You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

adadelta.py 2.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778
  1. from typing import Iterable, Union
  2. import numpy as np
  3. from ..core import Buffer, Parameter
  4. from ..functional import sqrt
  5. from .internal import add_update_fastpath as add_update
  6. from .optimizer import Optimizer
  7. class Adadelta(Optimizer):
  8. r"""Implements Adadelta algorithm.
  9. It has been proposed in `"ADADELTA: An Adaptive Learning Rate Method" <https://arxiv.org/abs/1212.5701>`_.
  10. :param params: iterable of parameters to optimize or dicts defining
  11. parameter groups.
  12. :param lr: coefficient that scale delta before it is applied
  13. to the parameters (default: 1.0).
  14. :param rho: coefficient used for computing a running average
  15. of squared gradients (default: 0.9).
  16. :param eps: term added to the denominator to improve
  17. numerical stability (default: 1e-6).
  18. :param weight_decay: weight decay (L2 penalty) (default: 0).
  19. """
  20. def __init__(
  21. self,
  22. params: Union[Iterable[Parameter], dict],
  23. lr: float = 1.0,
  24. rho: float = 0.9,
  25. eps: float = 1e-6,
  26. weight_decay: float = 0.0,
  27. ):
  28. assert lr >= 0.0, "Invalid learning rate: {}".format(lr)
  29. assert rho >= 0.0 and rho <= 1.0, "Invalid rho value: {}".format(rho)
  30. assert eps >= 0.0, "Invalid epsilon value: {}".format(eps)
  31. assert weight_decay >= 0.0, "Invalid weight_decay value: {}".format(
  32. weight_decay
  33. )
  34. defaults = dict(lr=lr, rho=rho, eps=eps, weight_decay=weight_decay)
  35. super().__init__(params, defaults)
  36. def _create_state(self, param_group):
  37. for param in param_group["params"]:
  38. self._add_state(param, "square_avg")
  39. self._add_state(param, "acc_delta")
  40. self._add_state(param, "step", initializer=0.0)
  41. def _updates(self, param_group):
  42. lr = param_group["lr"]
  43. weight_decay = param_group["weight_decay"]
  44. rho = param_group["rho"]
  45. eps = param_group["eps"]
  46. for param in param_group["params"]:
  47. if not isinstance(param.grad, Buffer):
  48. raise TypeError(
  49. "grad must be a Buffer, maybe you forget to call backward()?"
  50. )
  51. if not param.requires_grad:
  52. continue
  53. step = self._state[param]["step"]
  54. step = add_update(step, 1)
  55. grad = param.grad
  56. if weight_decay != 0.0:
  57. grad = add_update(grad, param, beta=weight_decay)
  58. square_avg = self._state[param]["square_avg"]
  59. acc_delta = self._state[param]["acc_delta"]
  60. square_avg = add_update(square_avg, grad ** 2, alpha=rho, beta=1 - rho)
  61. std = sqrt(square_avg + eps)
  62. delta = sqrt(acc_delta + eps) / std * grad
  63. add_update(param, delta, beta=-lr)
  64. acc_delta = add_update(acc_delta, delta ** 2, alpha=rho, beta=1 - rho)

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台