You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_tensor.py 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import platform
  10. import numpy as np
  11. import pytest
  12. import megengine.functional as F
  13. from megengine import Buffer, Parameter, is_cuda_available, tensor
  14. from megengine.core._trace_option import use_tensor_shape
  15. from megengine.core.tensor.utils import astensor1d
  16. from megengine.distributed.helper import get_device_count_by_fork
  17. from megengine.test import assertTensorClose
  18. def _default_compare_fn(x, y):
  19. assertTensorClose(x.numpy(), y)
  20. def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs):
  21. """
  22. func: the function to run opr.
  23. compare_fn: the function to compare the result and expected, use assertTensorClose if None.
  24. ref_fn: the function to generate expected data, should assign output if None.
  25. cases: the list which have dict element, the list length should be 2 for dynamic shape test.
  26. and the dict should have input,
  27. and should have output if ref_fn is None.
  28. should use list for multiple inputs and outputs for each case.
  29. kwargs: The additional kwargs for opr func.
  30. simple examples:
  31. dtype = np.float32
  32. cases = [{"input": [10, 20]}, {"input": [20, 30]}]
  33. opr_test(cases,
  34. F.eye,
  35. ref_fn=lambda n, m: np.eye(n, m).astype(dtype),
  36. dtype=dtype)
  37. """
  38. def check_results(results, expected):
  39. if not isinstance(results, tuple):
  40. results = (results,)
  41. for r, e in zip(results, expected):
  42. compare_fn(r, e)
  43. def get_param(cases, idx):
  44. case = cases[idx]
  45. inp = case.get("input", None)
  46. outp = case.get("output", None)
  47. if inp is None:
  48. raise ValueError("the test case should have input")
  49. if not isinstance(inp, list):
  50. inp = (inp,)
  51. else:
  52. inp = tuple(inp)
  53. if ref_fn is not None and callable(ref_fn):
  54. outp = ref_fn(*inp)
  55. if outp is None:
  56. raise ValueError("the test case should have output or reference function")
  57. if not isinstance(outp, list):
  58. outp = (outp,)
  59. else:
  60. outp = tuple(outp)
  61. return inp, outp
  62. if len(cases) == 0:
  63. raise ValueError("should give one case at least")
  64. if not callable(func):
  65. raise ValueError("the input func should be callable")
  66. inp, outp = get_param(cases, 0)
  67. inp_tensor = [tensor(inpi) for inpi in inp]
  68. results = func(*inp_tensor, **kwargs)
  69. check_results(results, outp)
  70. def test_eye():
  71. dtype = np.float32
  72. cases = [{"input": [10, 20]}, {"input": [20, 30]}]
  73. for case in cases:
  74. assertTensorClose(
  75. F.eye(case["input"], dtype=dtype).numpy(),
  76. np.eye(*case["input"]).astype(dtype),
  77. )
  78. def test_concat():
  79. def get_data_shape(length: int):
  80. return (length, 2, 3)
  81. data1 = np.random.random(get_data_shape(5)).astype("float32")
  82. data2 = np.random.random(get_data_shape(6)).astype("float32")
  83. data3 = np.random.random(get_data_shape(7)).astype("float32")
  84. def run(data1, data2):
  85. return F.concat([data1, data2])
  86. cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
  87. opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y]))
  88. def test_stack():
  89. data1 = np.random.random((3, 2, 2)).astype("float32")
  90. data2 = np.random.random((3, 2, 2)).astype("float32")
  91. data3 = np.random.random((3, 2, 2)).astype("float32")
  92. cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
  93. for ai in range(3):
  94. def run(data1, data2):
  95. return F.stack([data1, data2], axis=ai)
  96. opr_test(cases, run, ref_fn=lambda x, y: np.stack([x, y], axis=ai))
  97. def test_split():
  98. if use_tensor_shape(): # XXX: please fix me
  99. return
  100. data = np.random.random((2, 3, 4, 5)).astype(np.float32)
  101. mge_out1 = F.split(tensor(data), 2, axis=3)
  102. mge_out2 = F.split(tensor(data), [3, 5], axis=3)
  103. np_out = np.split(data, [3, 5], axis=3)
  104. np.testing.assert_equal(mge_out1[0].numpy(), mge_out2[0].numpy())
  105. np.testing.assert_equal(mge_out1[0].numpy(), np_out[0])
  106. def test_reshape():
  107. x = np.arange(6, dtype="float32")
  108. xx = tensor(x)
  109. y = x.reshape(1, 2, 3)
  110. for shape in [
  111. (1, 2, 3),
  112. (1, -1, 3),
  113. (1, tensor(-1), 3),
  114. np.array([1, -1, 3], dtype="int32"),
  115. tensor([1, -1, 3]),
  116. ]:
  117. yy = F.reshape(xx, shape)
  118. np.testing.assert_equal(yy.numpy(), y)
  119. def test_squeeze():
  120. x = np.arange(6, dtype="float32").reshape(1, 2, 3, 1)
  121. xx = tensor(x)
  122. for axis in [None, 3, -4, (3, -4)]:
  123. y = np.squeeze(x, axis)
  124. yy = F.squeeze(xx, axis)
  125. np.testing.assert_equal(y, yy.numpy())
  126. def test_expand_dims():
  127. x = np.arange(6, dtype="float32").reshape(2, 3)
  128. xx = tensor(x)
  129. for axis in [2, -3, (3, -4), (1, -4)]:
  130. y = np.expand_dims(x, axis)
  131. yy = F.expand_dims(xx, axis)
  132. np.testing.assert_equal(y, yy.numpy())
  133. def test_elemwise_dtype_promotion():
  134. x = np.random.rand(2, 3).astype("float32")
  135. y = np.random.rand(1, 3).astype("float16")
  136. xx = tensor(x)
  137. yy = tensor(y)
  138. z = xx * yy
  139. np.testing.assert_equal(z.numpy(), x * y)
  140. z = xx + y
  141. np.testing.assert_equal(z.numpy(), x + y)
  142. z = x - yy
  143. np.testing.assert_equal(z.numpy(), x - y)
  144. def test_linspace():
  145. cases = [
  146. {"input": [1, 9, 9]},
  147. {"input": [3, 10, 8]},
  148. ]
  149. opr_test(
  150. cases,
  151. F.linspace,
  152. ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
  153. )
  154. cases = [
  155. {"input": [9, 1, 9]},
  156. {"input": [10, 3, 8]},
  157. ]
  158. opr_test(
  159. cases,
  160. F.linspace,
  161. ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
  162. )
  163. def test_arange():
  164. cases = [
  165. {"input": [1, 9, 1]},
  166. {"input": [2, 10, 2]},
  167. ]
  168. opr_test(
  169. cases,
  170. F.arange,
  171. ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
  172. )
  173. cases = [
  174. {"input": [9, 1, -1]},
  175. {"input": [10, 2, -2]},
  176. ]
  177. opr_test(
  178. cases,
  179. F.arange,
  180. ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
  181. )
  182. cases = [
  183. {"input": [9.3, 1.2, -0.5]},
  184. {"input": [10.3, 2.1, -1.7]},
  185. ]
  186. opr_test(
  187. cases,
  188. F.arange,
  189. ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
  190. )
  191. def test_round():
  192. data1_shape = (15,)
  193. data2_shape = (25,)
  194. data1 = np.random.random(data1_shape).astype(np.float32)
  195. data2 = np.random.random(data2_shape).astype(np.float32)
  196. cases = [{"input": data1}, {"input": data2}]
  197. opr_test(cases, F.round, ref_fn=np.round)
  198. def test_broadcast():
  199. input1_shape = (20, 30)
  200. output1_shape = (30, 20, 30)
  201. data1 = np.random.random(input1_shape).astype(np.float32)
  202. input2_shape = (10, 20)
  203. output2_shape = (20, 10, 20)
  204. data2 = np.random.random(input2_shape).astype(np.float32)
  205. def compare_fn(x, y):
  206. assert x.numpy().shape == y
  207. cases = [
  208. {"input": [data1, output1_shape], "output": output1_shape},
  209. {"input": [data2, output2_shape], "output": output2_shape},
  210. ]
  211. opr_test(cases, F.broadcast, compare_fn=compare_fn)
  212. def test_utils_astensor1d():
  213. reference = tensor(0)
  214. # literal
  215. x = [1, 2, 3]
  216. for dtype in [None, "float32"]:
  217. xx = astensor1d(x, reference, dtype=dtype)
  218. assert type(xx) is tensor
  219. np.testing.assert_equal(xx.numpy(), x)
  220. # numpy array
  221. x = np.asarray([1, 2, 3], dtype="int32")
  222. for dtype in [None, "float32"]:
  223. xx = astensor1d(x, reference, dtype=dtype)
  224. assert type(xx) is tensor
  225. np.testing.assert_equal(xx.numpy(), x.astype(dtype) if dtype else x)
  226. # tensor
  227. x = tensor([1, 2, 3], dtype="int32")
  228. for dtype in [None, "float32"]:
  229. xx = astensor1d(x, reference, dtype=dtype)
  230. assert type(xx) is tensor
  231. np.testing.assert_equal(xx.numpy(), x.numpy())
  232. # mixed
  233. x = [1, tensor(2), 3]
  234. for dtype in [None, "float32"]:
  235. xx = astensor1d(x, reference, dtype=dtype)
  236. assert type(xx) is tensor
  237. np.testing.assert_equal(xx.numpy(), [1, 2, 3])
  238. def test_device():
  239. x = tensor([1, 2, 3], dtype="float32")
  240. y1 = F.eye(x.shape, dtype="float32")
  241. y2 = F.eye(x.shape, dtype="float32", device=None)
  242. np.testing.assert_almost_equal(y1.numpy(), y2.numpy())
  243. y3 = F.eye(x.shape, dtype="float32", device="xpux")
  244. y4 = F.eye(x.shape, dtype="float32", device=x.device.to_c())
  245. np.testing.assert_almost_equal(y3.numpy(), y4.numpy())
  246. y5 = F.full((3, 2), 4, device=x.device)
  247. y6 = F.full((3, 2), 4, device="xpux")
  248. np.testing.assert_almost_equal(y5.numpy(), y6.numpy())
  249. def copy_test(dst, src):
  250. data = np.random.random((2, 3)).astype(np.float32)
  251. x = tensor(data, device=src)
  252. y = F.copy(x, dst)
  253. assert np.allclose(data, y.numpy())
  254. @pytest.mark.skipif(
  255. platform.system() == "Darwin", reason="do not imp GPU mode at macos now"
  256. )
  257. @pytest.mark.skipif(
  258. platform.system() == "Windows", reason="do not imp GPU mode at Windows now"
  259. )
  260. @pytest.mark.skipif(get_device_count_by_fork("gpu") == 0, reason="CUDA is disabled")
  261. def test_copy_h2d():
  262. copy_test("cpu0", "gpu0")
  263. @pytest.mark.skipif(
  264. platform.system() == "Darwin", reason="do not imp GPU mode at macos now"
  265. )
  266. @pytest.mark.skipif(
  267. platform.system() == "Windows", reason="do not imp GPU mode at Windows now"
  268. )
  269. @pytest.mark.skipif(get_device_count_by_fork("gpu") == 0, reason="CUDA is disabled")
  270. def test_copy_d2h():
  271. copy_test("gpu0", "cpu0")
  272. @pytest.mark.skipif(
  273. platform.system() == "Darwin", reason="do not imp GPU mode at macos now"
  274. )
  275. @pytest.mark.skipif(
  276. platform.system() == "Windows", reason="do not imp GPU mode at Windows now"
  277. )
  278. @pytest.mark.skipif(get_device_count_by_fork("gpu") < 2, reason="need more gpu device")
  279. def test_copy_d2d():
  280. copy_test("gpu0", "gpu1")
  281. copy_test("gpu0:0", "gpu0:1")
  282. def test_param_pack_split():
  283. a = tensor(np.ones((10,), np.int32))
  284. b, c = F.param_pack_split(a, [0, 1, 1, 10], [(1,), (3, 3)])
  285. assert np.allclose(b.numpy(), a.numpy()[1])
  286. assert np.allclose(c.numpy(), a.numpy()[1:].reshape(3, 3))
  287. def test_param_pack_concat():
  288. a = tensor(np.ones((1,), np.int32))
  289. b = tensor(np.ones((3, 3), np.int32))
  290. offsets_val = [0, 1, 1, 10]
  291. offsets = tensor(offsets_val, np.int32)
  292. c = F.param_pack_concat([a, b], offsets, offsets_val)
  293. assert np.allclose(np.concatenate([a.numpy(), b.numpy().flatten()]), c.numpy())

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台