution>());
  286. ASSERT_EQ(y1_repl->input(0), z1.node()->owner_opr()->input(1));
  287. HostTensorND host_z0, host_z1;
  288. auto func = graph->compile(
  289. {make_callback_copy(z0, host_z0), make_callback_copy(z1, host_z1)});
  290. func->execute();
  291. MGB_ASSERT_TENSOR_NEAR(host_z0, host_z1, 5e-5);
  292. }
  293. TEST(TestGoptInference, ParamRedistributeMulConvMul) {
  294. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  295. HostTensorGenerator<> gen;
  296. auto host_x = gen({N, IC, IH, IW}),
  297. host_k1 = gen({IC}),
  298. host_k2 = gen({1, OC, 1, 1}),
  299. host_w = gen({OC, IC, KH, KW});
  300. auto graph = ComputingGraph::make();
  301. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  302. k1 = opr::Dimshuffle::make(
  303. opr::SharedDeviceTensor::make(*graph, *host_k1),
  304. {-1, 0, -1, -1}),
  305. k2 = opr::SharedDeviceTensor::make(*graph, *host_k2),
  306. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  307. y0 = opr::Convolution::make(x * k1, w) * k2;
  308. SymbolVar y1;
  309. unpack_vector(
  310. gopt::GraphOptimizer{}.
  311. add_pass<gopt::ParamRedistributePass>().
  312. add_pass<gopt::ParamFusePass>().
  313. apply({{y0}}).endpoint_vars(),
  314. y1);
  315. auto y1opr = y1.node()->owner_opr();
  316. ASSERT_TRUE(y1opr->same_type<opr::Convolution>());
  317. ASSERT_EQ(y1opr->input(0), x.node());
  318. HostTensorND host_y0, host_y1;
  319. auto func = graph->compile(
  320. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  321. func->execute();
  322. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 5e-6);
  323. }
  324. TEST(TestGoptInference, ParamRedistributeConvAdd) {
  325. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  326. HostTensorGenerator<> gen;
  327. auto host_x = gen({N, IC, IH, IW}), host_b = gen({IC}),
  328. host_w = gen({OC, IC, KH, KW});
  329. auto graph = ComputingGraph::make();
  330. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  331. b = opr::Dimshuffle::make(
  332. opr::SharedDeviceTensor::make(*graph, *host_b),
  333. {-1, 0, -1, -1}),
  334. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  335. y0 = opr::Convolution::make(x + b, w);
  336. SymbolVar y1;
  337. unpack_vector(
  338. gopt::GraphOptimizer{}.
  339. add_pass<gopt::ParamRedistributePass>().
  340. add_pass<gopt::ParamFusePass>().
  341. apply({{y0}}).endpoint_vars(),
  342. y1);
  343. ASSERT_NE(y0.node(), y1.node());
  344. HostTensorND host_y0, host_y1;
  345. auto func = graph->compile(
  346. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  347. func->execute();
  348. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  349. }
  350. TEST(TestGoptInference, ParamRedistributeDistThenReasso) {
  351. constexpr size_t N = 4, IC0 = 3, IC1 = 6, IH = 5,
  352. IW = 4, OC = 4, KH = 3, KW = 2;
  353. HostTensorGenerator<> gen;
  354. auto graph = ComputingGraph::make();
  355. auto mkvar = [&](const char *name, const TensorShape &shp) {
  356. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  357. };
  358. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  359. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  360. };
  361. auto x0 = mkvar("x0", {N, IC0, IH, IW}),
  362. x1 = mkvar("x1", {N, IC1, IH, IW}),
  363. k0 = opr::Dimshuffle::make(
  364. mkcvar("x1_", {IC0}), {-1, 0, -1, -1}).rename("x1"),
  365. w0 = mkcvar("w0", {OC, IC0, KH, KW}),
  366. k1 = mkcvar("k1", {1, IC1, 1, 1}),
  367. w1 = mkcvar("w1", {OC, IC1, KH, KW}),
  368. b0 = mkvar("b0", {1, OC, 1, 1}),
  369. b1 = mkcvar("b1", {1}),
  370. k2 = mkcvar("k2", {1}),
  371. y0 = (
  372. opr::Convolution::make(x0 * k0, w0) +
  373. opr::Convolution::make(x1 + k1, w1) +
  374. b0 + b1) * k2;
  375. SymbolVar y1;
  376. unpack_vector(
  377. gopt::GraphOptimizer{}.
  378. add_pass<gopt::ParamRedistributePass>().
  379. add_pass<gopt::ReorderArithChainPass>(
  380. gopt::ConstVarType::IMMUTABLE_AND_PARAM).
  381. add_pass<gopt::ParamFusePass>().
  382. apply({{y0}}).endpoint_vars(),
  383. y1);
  384. ASSERT_NE(y0.node(), y1.node());
  385. HostTensorND host_y0, host_y1;
  386. auto func = graph->compile(
  387. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  388. func->execute();
  389. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  390. auto chain = gopt::extract_opr_leaves(y1.node(),
  391. [](cg::OperatorNodeBase*opr){
  392. return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
  393. });
  394. size_t nr_conv = 0;
  395. for (auto i: chain) {
  396. auto opr = i->owner_opr();
  397. if (opr->same_type<opr::Convolution>()) {
  398. ++ nr_conv;
  399. ASSERT_TRUE(opr->input(0)->owner_opr()
  400. ->same_type<opr::Host2DeviceCopy>());
  401. ASSERT_TRUE(opr->input(1)->owner_opr()
  402. ->same_type<opr::SharedDeviceTensor>());
  403. }
  404. }
  405. ASSERT_EQ(2u, nr_conv);
  406. ASSERT_EQ(4u, chain.size());
  407. }
  408. TEST(TestGoptInference, ParamRedistributeMultiChange) {
  409. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  410. HostTensorGenerator<> gen;
  411. auto graph = ComputingGraph::make();
  412. graph->options().graph_opt_level = 0;
  413. auto mkvar = [&](const char *name, const TensorShape &shp) {
  414. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  415. };
  416. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  417. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  418. };
  419. auto x = mkvar("x", {N, IC, IH, IW}),
  420. k0 = mkcvar("k0", {1, IC, 1, 1}),
  421. b0 = mkcvar("b0", {1, IC, 1, 1}),
  422. k1 = mkcvar("k0", {1}),
  423. b1 = mkcvar("b0", {1}),
  424. w = mkcvar("w", {OC, IC, KH, KW}),
  425. y0 = (opr::Convolution::make(x * k0 + b0, w) + b1) * k1;
  426. SymbolVar y1;
  427. unpack_vector(
  428. gopt::GraphOptimizer{}.
  429. add_pass<gopt::ParamRedistributePass>().
  430. add_pass<gopt::ParamFusePass>().
  431. apply({{y0}}).endpoint_vars(),
  432. y1);
  433. ASSERT_NE(y0.node(), y1.node());
  434. HostTensorND host_y0, host_y1;
  435. auto func = graph->compile(
  436. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  437. func->execute();
  438. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  439. auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
  440. ASSERT_TRUE(y1elem);
  441. auto yconv = y1elem->input(0)->owner_opr();
  442. if (!yconv->same_type<opr::Convolution>())
  443. yconv = y1elem->input(1)->owner_opr();
  444. ASSERT_TRUE(yconv->same_type<opr::Convolution>());
  445. ASSERT_EQ(x.node(), yconv->input(0));
  446. }
  447. TEST(TestGoptInference, ParamRedistributeMultiReader) {
  448. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  449. HostTensorGenerator<> gen;
  450. auto graph = ComputingGraph::make();
  451. graph->options().graph_opt_level = 0;
  452. auto mkvar = [&](const char *name, const TensorShape &shp) {
  453. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  454. };
  455. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  456. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  457. };
  458. auto x = mkvar("x", {N, IC, IH, IW}),
  459. k = mkcvar("k", {1, OC, 1, 1}),
  460. w = mkcvar("w", {OC, IC, KH, KW});
  461. auto conv = opr::Convolution::make(x, w);
  462. auto t = conv * k;
  463. auto y0 = t * 4.2f + t * 2.4f;
  464. SymbolVar y1;
  465. unpack_vector(
  466. gopt::GraphOptimizer{}.
  467. add_pass<gopt::ParamRedistributePass>().
  468. add_pass<gopt::ParamFusePass>().
  469. apply({{y0}}).endpoint_vars(),
  470. y1);
  471. ASSERT_NE(y0.node(), y1.node());
  472. HostTensorND host_y0, host_y1;
  473. auto func = graph->compile(
  474. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  475. func->execute();
  476. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  477. auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
  478. ASSERT_TRUE(y1elem);
  479. auto ymul0 = gopt::as_elem_opr(y1elem->input(0), opr::Elemwise::Mode::MUL),
  480. ymul1 = gopt::as_elem_opr(y1elem->input(1), opr::Elemwise::Mode::MUL);
  481. ASSERT_TRUE(ymul0);
  482. ASSERT_TRUE(ymul1);
  483. auto yconv = ymul0->input(0)->owner_opr();
  484. if (!yconv->same_type<opr::Convolution>())
  485. {
  486. yconv = ymul0->input(1)->owner_opr();
  487. }
  488. ASSERT_TRUE(yconv->same_type<opr::Convolution>());
  489. if (ymul1->input(0) != yconv->output(0))
  490. {
  491. ASSERT_EQ(yconv->output(0), ymul1->input(1));
  492. }
  493. ASSERT_EQ(x.node(), yconv->input(0));
  494. }
  495. TEST(TestGoptInference, ParamFuseBiasMerge) {
  496. HostTensorGenerator<> gen;
  497. auto graph = ComputingGraph::make();
  498. graph->options().graph_opt_level = 0;
  499. auto mkvar = [&](const char* name, const TensorShape& shp) {
  500. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  501. };
  502. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  503. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  504. };
  505. auto x = mkvar("x", {6, 3, 8, 8}), w1 = mkcvar("w1", {4, 3, 3, 3}),
  506. w2 = mkcvar("w2", {4, 3, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
  507. b2 = mkcvar("b2", {1, 4, 1, 1}),
  508. y1 = opr::Convolution::make(x, w1) + b1,
  509. y2 = opr::Convolution::make(x, w2) + b2, y = y1 + y2;
  510. SymbolVar y_opt;
  511. unpack_vector(gopt::optimize_for_inference({y}), y_opt);
  512. HostTensorND host_y, host_y_opt;
  513. auto func = graph->compile({make_callback_copy(y, host_y),
  514. make_callback_copy(y_opt, host_y_opt)});
  515. func->execute();
  516. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  517. graph->compile({{y_opt, {}}})
  518. ->to_json()
  519. ->writeto_fpath(
  520. output_file("TestGoptInference.ParamFuseConvMerge.json"));
  521. auto chain = gopt::extract_opr_leaves(
  522. y_opt.node(), [](cg::OperatorNodeBase* opr) {
  523. return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
  524. });
  525. ASSERT_EQ(3u, chain.size());
  526. }
  527. TEST(TestGoptInference, Float16IOFloat32Compute) {
  528. constexpr size_t INP_H = 10, INP_W = 10;
  529. HostTensorGenerator<> gen;
  530. auto graph = ComputingGraph::make();
  531. auto mkvar = [&](const char* name, const TensorShape& shp) {
  532. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  533. };
  534. graph->options().graph_opt_level = 0;
  535. auto a = mkvar("a", {1, 4, INP_H, INP_W}),
  536. s0 = mkvar("s0", {20, 3, INP_H, INP_W}),
  537. s1 = mkvar("s1", {4, 3, 1, 1});
  538. auto b = opr::Convolution::make(s0, s1, {}, {});
  539. auto y = a + b;
  540. y = opr::Concat::make({y, -y}, 0);
  541. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  542. SymbolVar y_opt;
  543. unpack_vector(gopt::optimize_for_inference(
  544. {y}, gopt::OptimizeForInferenceOptions{}
  545. .enable_f16_io_f32_comp()),
  546. y_opt);
  547. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  548. HostTensorND host_y, host_y_opt;
  549. auto func = graph->compile({make_callback_copy(y, host_y),
  550. make_callback_copy(y_opt, host_y_opt)});
  551. func->execute();
  552. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  553. }
  554. TEST(TestGoptInference, Float16IOFloat32ComputeWarpPerspective) {
  555. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  556. HostTensorGenerator<> gen;
  557. auto graph = ComputingGraph::make();
  558. auto mkvar = [&](const char* name, const TensorShape& shp) {
  559. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  560. };
  561. graph->options().graph_opt_level = 0;
  562. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  563. float value1 = M_PI, value2 = 0.6;
  564. auto gen_mat = [&](HostTensorND& mat) {
  565. auto ptr = mat.ptr<float>();
  566. for (size_t i = 0; i < N; ++i) {
  567. auto rot = value1, scale = value2, sheer = value1, dy = value2,
  568. dx = value2, ky = value2, kx = value2, kb = value2;
  569. ptr[0] = ptr[4] = cos(rot) * scale;
  570. ptr[1] = -(ptr[3] = sin(rot) * scale);
  571. ptr[3] *= sheer;
  572. ptr[4] *= sheer;
  573. ptr[2] = dx;
  574. ptr[5] = dy;
  575. ptr[6] = kx;
  576. ptr[7] = ky;
  577. ptr[8] = kb;
  578. ptr += 9;
  579. }
  580. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  581. };
  582. auto mat_host = std::make_shared<HostTensorND>(
  583. a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
  584. gen_mat(*mat_host);
  585. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  586. TensorShape out_shp{20, 20};
  587. auto y = opr::WarpPerspective::make(a, mat, out_shp);
  588. SymbolVar y_opt;
  589. unpack_vector(gopt::optimize_for_inference(
  590. {y}, gopt::OptimizeForInferenceOptions{}
  591. .enable_f16_io_f32_comp()),
  592. y_opt);
  593. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  594. HostTensorND host_y, host_y_opt;
  595. auto func = graph->compile({make_callback_copy(y, host_y),
  596. make_callback_copy(y_opt, host_y_opt)});
  597. func->execute();
  598. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  599. }
  600. TEST(TestGoptInference, Float16IOFloat32ComputeRemap) {
  601. auto cn = CompNode::load("cpu1");
  602. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  603. HostTensorGenerator<> gen;
  604. auto graph = ComputingGraph::make();
  605. auto mkvar = [&](const char* name, const TensorShape& shp) {
  606. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  607. };
  608. graph->options().graph_opt_level = 0;
  609. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  610. auto gen_map = [&](HostTensorND& mat) {
  611. auto ptr = mat.ptr<float>();
  612. for(size_t n = 0; n < N; ++n){
  613. for(int h = 0; h < 5; ++h){
  614. for(int w = 0; w < 5; ++w){
  615. *ptr++ = (h * 5 * 2) + 5 * 2 + 0;
  616. *ptr++ = (h * 5 * 2) + 5 * 2 + 1;
  617. }
  618. }
  619. }
  620. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  621. };
  622. auto map_host = std::make_shared<HostTensorND>(
  623. a.node()->comp_node(), TensorShape{N, 5, 5, 2}, dtype::Float32());
  624. gen_map(*map_host);
  625. auto map = opr::Host2DeviceCopy::make(*graph, map_host).rename("map");
  626. auto y = opr::Remap::make(a, map);
  627. SymbolVar y_opt;
  628. unpack_vector(gopt::optimize_for_inference(
  629. {y}, gopt::OptimizeForInferenceOptions{}
  630. .enable_f16_io_f32_comp()),
  631. y_opt);
  632. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  633. HostTensorND host_y, host_y_opt;
  634. auto func = graph->compile({make_callback_copy(y, host_y),
  635. make_callback_copy(y_opt, host_y_opt)});
  636. func->execute();
  637. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  638. }
  639. TEST(TestGoptInference, Uint8IOFloat16ComputeWarpPerspective) {
  640. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  641. HostTensorGenerator<dtype::Uint8> gen_uint8;
  642. auto graph = ComputingGraph::make();
  643. auto mkvar = [&](const char* name, const TensorShape& shp) {
  644. return opr::Host2DeviceCopy::make(*graph, gen_uint8(shp)).rename(name);
  645. };
  646. graph->options().graph_opt_level = 0;
  647. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  648. float value1 = M_PI, value2 = 0.6;
  649. auto gen_mat = [&](HostTensorND& mat) {
  650. auto ptr = mat.ptr<float>();
  651. for (size_t i = 0; i < N; ++i) {
  652. auto rot = value1, scale = value2, sheer = value1, dy = value2,
  653. dx = value2, ky = value2, kx = value2, kb = value2;
  654. ptr[0] = ptr[4] = cos(rot) * scale;
  655. ptr[1] = -(ptr[3] = sin(rot) * scale);
  656. ptr[3] *= sheer;
  657. ptr[4] *= sheer;
  658. ptr[2] = dx;
  659. ptr[5] = dy;
  660. ptr[6] = kx;
  661. ptr[7] = ky;
  662. ptr[8] = kb;
  663. ptr += 9;
  664. }
  665. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  666. };
  667. auto mat_host = std::make_shared<HostTensorND>(
  668. a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
  669. gen_mat(*mat_host);
  670. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  671. TensorShape out_shp{20, 20};
  672. auto y = opr::WarpPerspective::make(a, mat, out_shp);
  673. SymbolVar y_opt;
  674. unpack_vector(gopt::optimize_for_inference(
  675. {y}, gopt::OptimizeForInferenceOptions{}
  676. .enable_f16_io_comp()),
  677. y_opt);
  678. ASSERT_EQ(y_opt.dtype(), dtype::Uint8());
  679. HostTensorND host_y, host_y_opt;
  680. auto func = graph->compile({make_callback_copy(y, host_y),
  681. make_callback_copy(y_opt, host_y_opt)});
  682. func->execute();
  683. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  684. }
  685. TEST(TestGoptInference, Float32TOFloat16) {
  686. CompNode cn = CompNode::load("cpu0");
  687. HostTensorGenerator<> gen(0, 1, 0);
  688. auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  689. host_x2 = gen({4, 3, 1, 1}, cn);
  690. auto graph = ComputingGraph::make();
  691. auto make_f32_to_f16_graph = [&]() {
  692. graph->options().graph_opt_level = 0;
  693. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  694. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  695. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  696. auto b = opr::Convolution::make(d1, d2, {}, {});
  697. auto y = d0 + b;
  698. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  699. SymbolVar y_opt;
  700. unpack_vector(gopt::optimize_for_inference(
  701. {y}, gopt::OptimizeForInferenceOptions{}
  702. .enable_f16_io_comp()),
  703. y_opt);
  704. return y_opt;
  705. };
  706. auto make_f16_graph = [&]() {
  707. auto d0 = opr::TypeCvt::make(
  708. opr::Host2DeviceCopy::make(*graph, host_x0),
  709. dtype::Float16{}),
  710. d1 = opr::TypeCvt::make(
  711. opr::Host2DeviceCopy::make(*graph, host_x1),
  712. dtype::Float16{}),
  713. d2 = opr::TypeCvt::make(
  714. opr::SharedDeviceTensor::make(*graph, *host_x2),
  715. dtype::Float16{});
  716. auto b = opr::Convolution::make(d1, d2, {}, {});
  717. SymbolVar y = d0 + b;
  718. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  719. y = opr::TypeCvt::make(y, dtype::Float32{});
  720. return y;
  721. };
  722. auto y_opt = make_f32_to_f16_graph();
  723. auto y = make_f16_graph();
  724. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  725. ASSERT_EQ(y.dtype(), dtype::Float32{});
  726. HostTensorND host_y_opt, host_y;
  727. auto func = graph->compile({make_callback_copy(y, host_y),
  728. make_callback_copy(y_opt, host_y_opt)});
  729. func->execute();
  730. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  731. }
  732. TEST(TestGoptInference, Float32TOFloat16EndpointElemwise) {
  733. CompNode cn = CompNode::load("cpu0");
  734. HostTensorGenerator<> gen(0, 1, 0);
  735. auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  736. host_x2 = gen({4, 3, 1, 1}, cn);
  737. auto graph = ComputingGraph::make();
  738. auto make_f32_to_f16_graph = [&]() {
  739. graph->options().graph_opt_level = 0;
  740. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  741. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  742. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  743. auto b = opr::Convolution::make(d1, d2, {}, {});
  744. auto y = d0 + b;
  745. SymbolVar y_opt;
  746. unpack_vector(gopt::optimize_for_inference(
  747. {y}, gopt::OptimizeForInferenceOptions{}
  748. .enable_f16_io_comp()),
  749. y_opt);
  750. return y_opt;
  751. };
  752. auto make_f16_graph = [&]() {
  753. auto d0 = opr::TypeCvt::make(
  754. opr::Host2DeviceCopy::make(*graph, host_x0),
  755. dtype::Float16{}),
  756. d1 = opr::TypeCvt::make(
  757. opr::Host2DeviceCopy::make(*graph, host_x1),
  758. dtype::Float16{}),
  759. d2 = opr::TypeCvt::make(
  760. opr::SharedDeviceTensor::make(*graph, *host_x2),
  761. dtype::Float16{});
  762. auto b = opr::Convolution::make(d1, d2, {}, {});
  763. SymbolVar y = d0 + b;
  764. y = opr::TypeCvt::make(y, dtype::Float32{});
  765. return y;
  766. };
  767. auto y_opt = make_f32_to_f16_graph();
  768. auto y = make_f16_graph();
  769. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  770. ASSERT_EQ(y.dtype(), dtype::Float32{});
  771. HostTensorND host_y_opt, host_y;
  772. auto func = graph->compile({make_callback_copy(y, host_y),
  773. make_callback_copy(y_opt, host_y_opt)});
  774. func->execute();
  775. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  776. }
  777. TEST(TestGoptInference, Float32TOFloat16Linspace) {
  778. CompNode cn = CompNode::load("cpu0");
  779. HostTensorGenerator<> gen(0, 1, 0);
  780. auto host_x = gen({3, 1}, cn);
  781. auto graph = ComputingGraph::make();
  782. auto make_f32_to_f16_graph = [&]() {
  783. graph->options().graph_opt_level = 0;
  784. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  785. auto xshp = opr::GetVarShape::make(x);
  786. auto cv = [&x](int v) { return x.make_scalar(v); };
  787. auto sub = [&xshp, &cv](int idx) {
  788. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  789. };
  790. auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
  791. auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
  792. auto y = opr::Reshape::make(lin, shp);
  793. auto mm = opr::MatrixMul::make(x, y);
  794. SymbolVar mm_opt;
  795. unpack_vector(gopt::optimize_for_inference(
  796. {mm}, gopt::OptimizeForInferenceOptions{}
  797. .enable_f16_io_comp()),
  798. mm_opt);
  799. return mm_opt;
  800. };
  801. auto make_f16_graph = [&]() {
  802. auto x = opr::TypeCvt::make(opr::Host2DeviceCopy::make(*graph, host_x),
  803. dtype::Float16());
  804. auto xshp = opr::GetVarShape::make(x);
  805. auto cv = [&x](int v) { return x.make_scalar(v); };
  806. auto sub = [&xshp, &cv](int idx) {
  807. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  808. };
  809. auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
  810. lin = opr::TypeCvt::make(lin, dtype::Float16());
  811. auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
  812. auto y = opr::Reshape::make(lin, shp);
  813. auto mm = opr::MatrixMul::make(x, y);
  814. mm = opr::TypeCvt::make(mm, dtype::Float32{});
  815. return mm;
  816. };
  817. auto y_opt = make_f32_to_f16_graph();
  818. auto y = make_f16_graph();
  819. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  820. ASSERT_EQ(y.dtype(), dtype::Float32{});
  821. HostTensorND host_y_opt, host_y;
  822. auto func = graph->compile({make_callback_copy(y, host_y),
  823. make_callback_copy(y_opt, host_y_opt)});
  824. func->execute();
  825. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  826. }
  827. TEST(TestGoptInference, ConvertFormatNHWCD4) {
  828. // hwcd4 is only supported in naive handle
  829. NaiveMegDNNHandleScope naive_megdnn_handle;
  830. HostTensorGenerator<> gen;
  831. auto cn = CompNode::load("cpu0");
  832. auto graph = ComputingGraph::make();
  833. graph->options().graph_opt_level = 0;
  834. auto mkvar = [&](const char* name, const TensorShape& shp) {
  835. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  836. };
  837. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  838. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  839. .rename(name);
  840. };
  841. auto host_x = gen({8, 8, 8, 8}, cn);
  842. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  843. opr::Convolution::Param param;
  844. param.pad_h = param.pad_w = 0;
  845. auto w1 = mkcvar("w1", {4, 8, 3, 3}),
  846. conv = opr::Convolution::make(x, w1, param);
  847. auto shape_of = opr::GetVarShape::make(conv);
  848. auto subtensor = opr::Subtensor::make(
  849. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  850. 0, x.make_scalar(2), None, x.make_scalar(1))});
  851. opr::Resize::Param param_resize;
  852. param_resize.format = opr::Resize::Param::Format::NCHW;
  853. auto resize = opr::ResizeForward::make(conv, subtensor * 2, param_resize);
  854. auto mat = mkcvar("mat", {8, 3, 3}),
  855. warp = opr::WarpPerspectiveForward::make(
  856. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  857. auto b = mkvar("b", {1, 4, 1, 1}),
  858. elem = opr::Elemwise::make({warp + b},
  859. opr::Elemwise::Param::Mode::RELU);
  860. param.pad_h = param.pad_w = 1;
  861. auto w2 = mkcvar("w2", {4, 4, 3, 3}),
  862. y = opr::Convolution::make(elem, w2, param);
  863. SymbolVar y_opt;
  864. unpack_vector(
  865. gopt::optimize_for_inference(
  866. {y},
  867. gopt::OptimizeForInferenceOptions{}.enable_use_nhwcd4()),
  868. y_opt);
  869. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  870. find_opr<opr::Convolution>(y_opt).param().format);
  871. graph->compile({{y_opt, {}}})
  872. ->to_json()
  873. ->writeto_fpath(
  874. output_file("TestGoptInference.ConvertFormatNHWCD4.json"));
  875. HostTensorND host_y_opt, host_y;
  876. auto func = graph->compile({make_callback_copy(y, host_y),
  877. make_callback_copy(y_opt, host_y_opt)});
  878. func->execute();
  879. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  880. *host_x = *gen({8, 8, 16, 16}, cn);
  881. func->execute();
  882. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  883. }
  884. TEST(TestGoptInference, ConvertFormatNHWCD4LOCAL) {
  885. // hwcd4 is only supported in naive handle
  886. NaiveMegDNNHandleScope naive_megdnn_handle;
  887. HostTensorGenerator<> gen;
  888. auto cn = CompNode::load("cpu0");
  889. auto graph = ComputingGraph::make();
  890. graph->options().graph_opt_level = 0;
  891. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  892. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  893. .rename(name);
  894. };
  895. auto host_x = gen({2, 8, 8, 16}, cn);
  896. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  897. opr::Convolution::Param param;
  898. param.pad_h = param.pad_w = 1;
  899. auto w1 = mkcvar("w1", {4, 8, 3, 3}),
  900. conv1 = opr::Convolution::make(x, w1, param);
  901. auto w2 = mkcvar("w2", {8, 16, 4, 3, 3, 4}),
  902. local = opr::Local::make(conv1, w2, param);
  903. auto w3 = mkcvar("w3", {4, 4, 3, 3}),
  904. conv2 = opr::Convolution::make(local, w3, param);
  905. opr::GroupLocal::Param param_group_local;
  906. param_group_local.pad_h = param_group_local.pad_w = 1;
  907. auto w4 = mkcvar("w4", {2, 8, 16, 2, 3, 3, 2}),
  908. group_local = opr::GroupLocal::make(conv2, w4, param_group_local);
  909. auto w5 = mkcvar("w5", {4, 4, 3, 3}),
  910. y = opr::Convolution::make(group_local, w5, param);
  911. SymbolVar y_opt;
  912. unpack_vector(
  913. gopt::optimize_for_inference(
  914. {y},
  915. gopt::OptimizeForInferenceOptions{}.enable_use_nhwcd4()),
  916. y_opt);
  917. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  918. find_opr<opr::Convolution>(y_opt).param().format);
  919. ASSERT_EQ(opr::Local::Param::Format::NCHW,
  920. find_opr<opr::Local>(y_opt).param().format);
  921. ASSERT_EQ(opr::GroupLocal::Param::Format::NCHW,
  922. find_opr<opr::GroupLocal>(y_opt).param().format);
  923. graph->compile({{y_opt, {}}})
  924. ->to_json()
  925. ->writeto_fpath(output_file(
  926. "TestGoptInference.ConvertFormatNHWCD4LOCAL.json"));
  927. HostTensorND host_y_opt, host_y;
  928. auto func = graph->compile({make_callback_copy(y, host_y),
  929. make_callback_copy(y_opt, host_y_opt)});
  930. func->execute();
  931. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  932. }
  933. TEST(TestGoptInference, ConvertFormatNHWCD4Deconv) {
  934. // hwcd4 is only supported in naive handle
  935. NaiveMegDNNHandleScope naive_megdnn_handle;
  936. HostTensorGenerator<> gen;
  937. auto cn = CompNode::load("cpu0");
  938. auto graph = ComputingGraph::make();
  939. graph->options().graph_opt_level = 0;
  940. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  941. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  942. .rename(name);
  943. };
  944. auto host_x = gen({8, 8, 8, 8}, cn);
  945. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  946. opr::Convolution::Param param;
  947. param.pad_h = param.pad_w = 0;
  948. auto w0 = mkcvar("w1", {4, 8, 2, 2}),
  949. conv = opr::Convolution::make(x, w0, param);
  950. auto w1 = mkcvar("w1", {4, 1, 2, 2}),
  951. y = opr::ConvolutionBackwardData::make(w1, conv, param, {}, {});
  952. SymbolVar y_opt;
  953. unpack_vector(
  954. gopt::optimize_for_inference(
  955. {y},
  956. gopt::OptimizeForInferenceOptions{}.enable_use_nhwcd4()),
  957. y_opt);
  958. ASSERT_EQ(opr::Convolution::Param::Format::NCHW,
  959. find_opr<opr::ConvolutionBackwardData>(y_opt).param().format);
  960. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  961. find_opr<opr::Convolution>(y_opt).param().format);
  962. HostTensorND host_y_opt, host_y;
  963. auto func = graph->compile({make_callback_copy(y, host_y),
  964. make_callback_copy(y_opt, host_y_opt)});
  965. func->execute();
  966. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  967. }
  968. TEST(TestGoptInference, ConvertFormatNHWCD4Qint8) {
  969. // hwcd4 is only supported in naive handle
  970. NaiveMegDNNHandleScope naive_megdnn_handle;
  971. HostTensorGenerator<> gen;
  972. auto cn = CompNode::load("cpu0");
  973. auto graph = ComputingGraph::make();
  974. graph->options().graph_opt_level = 0;
  975. auto mkcvar = [&](const char* name, const TensorShape& shp,
  976. const DType& dtype) {
  977. return opr::TypeCvt::make(
  978. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  979. .rename(name),
  980. dtype);
  981. };
  982. auto host_x = gen({8, 8, 8, 8}, cn);
  983. auto _x = opr::Host2DeviceCopy::make(*graph, host_x),
  984. x = opr::TypeCvt::make(_x, dtype::QuantizedS8(0.2f));
  985. opr::ConvBias::Param param;
  986. param.pad_h = param.pad_w = 0;
  987. auto w = mkcvar("w", {4, 8, 3, 3}, dtype::QuantizedS8(0.1f)),
  988. b = mkcvar("b", {1, 4, 1, 1}, dtype::QuantizedS32(0.02f)),
  989. y = opr::ConvBias::make(
  990. x, w, b, param, {},
  991. OperatorNodeConfig{dtype::QuantizedS8(0.2f)});
  992. SymbolVar y_opt;
  993. unpack_vector(
  994. gopt::optimize_for_inference(
  995. {y},
  996. gopt::OptimizeForInferenceOptions{}.enable_use_nhwcd4()),
  997. y_opt);
  998. ASSERT_EQ(opr::ConvBias::Param::Format::NHWCD4,
  999. find_opr<opr::ConvBias>(y_opt).param().format);
  1000. graph->compile({{y_opt, {}}})
  1001. ->to_json()
  1002. ->writeto_fpath(output_file(
  1003. "TestGoptInference.ConvertFormatNHWCD4Qint8.json"));
  1004. auto float_y = opr::TypeCvt::make(y, dtype::Float32()),
  1005. float_y_opt = opr::TypeCvt::make(y_opt, dtype::Float32());
  1006. HostTensorND host_y_opt, host_y;
  1007. auto func = graph->compile({make_callback_copy(float_y, host_y),
  1008. make_callback_copy(float_y_opt, host_y_opt)});
  1009. func->execute();
  1010. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1011. }
  1012. TEST(TestGoptInference, ConvertFormatPadIC) {
  1013. // hwcd4 is only supported in naive handle
  1014. NaiveMegDNNHandleScope naive_megdnn_handle;
  1015. HostTensorGenerator<> gen;
  1016. auto cn = CompNode::load("cpu0");
  1017. auto graph = ComputingGraph::make();
  1018. graph->options().graph_opt_level = 0;
  1019. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1020. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1021. .rename(name);
  1022. };
  1023. auto host_inp1 = gen({1, 6, 128, 128}, cn),
  1024. host_inp2 = gen({1, 6, 256, 256}, cn);
  1025. auto inp1 = opr::Host2DeviceCopy::make(*graph, host_inp1),
  1026. inp2 = opr::Host2DeviceCopy::make(*graph, host_inp2);
  1027. auto shape_tmp = mkcvar("tmp", {256, 256});
  1028. auto shape_of = opr::GetVarShape::make(shape_tmp);
  1029. opr::Resize::Param param_resize;
  1030. param_resize.format = opr::Resize::Param::Format::NCHW;
  1031. auto resize = opr::ResizeForward::make(inp1, shape_of, param_resize);
  1032. auto concat = opr::Concat::make({inp2, resize}, 1);
  1033. opr::Convolution::Param param;
  1034. param.pad_h = param.pad_w = 1;
  1035. param.sparse = opr::Convolution::Param::Sparse::DENSE;
  1036. auto w1 = mkcvar("w1", {12, 12, 3, 3});
  1037. auto y = opr::Convolution::make(concat, w1, param);
  1038. SymbolVar y_opt;
  1039. unpack_vector(
  1040. gopt::optimize_for_inference(
  1041. {y},
  1042. gopt::OptimizeForInferenceOptions{}.enable_use_nhwcd4()),
  1043. y_opt);
  1044. HostTensorND host_y_opt, host_y;
  1045. auto func = graph->compile({make_callback_copy(y, host_y),
  1046. make_callback_copy(y_opt, host_y_opt)});
  1047. func->execute();
  1048. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1049. }
  1050. TEST(TestGoptInference, ConvertBatchNormPass) {
  1051. auto cn = CompNode::load("cpu0");
  1052. HostTensorGenerator<> gen(0, 1, 0);
  1053. auto graph = ComputingGraph::make();
  1054. graph->options().graph_opt_level = 0;
  1055. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1056. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1057. };
  1058. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1059. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1060. .rename(name);
  1061. };
  1062. using Param = opr::BatchNorm::Param;
  1063. Param param(Param::ParamDim::DIM_1C11, Param::FwdMode::INFERENCE);
  1064. TensorShape shp = {1, 3, 1, 1};
  1065. auto x = mkvar("x", {2, 3, 16, 24}), scale = mkcvar("scale", shp),
  1066. bias = mkcvar("bias", shp), mean = mkcvar("mean", shp);
  1067. auto host_variance = gen(shp, cn);
  1068. for (size_t i = 0; i < shp.total_nr_elems(); ++i) {
  1069. host_variance->ptr<float>()[i] =
  1070. std::abs(host_variance->ptr<float>()[i]);
  1071. }
  1072. auto variance = opr::SharedDeviceTensor::make(*graph, *host_variance)
  1073. .rename("variance");
  1074. auto y = opr::BatchNorm::make(x, scale, bias, mean, variance, param)[4];
  1075. SymbolVar y_opt;
  1076. unpack_vector(gopt::optimize_for_inference(
  1077. {y}, gopt::OptimizeForInferenceOptions{}),
  1078. y_opt);
  1079. ASSERT_EQ(0u, find_opr_num<opr::BatchNorm>(y_opt));
  1080. graph->compile({{y_opt, {}}})
  1081. ->to_json()
  1082. ->writeto_fpath(
  1083. output_file("TestGoptInference.ConvertBatchNormPass.json"));
  1084. HostTensorND host_y, host_y_opt;
  1085. auto func = graph->compile({make_callback_copy(y, host_y),
  1086. make_callback_copy(y_opt, host_y_opt)});
  1087. func->execute();
  1088. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-2);
  1089. }
  1090. TEST(TestGoptInference, ConvBiasNonlinearityFusePass) {
  1091. // hwcd4 is only supported in naive handle
  1092. NaiveMegDNNHandleScope naive_megdnn_handle;
  1093. auto cn = CompNode::load("cpu0");
  1094. HostTensorGenerator<> gen;
  1095. auto graph = ComputingGraph::make();
  1096. graph->options().graph_opt_level = 0;
  1097. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1098. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1099. };
  1100. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1101. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1102. .rename(name);
  1103. };
  1104. opr::Convolution::Param param;
  1105. auto x = mkvar("x", {5, 8, 16, 24}), w1 = mkcvar("w1", {4, 8, 1, 1}),
  1106. w2 = mkcvar("w2", {4, 4, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
  1107. b2 = mkcvar("b2", {1, 4, 1, 1}), w3 = mkcvar("w3", {8, 4, 1, 1}),
  1108. y_cut = opr::Convolution::make(x, w1, param),
  1109. y1 = opr::Elemwise::make({y_cut + b1},
  1110. opr::Elemwise::Param::Mode::RELU);
  1111. param.pad_w = param.pad_h = 1;
  1112. auto y2 = opr::Elemwise::make({opr::Convolution::make(y1, w2, param) + b2},
  1113. opr::Elemwise::Param::Mode::SIGMOID);
  1114. param.pad_w = param.pad_h = 0;
  1115. auto y3 = opr::Convolution::make(y2, w3, param), y_tmp = y3 + x,
  1116. y_expand =
  1117. opr::Elemwise::make({y_cut}, opr::Elemwise::Param::Mode::RELU),
  1118. y_y = opr::Convolution::make(y_expand, w3, param), y = y_y + y_tmp;
  1119. SymbolVar y_opt;
  1120. unpack_vector(gopt::optimize_for_inference(
  1121. {y}, gopt::OptimizeForInferenceOptions{}
  1122. .enable_use_nhwcd4()
  1123. .enable_fuse_conv_bias_nonlinearity()),
  1124. y_opt);
  1125. ASSERT_EQ(3u, find_opr<opr::ConvBias>(y_opt).input().size());
  1126. graph->compile({{y_opt, {}}})
  1127. ->to_json()
  1128. ->writeto_fpath(output_file(
  1129. "TestGoptInference.FuseConvBiasNonlinPass.json"));
  1130. HostTensorND host_y, host_y_opt;
  1131. auto func = graph->compile({make_callback_copy(y, host_y),
  1132. make_callback_copy(y_opt, host_y_opt)});
  1133. func->execute();
  1134. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  1135. }
  1136. TEST(TestGoptInference, ParamMerge) {
  1137. auto cns = load_multiple_xpus(2);
  1138. HostTensorGenerator<> gen;
  1139. auto graph = ComputingGraph::make();
  1140. auto var0 = opr::SharedDeviceTensor::make(*graph, *gen({2, 3}, cns[0])),
  1141. var1 = opr::SharedDeviceTensor::make(*graph, *gen({1, 3}, cns[1])),
  1142. y = var0 + opr::Copy::make(var1, {cns[0]});
  1143. HostTensorND y_expected_val;
  1144. graph->compile({make_callback_copy(y, y_expected_val)})->execute();
  1145. SymbolVar y_opt;
  1146. unpack_vector(gopt::GraphOptimizer{}
  1147. .add_pass<gopt::ParamMergePass>()
  1148. .apply({{y}})
  1149. .endpoint_vars(),
  1150. y_opt);
  1151. auto opr = y_opt.node()->owner_opr();
  1152. ASSERT_EQ(2u, opr->input().size());
  1153. ASSERT_EQ(2u,
  1154. find_opr<opr::MultipleDeviceTensorHolder>(y_opt).output().size());
  1155. HostTensorND y_got_val;
  1156. graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
  1157. MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
  1158. }
  1159. TEST(TestGoptInference, ParamMergeFormat) {
  1160. auto cns = load_multiple_xpus(2);
  1161. auto make_dv = [](const HostTensorND& hv) {
  1162. TensorLayout layout{hv.layout(), hv.layout().dtype,
  1163. megdnn::Image2DPack4TensorFormat::make_raw(1, 64)};
  1164. auto ret = std::make_shared<DeviceTensorND>(hv.comp_node(), layout);
  1165. ret->copy_from_fixlayout(hv).sync();
  1166. return ret;
  1167. };
  1168. HostTensorGenerator<> gen;
  1169. auto graph = ComputingGraph::make();
  1170. auto var0 = opr::SharedDeviceTensorWithFormat::make(
  1171. *graph, make_dv(*gen({2, 32}, cns[0]))),
  1172. var1 = opr::SharedDeviceTensorWithFormat::make(
  1173. *graph, make_dv(*gen({1, 32}, cns[1]))),
  1174. y = var0 + opr::Copy::make(var1, {cns[0]});
  1175. HostTensorND y_expected_val;
  1176. graph->compile({make_callback_copy(y, y_expected_val)})->execute();
  1177. SymbolVar y_opt;
  1178. unpack_vector(gopt::GraphOptimizer{}
  1179. .add_pass<gopt::ParamMergePass>()
  1180. .apply({{y}})
  1181. .endpoint_vars(),
  1182. y_opt);
  1183. auto opr = y_opt.node()->owner_opr();
  1184. ASSERT_EQ(2u, opr->input().size());
  1185. ASSERT_EQ(2u, find_opr<opr::MultipleDeviceTensorWithFormatHolder>(y_opt)
  1186. .output()
  1187. .size());
  1188. HostTensorND y_got_val;
  1189. graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
  1190. MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
  1191. }
  1192. #if MGB_ENABLE_FASTRUN
  1193. TEST(TestGoptInference, AlgoProfile) {
  1194. HostTensorGenerator<> gen;
  1195. auto graph = ComputingGraph::make();
  1196. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1197. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1198. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1199. z = opr::Convolution::make(x, y);
  1200. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1201. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1202. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1203. gopt::enable_opr_algo_profiling_inplace({z + 2.3f});
  1204. ASSERT_EQ(S::PROFILE, conv.execution_policy().strategy);
  1205. }
  1206. #endif
  1207. TEST(TestGoptInference, ProfileCache) {
  1208. HostTensorGenerator<> gen;
  1209. auto graph = ComputingGraph::make();
  1210. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1211. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1212. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1213. z = opr::Convolution::make(x, y);
  1214. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1215. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1216. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1217. gopt::enable_opr_use_profiling_cache_inplace({z + 2.3f});
  1218. ASSERT_EQ(S::PROFILE_HEURISTIC, conv.execution_policy().strategy);
  1219. }
  1220. TEST(TestGoptInference, AlgoWorkspaceLimit) {
  1221. HostTensorGenerator<> gen;
  1222. auto graph = ComputingGraph::make();
  1223. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1224. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1225. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1226. z = opr::Convolution::make(x, y);
  1227. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1228. ASSERT_EQ(std::numeric_limits<uint64_t>::max(),
  1229. conv.execution_policy_transient().workspace_limit);
  1230. gopt::set_opr_algo_workspace_limit_inplace({z + 2.3f}, 10000u);
  1231. ASSERT_EQ(10000u, conv.execution_policy().workspace_limit);
  1232. }
  1233. TEST_PASS(FuseConvBiasNonlinPass, Basic) {
  1234. auto cn = CompNode::load("xpux");
  1235. HostTensorGenerator<dtype::Int8> gen;
  1236. auto graph = ComputingGraph::make();
  1237. graph->options().graph_opt_level = 0;
  1238. auto mkvar = [&](const char* name, const TensorShape& shp,
  1239. const DType& dtype) {
  1240. return opr::TypeCvt::make(
  1241. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1242. dtype);
  1243. };
  1244. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1245. const DType& dtype) {
  1246. return opr::TypeCvt::make(
  1247. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1248. .rename(name),
  1249. dtype);
  1250. };
  1251. for (auto format : {
  1252. opr::Convolution::Param::Format::NCHW,
  1253. opr::Convolution::Param::Format::NHWC,
  1254. opr::Convolution::Param::Format::NCHW4
  1255. }) {
  1256. opr::Convolution::Param param;
  1257. param.format = format;
  1258. SymbolVar x, w, b;
  1259. if (format == opr::Convolution::Param::Format::NHWC) {
  1260. x = mkvar("x", {20, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
  1261. w = mkcvar("w1", {24, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
  1262. b = mkcvar("b", {1, 1, 1, 24}, dtype::QuantizedS32(6.25f));
  1263. } else if (format == opr::Convolution::Param::Format::NCHW) {
  1264. x = mkvar("x", {20, 4, 20, 20}, dtype::QuantizedS8(2.5f)),
  1265. w = mkcvar("w1", {24, 4, 1, 1}, dtype::QuantizedS8(2.5f)),
  1266. b = mkcvar("b", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  1267. } else {
  1268. mgb_assert(format == opr::Convolution::Param::Format::NCHW4);
  1269. x = mkvar("x", {20, 1, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
  1270. w = mkcvar("w1", {24, 1, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
  1271. b = mkcvar("b", {1, 6, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  1272. }
  1273. auto y = opr::Convolution::make(x, w, param);
  1274. y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
  1275. y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
  1276. opr::ConvBias::Param conv_bias_param;
  1277. conv_bias_param.format = format;
  1278. conv_bias_param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1279. auto concret_y = opr::ConvBias::make(
  1280. x, w, b, conv_bias_param, {},
  1281. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1282. check(concret_y, y);
  1283. }
  1284. }
  1285. #if MGB_CUDA
  1286. TEST(TestEnableTensorCore, SmallInputShape) {
  1287. REQUIRE_GPU(1);
  1288. auto cn = CompNode::load("gpu0");
  1289. cn.activate();
  1290. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1291. auto sm_ver = prop.major * 10 + prop.minor;
  1292. if (sm_ver < 75) {
  1293. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1294. "expected: %d)\n",
  1295. sm_ver, 75);
  1296. return;
  1297. }
  1298. HostTensorGenerator<dtype::Int8> gen;
  1299. auto graph = ComputingGraph::make();
  1300. graph->options().graph_opt_level = 0;
  1301. auto mkvar = [&](const char* name, const TensorShape& shp,
  1302. const DType& dtype) {
  1303. return opr::TypeCvt::make(
  1304. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1305. dtype);
  1306. };
  1307. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1308. const DType& dtype) {
  1309. return opr::TypeCvt::make(
  1310. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1311. .rename(name),
  1312. dtype);
  1313. };
  1314. auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  1315. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1316. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1317. z = mkcvar("b1", {32, 16, 2, 4, 4}, dtype::QuantizedS8(2.5f));
  1318. opr::ConvBias::Param param;
  1319. param.format = opr::ConvBias::Param::Format::NCHW4;
  1320. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1321. param.stride_h = param.stride_w = 2;
  1322. param.pad_h = param.pad_w = 1;
  1323. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1324. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1325. y = opr::ConvBias::make(y, w, b, param, {},
  1326. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1327. y = opr::TypeCvt::make(y, dtype::Float32());
  1328. SymbolVar y_opt;
  1329. SymbolVar y_no_tc;
  1330. unpack_vector(gopt::optimize_for_inference(
  1331. {y}, gopt::OptimizeForInferenceOptions{}
  1332. .enable_fuse_conv_bias_nonlinearity()
  1333. .enable_use_tensor_core()),
  1334. y_opt);
  1335. unpack_vector(gopt::optimize_for_inference(
  1336. {y}, gopt::OptimizeForInferenceOptions{}
  1337. .enable_fuse_conv_bias_nonlinearity()),
  1338. y_no_tc);
  1339. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1340. ASSERT_EQ(2u, nr_dimshuffle);
  1341. HostTensorND host_y, host_y_opt;
  1342. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1343. make_callback_copy(y_opt, host_y_opt)});
  1344. func->execute();
  1345. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1346. }
  1347. TEST(TestEnableTensorCore, ConvBiasWithZ) {
  1348. REQUIRE_GPU(1);
  1349. auto cn = CompNode::load("gpu0");
  1350. cn.activate();
  1351. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1352. auto sm_ver = prop.major * 10 + prop.minor;
  1353. if (sm_ver < 75) {
  1354. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1355. "expected: %d)\n",
  1356. sm_ver, 75);
  1357. return;
  1358. }
  1359. HostTensorGenerator<dtype::Int8> gen;
  1360. auto graph = ComputingGraph::make();
  1361. graph->options().graph_opt_level = 0;
  1362. auto mkvar = [&](const char* name, const TensorShape& shp,
  1363. const DType& dtype) {
  1364. return opr::TypeCvt::make(
  1365. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1366. dtype);
  1367. };
  1368. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1369. const DType& dtype) {
  1370. return opr::TypeCvt::make(
  1371. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1372. .rename(name),
  1373. dtype);
  1374. };
  1375. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1376. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1377. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1378. z = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1379. opr::ConvBias::Param param;
  1380. param.format = opr::ConvBias::Param::Format::NCHW4;
  1381. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1382. param.stride_h = param.stride_w = 1;
  1383. param.pad_h = param.pad_w = 1;
  1384. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1385. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1386. y = opr::TypeCvt::make(y, dtype::Float32());
  1387. SymbolVar y_opt;
  1388. SymbolVar y_no_tc;
  1389. unpack_vector(gopt::optimize_for_inference(
  1390. {y}, gopt::OptimizeForInferenceOptions{}
  1391. .enable_fuse_conv_bias_nonlinearity()
  1392. .enable_use_tensor_core()),
  1393. y_opt);
  1394. unpack_vector(gopt::optimize_for_inference(
  1395. {y}, gopt::OptimizeForInferenceOptions{}
  1396. .enable_fuse_conv_bias_nonlinearity()),
  1397. y_no_tc);
  1398. HostTensorND host_y, host_y_opt;
  1399. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1400. make_callback_copy(y_opt, host_y_opt)});
  1401. func->execute();
  1402. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1403. }
  1404. TEST(TestGoptInference, EnableTensorCore) {
  1405. REQUIRE_GPU(1);
  1406. auto cn = CompNode::load("gpu0");
  1407. cn.activate();
  1408. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1409. auto sm_ver = prop.major * 10 + prop.minor;
  1410. if (sm_ver < 75) {
  1411. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1412. "expected: %d)\n",
  1413. sm_ver, 75);
  1414. return;
  1415. }
  1416. HostTensorGenerator<dtype::Int8> gen;
  1417. auto graph = ComputingGraph::make();
  1418. graph->options().graph_opt_level = 0;
  1419. auto mkvar = [&](const char* name, const TensorShape& shp,
  1420. const DType& dtype) {
  1421. return opr::TypeCvt::make(
  1422. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1423. dtype);
  1424. };
  1425. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1426. const DType& dtype) {
  1427. return opr::TypeCvt::make(
  1428. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1429. .rename(name),
  1430. dtype);
  1431. };
  1432. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1433. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1434. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1435. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1436. opr::Convolution::Param param;
  1437. param.format = opr::Convolution::Param::Format::NCHW4;
  1438. param.stride_h = param.stride_w = 1;
  1439. param.pad_h = param.pad_w = 1;
  1440. auto y = opr::Convolution::make(x, w, param);
  1441. y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
  1442. y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
  1443. auto y1 = y + b1, y2 = opr::Convolution::make(y, w, param),
  1444. y3 = opr::Elemwise::make({y - b1}, opr::Elemwise::Param::Mode::RELU);
  1445. y2 = opr::Elemwise::make({y2 + b}, opr::Elemwise::Param::Mode::RELU),
  1446. y2 = opr::TypeCvt::make(y2, dtype::QuantizedS8(2.5f));
  1447. auto y4 = y1 + y2 + y3;
  1448. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  1449. SymbolVar y_opt;
  1450. SymbolVar y_no_tc;
  1451. unpack_vector(gopt::optimize_for_inference(
  1452. {y4}, gopt::OptimizeForInferenceOptions{}
  1453. .enable_fuse_conv_bias_nonlinearity()
  1454. .enable_use_tensor_core()),
  1455. y_opt);
  1456. unpack_vector(gopt::optimize_for_inference(
  1457. {y4}, gopt::OptimizeForInferenceOptions{}
  1458. .enable_fuse_conv_bias_nonlinearity()),
  1459. y_no_tc);
  1460. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1461. ASSERT_EQ(3u, nr_dimshuffle);
  1462. graph->compile({{y_opt, {}}})
  1463. ->to_json()
  1464. ->writeto_fpath(
  1465. output_file("TestGoptInference.EnableTensorCorePass.json"));
  1466. HostTensorND host_y, host_y_opt;
  1467. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1468. make_callback_copy(y_opt, host_y_opt)});
  1469. func->execute();
  1470. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1471. }
  1472. TEST(FuseConvBiasZPass, BlockFuse) {
  1473. REQUIRE_GPU(1);
  1474. auto cn = CompNode::load("gpu0");
  1475. cn.activate();
  1476. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1477. auto sm_ver = prop.major * 10 + prop.minor;
  1478. if (sm_ver < 61) {
  1479. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1480. "expected: %d)\n",
  1481. sm_ver, 61);
  1482. return;
  1483. }
  1484. HostTensorGenerator<dtype::Int8> gen;
  1485. auto graph = ComputingGraph::make();
  1486. graph->options().graph_opt_level = 0;
  1487. auto mkvar = [&](const char* name, const TensorShape& shp,
  1488. const DType& dtype) {
  1489. return opr::TypeCvt::make(
  1490. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1491. dtype);
  1492. };
  1493. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1494. const DType& dtype) {
  1495. return opr::TypeCvt::make(
  1496. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1497. .rename(name),
  1498. dtype);
  1499. };
  1500. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1501. w1 = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1502. b1 = mkcvar("b1", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1503. w2 = mkcvar("w2", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1504. b2 = mkcvar("b2", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1505. w3 = mkcvar("w3", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1506. b3 = mkcvar("b3", {1, 16, 1, 1, 4}, dtype::QuantizedS32(3.0f));
  1507. opr::ConvBias::Param param;
  1508. param.format = opr::Convolution::Param::Format::NCHW4;
  1509. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1510. param.stride_h = param.stride_w = 1;
  1511. param.pad_h = param.pad_w = 1;
  1512. auto y1 = opr::ConvBias::make(x, w1, b1, param, {},
  1513. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1514. param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY;
  1515. auto y2 = opr::ConvBias::make(y1, w2, b2, param, {},
  1516. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  1517. y3 = opr::ElemwiseMultiType::make(
  1518. {y1, y2},
  1519. {opr::ElemwiseMultiType::Param::Mode::QFUSE_ADD_RELU},
  1520. OperatorNodeConfig{dtype::QuantizedS8(1.2f)});
  1521. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1522. auto y4 = opr::ConvBias::make(y3, w3, b3, param, {},
  1523. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  1524. z = opr::ElemwiseMultiType::make(
  1525. {y3, y4},
  1526. {opr::ElemwiseMultiType::Param::Mode::QADD},
  1527. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1528. z = opr::TypeCvt::make(z, dtype::Float32());
  1529. //! fuse z mannually
  1530. auto z0 = opr::ConvBias::make(x, w1, b1, param, {},
  1531. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1532. auto z1 = opr::ConvBias::make(z0, w2, b2, z0, param, {},
  1533. OperatorNodeConfig{dtype::QuantizedS8(1.2f)}),
  1534. z2 = opr::ConvBias::make(z1, w3, b3, param, {},
  1535. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  1536. z4 = opr::ElemwiseMultiType::make(
  1537. {z1, z2}, {opr::ElemwiseMultiType::Mode::QADD},
  1538. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1539. z4 = opr::TypeCvt::make(z4, dtype::Float32());
  1540. SymbolVar z_fuse;
  1541. SymbolVar z_nonfuse;
  1542. unpack_vector(gopt::optimize_for_inference(
  1543. {z}, gopt::OptimizeForInferenceOptions{}
  1544. .enable_fuse_conv_bias_nonlinearity()
  1545. .enable_fuse_conv_bias_with_z()),
  1546. z_fuse);
  1547. unpack_vector(gopt::optimize_for_inference(
  1548. {z4}, gopt::OptimizeForInferenceOptions{}
  1549. .enable_fuse_conv_bias_nonlinearity()),
  1550. z_nonfuse);
  1551. auto nr_elem_multi_type = find_opr_num<mgb::opr::ElemwiseMultiType>(z_fuse);
  1552. MGB_MARK_USED_VAR(nr_elem_multi_type);
  1553. ASSERT_EQ(1u, nr_elem_multi_type);
  1554. graph->compile({{z_fuse, {}}})
  1555. ->to_json()
  1556. ->writeto_fpath(
  1557. output_file("FuseConvBiasZPass.BlockFuse_fuse.json"));
  1558. graph->compile({{z_nonfuse, {}}})
  1559. ->to_json()
  1560. ->writeto_fpath(
  1561. output_file("FuseConvBiasZPass.BlockFuse_nonfuse.json"));
  1562. HostTensorND host_z_fuse, host_z_nonfuse;
  1563. auto func = graph->compile({make_callback_copy(z_nonfuse, host_z_nonfuse),
  1564. make_callback_copy(z_fuse, host_z_fuse)});
  1565. func->execute();
  1566. MGB_ASSERT_TENSOR_EQ(host_z_fuse, host_z_nonfuse);
  1567. }
  1568. TEST(TestEnableTensorCore, ShuffleMerge) {
  1569. REQUIRE_GPU(1);
  1570. auto cn = CompNode::load("gpu0");
  1571. cn.activate();
  1572. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1573. auto sm_ver = prop.major * 10 + prop.minor;
  1574. if (sm_ver < 75) {
  1575. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1576. "expected: %d)\n",
  1577. sm_ver, 75);
  1578. return;
  1579. }
  1580. HostTensorGenerator<dtype::Int8> gen;
  1581. auto graph = ComputingGraph::make();
  1582. graph->options().graph_opt_level = 0;
  1583. auto mkvar = [&](const char* name, const TensorShape& shp,
  1584. const DType& dtype) {
  1585. return opr::TypeCvt::make(
  1586. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1587. dtype);
  1588. };
  1589. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1590. const DType& dtype) {
  1591. return opr::TypeCvt::make(
  1592. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1593. .rename(name),
  1594. dtype);
  1595. };
  1596. auto nchw2nchw4 = [](SymbolVar x) {
  1597. auto xshp = opr::GetVarShape::make(x);
  1598. auto cv = [&x](int v) { return x.make_scalar(v); };
  1599. auto sub = [&xshp, &cv](int idx) {
  1600. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1601. };
  1602. auto tshp = opr::Concat::make(
  1603. {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
  1604. auto y0 = opr::Reshape::make(x, tshp);
  1605. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
  1606. return y1;
  1607. };
  1608. auto nchw42nchw = [](SymbolVar x) {
  1609. auto xshp = opr::GetVarShape::make(x);
  1610. auto cv = [&x](int v) { return x.make_scalar(v); };
  1611. auto sub = [&xshp, &cv](int idx) {
  1612. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1613. };
  1614. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  1615. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  1616. auto y1 = opr::Reshape::make(y0, tshp);
  1617. return y1;
  1618. };
  1619. auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
  1620. w = mkcvar("w1", {64, 64, 3, 3}, dtype::QuantizedS8(2.5f)),
  1621. b = mkcvar("b", {1, 64, 1, 1}, dtype::QuantizedS32(6.25f)),
  1622. z = mkvar("b1", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f));
  1623. x = nchw2nchw4(x), w = nchw2nchw4(w), b = nchw2nchw4(b), z= nchw2nchw4(z);
  1624. opr::ConvBias::Param param;
  1625. param.format = opr::ConvBias::Param::Format::NCHW4;
  1626. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1627. param.stride_h = param.stride_w = 1;
  1628. param.pad_h = param.pad_w = 1;
  1629. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1630. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1631. y = nchw42nchw(y);
  1632. y = opr::TypeCvt::make(y, dtype::Float32());
  1633. SymbolVar y_opt;
  1634. SymbolVar y_no_tc;
  1635. unpack_vector(gopt::optimize_for_inference(
  1636. {y}, gopt::OptimizeForInferenceOptions{}
  1637. .enable_fuse_conv_bias_nonlinearity()
  1638. .enable_use_tensor_core()),
  1639. y_opt);
  1640. unpack_vector(gopt::optimize_for_inference(
  1641. {y}, gopt::OptimizeForInferenceOptions{}
  1642. .enable_fuse_conv_bias_nonlinearity()),
  1643. y_no_tc);
  1644. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1645. ASSERT_EQ(3u, nr_dimshuffle);
  1646. HostTensorND host_y, host_y_opt;
  1647. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1648. make_callback_copy(y_opt, host_y_opt)});
  1649. func->execute();
  1650. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1651. }
  1652. #endif
  1653. TEST(FuseConvBiasZPass, Basic) {
  1654. REQUIRE_GPU(1);
  1655. auto cn = CompNode::load("gpu0");
  1656. HostTensorGenerator<dtype::Int8> gen;
  1657. auto graph = ComputingGraph::make();
  1658. graph->options().graph_opt_level = 0;
  1659. auto mkvar = [&](const char* name, const TensorShape& shp,
  1660. const DType& dtype) {
  1661. return opr::TypeCvt::make(
  1662. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1663. dtype);
  1664. };
  1665. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1666. const DType& dtype) {
  1667. return opr::TypeCvt::make(
  1668. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1669. .rename(name),
  1670. dtype);
  1671. };
  1672. auto format = opr::Convolution::Param::Format::NCHW4;
  1673. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1674. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1675. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1676. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1677. b2 = mkvar("b2", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1678. opr::ConvBias::Param conv_bias_param;
  1679. conv_bias_param.format = format;
  1680. conv_bias_param.stride_h = conv_bias_param.stride_w = 1;
  1681. conv_bias_param.pad_h = conv_bias_param.pad_w = 1;
  1682. auto y = opr::ConvBias::make(x, w, b, conv_bias_param, {},
  1683. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1684. SymbolVar y_opt;
  1685. // check fuse mode
  1686. for (auto mode : {opr::ElemwiseMultiType::Param::Mode::QADD,
  1687. opr::ElemwiseMultiType::Param::Mode::QMUL,
  1688. opr::ElemwiseMultiType::Param::Mode::QFUSE_ADD_RELU}) {
  1689. auto y1 = opr::ElemwiseMultiType::make(
  1690. {y, b1}, {mode}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1691. unpack_vector(
  1692. gopt::optimize_for_inference(
  1693. {y1}, gopt::OptimizeForInferenceOptions{}
  1694. .enable_fuse_conv_bias_nonlinearity()
  1695. .enable_fuse_conv_bias_with_z()
  1696. .enable_use_tensor_core()),
  1697. y_opt);
  1698. auto nr_elemwisemultitype = find_opr_num<opr::ElemwiseMultiType>(y_opt);
  1699. if (mode == opr::ElemwiseMultiType::Param::Mode::QMUL) {
  1700. ASSERT_NE(0u, nr_elemwisemultitype);
  1701. } else
  1702. ASSERT_EQ(0u, nr_elemwisemultitype);
  1703. // fuse convbiasz and z
  1704. if (mode == opr::ElemwiseMultiType::Param::Mode::QADD) {
  1705. auto y2 = opr::ElemwiseMultiType::make(
  1706. {y1, b2}, {mode},
  1707. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1708. unpack_vector(
  1709. gopt::optimize_for_inference(
  1710. {y2}, gopt::OptimizeForInferenceOptions{}
  1711. .enable_fuse_conv_bias_nonlinearity()
  1712. .enable_fuse_conv_bias_with_z()
  1713. .enable_use_tensor_core()),
  1714. y_opt);
  1715. auto nr_elemwisemultitype =
  1716. find_opr_num<opr::ElemwiseMultiType>(y_opt);
  1717. ASSERT_NE(0u, nr_elemwisemultitype);
  1718. }
  1719. }
  1720. }
  1721. #if MGB_CUDA
  1722. TEST(TestGoptInference, EnableCHWN4) {
  1723. REQUIRE_GPU(1);
  1724. auto cn = CompNode::load("gpu0");
  1725. cn.activate();
  1726. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1727. auto sm_ver = prop.major * 10 + prop.minor;
  1728. if (sm_ver < 61) {
  1729. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1730. "expected: %d)\n",
  1731. sm_ver, 61);
  1732. return;
  1733. }
  1734. HostTensorGenerator<dtype::Int8> gen;
  1735. auto graph = ComputingGraph::make();
  1736. graph->options().graph_opt_level = 0;
  1737. auto mkvar = [&](const char* name, const TensorShape& shp,
  1738. const DType& dtype) {
  1739. return opr::TypeCvt::make(
  1740. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1741. dtype);
  1742. };
  1743. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1744. const DType& dtype) {
  1745. return opr::TypeCvt::make(
  1746. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1747. .rename(name),
  1748. dtype);
  1749. };
  1750. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1751. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1752. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1753. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1754. opr::ConvBias::Param param;
  1755. param.format = opr::ConvBias::Param::Format::NCHW4;
  1756. param.stride_h = param.stride_w = 1;
  1757. param.pad_h = param.pad_w = 1;
  1758. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1759. auto y = opr::ConvBiasForward::make(
  1760. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1761. auto y1 = opr::ElemwiseMultiType::make(
  1762. {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
  1763. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1764. auto y2 = opr::ConvBiasForward::make(
  1765. y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1766. auto y3 = opr::ElemwiseMultiType::make(
  1767. {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
  1768. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1769. auto y4 = opr::ElemwiseMultiType::make(
  1770. {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
  1771. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1772. y4 = opr::ElemwiseMultiType::make(
  1773. {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
  1774. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1775. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  1776. SymbolVar y_opt;
  1777. SymbolVar y_cudnn;
  1778. unpack_vector(
  1779. gopt::GraphOptimizer{}
  1780. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1781. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  1782. .add_pass<gopt::FuseConvBiasZPass>()
  1783. .apply({{y4}})
  1784. .endpoint_vars(),
  1785. y_opt);
  1786. unpack_vector(gopt::GraphOptimizer{}
  1787. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1788. .add_pass<gopt::FuseConvBiasZPass>()
  1789. .apply({{y4}})
  1790. .endpoint_vars(),
  1791. y_cudnn);
  1792. HostTensorND host_y, host_y_opt;
  1793. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  1794. make_callback_copy(y_opt, host_y_opt)});
  1795. func->execute();
  1796. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1797. }
  1798. TEST(TestGoptInference, EnableCHWN4WarpPespective) {
  1799. REQUIRE_GPU(1);
  1800. auto cn = CompNode::load("gpu0");
  1801. cn.activate();
  1802. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1803. auto sm_ver = prop.major * 10 + prop.minor;
  1804. if (sm_ver < 61) {
  1805. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1806. "expected: %d)\n",
  1807. sm_ver, 61);
  1808. return;
  1809. }
  1810. HostTensorGenerator<dtype::Int8> gen;
  1811. auto graph = ComputingGraph::make();
  1812. graph->options().graph_opt_level = 0;
  1813. auto mkvar = [&](const char* name, const TensorShape& shp,
  1814. const DType& dtype) {
  1815. return opr::TypeCvt::make(
  1816. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1817. dtype);
  1818. };
  1819. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1820. const DType& dtype) {
  1821. return opr::TypeCvt::make(
  1822. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1823. .rename(name),
  1824. dtype);
  1825. };
  1826. std::shared_ptr<HostTensorND> mat = std::make_shared<HostTensorND>(
  1827. cn, TensorShape{32, 3, 3}, dtype::Float32());
  1828. warp_perspective_mat_gen(*mat, 32, 16, 16);
  1829. auto mat_var = opr::Host2DeviceCopy::make(*graph, mat).rename("mat");
  1830. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1831. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1832. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  1833. opr::ConvBias::Param param;
  1834. param.format = opr::ConvBias::Param::Format::NCHW4;
  1835. param.stride_h = param.stride_w = 1;
  1836. param.pad_h = param.pad_w = 1;
  1837. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1838. auto y = opr::ConvBiasForward::make(
  1839. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1840. opr::WarpPerspective::Param warp_param;
  1841. warp_param.format = opr::WarpPerspective::Param::Format::NCHW4;
  1842. auto y1 = opr::WarpPerspective::make(y, mat_var, TensorShape{16, 16}, warp_param);
  1843. y1 = opr::TypeCvt::make(y1, dtype::Float32());
  1844. auto nchw42nchw = [](SymbolVar x) {
  1845. auto xshp = opr::GetVarShape::make(x);
  1846. auto cv = [&x](int v) { return x.make_scalar(v); };
  1847. auto sub = [&xshp, &cv](int idx) {
  1848. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1849. };
  1850. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  1851. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  1852. auto y1 = opr::Reshape::make(y0, tshp);
  1853. return y1;
  1854. };
  1855. y1 = nchw42nchw(y1);
  1856. warp_param.format = opr::WarpPerspective::Param::Format::NCHW;
  1857. auto y2 = opr::WarpPerspective::make(y1, mat_var, TensorShape{16, 16}, warp_param);
  1858. SymbolVar y_opt;
  1859. SymbolVar y_cudnn;
  1860. unpack_vector(gopt::GraphOptimizer{}
  1861. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1862. .add_pass<gopt::FuseConvBiasZPass>()
  1863. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  1864. .apply({{y2}})
  1865. .endpoint_vars(),
  1866. y_opt);
  1867. unpack_vector(gopt::GraphOptimizer{}
  1868. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1869. .add_pass<gopt::FuseConvBiasZPass>()
  1870. .apply({{y2}})
  1871. .endpoint_vars(),
  1872. y_cudnn);
  1873. HostTensorND host_y, host_y_opt;
  1874. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  1875. make_callback_copy(y_opt, host_y_opt)});
  1876. func->execute();
  1877. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1878. }
  1879. TEST(TestGoptInference, EnableCHWN4Pooling) {
  1880. REQUIRE_GPU(1);
  1881. auto cn = CompNode::load("gpu0");
  1882. cn.activate();
  1883. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1884. auto sm_ver = prop.major * 10 + prop.minor;
  1885. if (sm_ver < 61) {
  1886. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1887. "expected: %d)\n",
  1888. sm_ver, 61);
  1889. return;
  1890. }
  1891. HostTensorGenerator<dtype::Int8> gen;
  1892. auto graph = ComputingGraph::make();
  1893. graph->options().graph_opt_level = 0;
  1894. auto mkvar = [&](const char* name, const TensorShape& shp,
  1895. const DType& dtype) {
  1896. return opr::TypeCvt::make(
  1897. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1898. dtype);
  1899. };
  1900. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1901. const DType& dtype) {
  1902. return opr::TypeCvt::make(
  1903. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1904. .rename(name),
  1905. dtype);
  1906. };
  1907. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1908. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1909. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  1910. opr::ConvBias::Param param;
  1911. param.format = opr::ConvBias::Param::Format::NCHW4;
  1912. param.stride_h = param.stride_w = 1;
  1913. param.pad_h = param.pad_w = 1;
  1914. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1915. auto y = opr::ConvBiasForward::make(
  1916. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1917. opr::Pooling::Param pool_param;
  1918. pool_param.format = opr::Pooling::Param::Format::NCHW4;
  1919. y = opr::Pooling::make(y, pool_param);
  1920. y = opr::TypeCvt::make(y, dtype::Float32());
  1921. auto nchw42nchw = [](SymbolVar x) {
  1922. auto xshp = opr::GetVarShape::make(x);
  1923. auto cv = [&x](int v) { return x.make_scalar(v); };
  1924. auto sub = [&xshp, &cv](int idx) {
  1925. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1926. };
  1927. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  1928. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  1929. auto y1 = opr::Reshape::make(y0, tshp);
  1930. return y1;
  1931. };
  1932. y = nchw42nchw(y);
  1933. pool_param.format = opr::Pooling::Param::Format::NCHW;
  1934. auto y1 = opr::Pooling::make(y, pool_param);
  1935. SymbolVar y_opt;
  1936. SymbolVar y_cudnn;
  1937. unpack_vector(
  1938. gopt::GraphOptimizer{}
  1939. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1940. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  1941. .add_pass<gopt::FuseConvBiasZPass>()
  1942. .apply({{y1}})
  1943. .endpoint_vars(),
  1944. y_opt);
  1945. unpack_vector(gopt::GraphOptimizer{}
  1946. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1947. .add_pass<gopt::FuseConvBiasZPass>()
  1948. .apply({{y1}})
  1949. .endpoint_vars(),
  1950. y_cudnn);
  1951. HostTensorND host_y, host_y_opt;
  1952. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  1953. make_callback_copy(y_opt, host_y_opt)});
  1954. func->execute();
  1955. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1956. }
  1957. TEST(TestGoptInference, EnableCHWN4ShuffleRemove) {
  1958. REQUIRE_GPU(1);
  1959. auto cn = CompNode::load("gpu0");
  1960. cn.activate();
  1961. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1962. auto sm_ver = prop.major * 10 + prop.minor;
  1963. if (sm_ver < 61) {
  1964. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1965. "expected: %d)\n",
  1966. sm_ver, 61);
  1967. return;
  1968. }
  1969. HostTensorGenerator<dtype::Int8> gen;
  1970. auto graph = ComputingGraph::make();
  1971. graph->options().graph_opt_level = 0;
  1972. auto mkvar = [&](const char* name, const TensorShape& shp,
  1973. const DType& dtype) {
  1974. return opr::TypeCvt::make(
  1975. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1976. dtype);
  1977. };
  1978. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1979. const DType& dtype) {
  1980. return opr::TypeCvt::make(
  1981. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1982. .rename(name),
  1983. dtype);
  1984. };
  1985. auto nchw2nchw4 = [](SymbolVar x) {
  1986. auto xshp = opr::GetVarShape::make(x);
  1987. auto cv = [&x](int v) { return x.make_scalar(v); };
  1988. auto sub = [&xshp, &cv](int idx) {
  1989. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1990. };
  1991. auto tshp = opr::Concat::make(
  1992. {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
  1993. auto y0 = opr::Reshape::make(x, tshp);
  1994. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
  1995. return y1;
  1996. };
  1997. auto nchw42nchw = [](SymbolVar x) {
  1998. auto xshp = opr::GetVarShape::make(x);
  1999. auto cv = [&x](int v) { return x.make_scalar(v); };
  2000. auto sub = [&xshp, &cv](int idx) {
  2001. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2002. };
  2003. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2004. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2005. auto y1 = opr::Reshape::make(y0, tshp);
  2006. return y1;
  2007. };
  2008. auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
  2009. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2010. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2011. b1 = mkcvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8{2.5f});
  2012. x = nchw2nchw4(x);
  2013. opr::ConvBias::Param param;
  2014. param.format = opr::ConvBias::Param::Format::NCHW4;
  2015. param.stride_h = param.stride_w = 1;
  2016. param.pad_h = param.pad_w = 1;
  2017. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2018. auto y = opr::ConvBiasForward::make(
  2019. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2020. auto y1 = opr::ElemwiseMultiType::make(
  2021. {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
  2022. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2023. auto y2 = opr::ConvBiasForward::make(
  2024. y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2025. auto y3 = opr::ElemwiseMultiType::make(
  2026. {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
  2027. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2028. auto y4 = opr::ElemwiseMultiType::make(
  2029. {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2030. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2031. y4 = opr::ElemwiseMultiType::make(
  2032. {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2033. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2034. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  2035. y4 = nchw42nchw(y4);
  2036. SymbolVar y_opt;
  2037. SymbolVar y_cudnn;
  2038. unpack_vector(
  2039. gopt::GraphOptimizer{}
  2040. .add_pass<gopt::ParamRedistributePass>()
  2041. .add_pass<gopt::ParamFusePass>()
  2042. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2043. .add_pass<gopt::FuseConvBiasZPass>()
  2044. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  2045. .add_pass<gopt::ShuffleShuffleRemovePass>()
  2046. .add_pass<gopt::ParamFusePass>()
  2047. .apply({{y4}})
  2048. .endpoint_vars(),
  2049. y_opt);
  2050. graph->compile({{y_opt, {}}})
  2051. ->to_json()
  2052. ->writeto_fpath(output_file(
  2053. "TestGoptInference.EnableCHWN4ShuffleRemove.json"));
  2054. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2055. ASSERT_EQ(2u, nr_dimshuffle);
  2056. auto nr_reformat = find_opr_num<mgb::opr::RelayoutFormat>(y_opt);
  2057. ASSERT_EQ(0u, nr_reformat);
  2058. unpack_vector(gopt::GraphOptimizer{}
  2059. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2060. .add_pass<gopt::FuseConvBiasZPass>()
  2061. .apply({{y4}})
  2062. .endpoint_vars(),
  2063. y_cudnn);
  2064. HostTensorND host_y, host_y_opt;
  2065. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  2066. make_callback_copy(y_opt, host_y_opt)});
  2067. func->execute();
  2068. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2069. }
  2070. #endif
  2071. TEST(TestGoptInference, ConvertFormatNCHW88) {
  2072. HostTensorGenerator<> gen;
  2073. auto cn = CompNode::load("cpu0");
  2074. auto graph = ComputingGraph::make();
  2075. graph->options().graph_opt_level = 0;
  2076. auto mkvar = [&](const char* name, const TensorShape& shp) {
  2077. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  2078. };
  2079. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  2080. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2081. .rename(name);
  2082. };
  2083. auto host_x = gen({2, 3, 16, 16}, cn);
  2084. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  2085. //!Hybrid nchw88 mode
  2086. opr::Convolution::Param param_conv;
  2087. param_conv.pad_h = param_conv.pad_w = 1;
  2088. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  2089. conv1 = opr::Convolution::make(x, w1, param_conv);
  2090. //!channel wise
  2091. opr::ConvBias::Param param_conv_bias;
  2092. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2093. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2094. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  2095. conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  2096. //! group
  2097. auto w3 = mkcvar("w3", {1, 8, 8, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  2098. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  2099. auto shape_of = opr::GetVarShape::make(conv3);
  2100. auto subtensor = opr::Subtensor::make(
  2101. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  2102. 0, x.make_scalar(2), None, x.make_scalar(1))});
  2103. opr::Resize::Param param_resize;
  2104. param_resize.format = opr::Resize::Param::Format::NCHW;
  2105. auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
  2106. auto mat = mkcvar("mat", {2, 3, 3}),
  2107. warp = opr::WarpPerspectiveForward::make(
  2108. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  2109. auto b = mkvar("b", {1, 8, 1, 1}),
  2110. elem = opr::Elemwise::make({warp + b},
  2111. opr::Elemwise::Param::Mode::RELU);
  2112. //! Dense
  2113. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2114. auto w4 = mkcvar("w4", {2, 6, 4, 3, 3}), b4 = mkcvar("b4", {1, 12, 1, 1}),
  2115. conv4 = opr::ConvBias::make(elem, w4, b4, param_conv_bias);
  2116. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2117. auto w5 = mkcvar("w5", {8, 12, 3, 3}), b5 = mkcvar("b5", {1, 8, 1, 1}),
  2118. conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias);
  2119. auto w6 = mkcvar("w6", {8, 8, 3, 3}), b6 = mkcvar("b6", {1, 8, 1, 1}),
  2120. y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias);
  2121. SymbolVar y_opt;
  2122. unpack_vector(
  2123. gopt::optimize_for_inference(
  2124. {y},
  2125. gopt::OptimizeForInferenceOptions{}.enable_use_nchw88()),
  2126. y_opt);
  2127. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW88,
  2128. find_opr<opr::ConvBias>(y_opt).param().format);
  2129. graph->compile({{y_opt, {}}})
  2130. ->to_json()
  2131. ->writeto_fpath(
  2132. output_file("TestGoptInference.ConvertFormatNCHW88.json"));
  2133. HostTensorND host_y_opt, host_y;
  2134. auto func = graph->compile({make_callback_copy(y, host_y),
  2135. make_callback_copy(y_opt, host_y_opt)});
  2136. func->execute();
  2137. //! meybe go to winograd in x86-32, so set error 1e-1
  2138. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2139. *host_x = *gen({2, 3, 32, 32}, cn);
  2140. func->execute();
  2141. //! meybe go to winograd in x86-32, so set error 1e-1
  2142. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2143. }
  2144. TEST(TestGoptInference, ConvertFormatNCHW44) {
  2145. HostTensorGenerator<> gen;
  2146. auto cn = CompNode::load("cpu0");
  2147. auto graph = ComputingGraph::make();
  2148. graph->options().graph_opt_level = 0;
  2149. auto mkvar = [&](const char* name, const TensorShape& shp) {
  2150. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  2151. };
  2152. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  2153. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2154. .rename(name);
  2155. };
  2156. auto host_x = gen({2, 3, 16, 16}, cn);
  2157. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  2158. //!Hybrid nchw88 mode
  2159. opr::Convolution::Param param_conv;
  2160. param_conv.pad_h = param_conv.pad_w = 1;
  2161. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  2162. conv1 = opr::Convolution::make(x, w1, param_conv);
  2163. //!channel wise
  2164. opr::ConvBias::Param param_conv_bias;
  2165. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2166. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2167. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  2168. conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  2169. //! group
  2170. auto w3 = mkcvar("w3", {2, 4, 4, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  2171. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  2172. auto shape_of = opr::GetVarShape::make(conv3);
  2173. auto subtensor = opr::Subtensor::make(
  2174. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  2175. 0, x.make_scalar(2), None, x.make_scalar(1))});
  2176. opr::Resize::Param param_resize;
  2177. param_resize.format = opr::Resize::Param::Format::NCHW;
  2178. auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
  2179. auto mat = mkcvar("mat", {2, 3, 3}),
  2180. warp = opr::WarpPerspectiveForward::make(
  2181. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  2182. auto b = mkvar("b", {1, 8, 1, 1}),
  2183. elem = opr::Elemwise::make({warp + b},
  2184. opr::Elemwise::Param::Mode::RELU);
  2185. //! Dense
  2186. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2187. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2188. auto w4 = mkcvar("w4", {4, 8, 3, 3}), b4 = mkcvar("b4", {1, 4, 1, 1}),
  2189. conv4 = opr::ConvBias::make(elem, w4, b4, param_conv_bias);
  2190. auto w5 = mkcvar("w5", {6, 4, 3, 3}), b5 = mkcvar("b5", {1, 6, 1, 1}),
  2191. conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias);
  2192. auto w6 = mkcvar("w6", {4, 6, 3, 3}), b6 = mkcvar("b6", {1, 4, 1, 1}),
  2193. y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias);
  2194. SymbolVar y_opt;
  2195. unpack_vector(
  2196. gopt::optimize_for_inference(
  2197. {y},
  2198. gopt::OptimizeForInferenceOptions{}.enable_use_nchw44()),
  2199. y_opt);
  2200. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW44,
  2201. find_opr<opr::ConvBias>(y_opt).param().format);
  2202. graph->compile({{y_opt, {}}})
  2203. ->to_json()
  2204. ->writeto_fpath(
  2205. output_file("TestGoptInference.ConvertFormatNCHW44.json"));
  2206. HostTensorND host_y_opt, host_y;
  2207. auto func = graph->compile({make_callback_copy(y, host_y),
  2208. make_callback_copy(y_opt, host_y_opt)});
  2209. func->execute();
  2210. //! meybe go to winograd in x86-32, so set error 1e-1
  2211. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2212. *host_x = *gen({2, 3, 32, 32}, cn);
  2213. func->execute();
  2214. //! meybe go to winograd in x86-32, so set error 1e-1
  2215. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2216. }
  2217. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台