You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

observer.py 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430
  1. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  2. #
  3. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  4. #
  5. # Unless required by applicable law or agreed to in writing,
  6. # software distributed under the License is distributed on an
  7. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  8. import math
  9. from abc import abstractmethod
  10. from enum import Enum
  11. import numpy as np
  12. from .. import functional as F
  13. from .._internal.dtype import _metadata_dict, get_quantized_dtype
  14. from ..core import Buffer, Function, tensor
  15. from ..jit import sideeffect
  16. from ..module import Module
  17. from .utils import QuantMode, get_qparam_dict
  18. class Round(Function):
  19. def forward(self, x):
  20. return x.round()
  21. def backward(self, output_grads):
  22. return output_grads
  23. class Observer(Module):
  24. r"""
  25. A base class for Observer Module.
  26. :param dtype: a string indicating to collect scale and zero_point of which dtype
  27. :param narrow_range: Whether the absolute value of ``qmin`` is the same as ``qmax``,
  28. instead of 1 greater. Usually True for weight and False for activation.
  29. """
  30. def __init__(self, dtype: str, narrow_range: bool = False):
  31. super().__init__()
  32. if dtype not in _metadata_dict.keys():
  33. raise ValueError(
  34. "unknown dtype: {}, only support {}".format(
  35. dtype, _metadata_dict.keys()
  36. )
  37. )
  38. self.dtype = dtype
  39. self.narrow_range = narrow_range
  40. self.qmin = (
  41. -_metadata_dict[dtype].qmax if narrow_range else _metadata_dict[dtype].qmin
  42. )
  43. self.qmax = _metadata_dict[dtype].qmax
  44. self.enabled = True
  45. def get_dtype(self):
  46. q_dict = self.get_qparams()
  47. numpy_scale = None if "scale" not in q_dict else q_dict["scale"].numpy()[0]
  48. numpy_zero_point = (
  49. None if "zero_point" not in q_dict else q_dict["zero_point"].numpy()[0]
  50. )
  51. return get_quantized_dtype(self.dtype, numpy_scale, numpy_zero_point)
  52. def enable(self):
  53. self.enabled = True
  54. def disable(self):
  55. self.enabled = False
  56. def train(self, mode: bool = True, recursive: bool = True) -> None:
  57. super().train(mode, recursive)
  58. if mode:
  59. self.enable()
  60. else:
  61. self.disable()
  62. @abstractmethod
  63. def forward(self, x):
  64. pass
  65. @abstractmethod
  66. def get_qparams(self, **kwargs):
  67. pass
  68. class MinMaxObserver(Observer):
  69. def __init__(
  70. self,
  71. mode=QuantMode.SYMMERTIC,
  72. eps=0.00001,
  73. dtype="qint8",
  74. narrow_range: bool = False,
  75. ):
  76. super().__init__(dtype, narrow_range)
  77. self.mode = mode
  78. self.min_val = Buffer(np.finfo(np.float32).max, dtype=np.float32)
  79. self.max_val = Buffer(np.finfo(np.float32).min, dtype=np.float32)
  80. self.scale_limit = eps
  81. def _calculate_qparams(self, inp_min_val, inp_max_val):
  82. min_val = F.minimum(0.0, inp_min_val)
  83. max_val = F.maximum(0.0, inp_max_val)
  84. q_dict = get_qparam_dict(self.mode)
  85. q_dict["min_val"] = inp_min_val
  86. q_dict["max_val"] = inp_max_val
  87. q_dict["enable_observer"] = self.enable
  88. if self.mode == QuantMode.SYMMERTIC:
  89. symmetric_max_vals = F.maximum(-min_val, max_val)
  90. # use maximun to avoid scale too small at the begin
  91. q_dict["scale"] = F.maximum(
  92. symmetric_max_vals / ((self.qmax - self.qmin) / 2), self.scale_limit
  93. )
  94. # zero_point = self.zero_point
  95. else:
  96. # use maximun to avoid scale too small at the begin
  97. q_dict["scale"] = F.maximum(
  98. (max_val - min_val) / (self.qmax - self.qmin), self.scale_limit,
  99. )
  100. # caculate zero_point
  101. q_dict["zero_point"] = self.qmin - Round()((min_val / q_dict["scale"]))
  102. return q_dict
  103. def get_qparams(self):
  104. return self._calculate_qparams(self.min_val, self.max_val)
  105. def forward(self, x_orig):
  106. if self.enabled:
  107. # stop gradient
  108. x = F.zero_grad(x_orig)
  109. # find max and min
  110. F.add_update(
  111. self.min_val,
  112. F.minimum(self.min_val, x.min()),
  113. alpha=0.0,
  114. beta=1.0,
  115. bias=0.0,
  116. )
  117. F.add_update(
  118. self.max_val,
  119. F.maximum(self.max_val, x.max()),
  120. alpha=0.0,
  121. beta=1.0,
  122. bias=0.0,
  123. )
  124. return x_orig
  125. class ExponentialMovingAverageObserver(MinMaxObserver):
  126. def __init__(
  127. self,
  128. momentum=0.9,
  129. mode=QuantMode.SYMMERTIC,
  130. eps=0.00001,
  131. dtype="qint8",
  132. narrow_range: bool = False,
  133. ):
  134. super().__init__(mode, eps, dtype, narrow_range)
  135. self.momentum = Buffer(momentum)
  136. self.runtime_momentum = Buffer(0.0)
  137. def set_momentum(self, momentum):
  138. self.momentum.set_value(momentum)
  139. def forward(self, x_orig):
  140. if self.enabled:
  141. # stop gradient
  142. x = F.zero_grad(x_orig)
  143. # Exponential Moving Average
  144. tmp_min = (
  145. self.min_val * self.runtime_momentum
  146. + (1 - self.runtime_momentum) * x.min()
  147. )
  148. tmp_max = (
  149. self.max_val * self.runtime_momentum
  150. + (1 - self.runtime_momentum) * x.max()
  151. )
  152. F.add_update(self.min_val, tmp_min, alpha=0.0, beta=1.0, bias=0.0)
  153. F.add_update(self.max_val, tmp_max, alpha=0.0, beta=1.0, bias=0.0)
  154. F.add_update(
  155. self.runtime_momentum, self.momentum, alpha=0.0, beta=1.0, bias=0.0
  156. )
  157. return x_orig
  158. class HistogramObserver(MinMaxObserver):
  159. def __init__(
  160. self,
  161. bins=2048,
  162. upsample_rate=128,
  163. mode=QuantMode.SYMMERTIC,
  164. eps=0.00001,
  165. dtype="qint8",
  166. narrow_range: bool = False,
  167. ):
  168. super().__init__(mode, eps, dtype, narrow_range)
  169. self.bins = bins
  170. self.upsample_rate = upsample_rate
  171. self.dst_nbins = _metadata_dict[dtype].qmax - _metadata_dict[dtype].qmin + 1
  172. self.histogram = Buffer([-1] + [0.0] * (bins - 1))
  173. def _non_linear_param_search(self):
  174. r"""Non-linear parameter search.
  175. An approximation for L2 error minimization for selecting min/max.
  176. By selecting new min/max, we filter out outliers in input distribution.
  177. """
  178. np_min_val = self.min_val.numpy()[0]
  179. np_max_val = self.max_val.numpy()[0]
  180. np_histogram = self.histogram.numpy()
  181. assert len(np_histogram) == self.bins, "bins mistmatch"
  182. bin_width = (np_max_val - np_min_val) / self.bins
  183. def _get_norm(delta_begin, delta_end, density, norm_type):
  184. r"""
  185. Compute the norm of the values uniformaly distributed between
  186. delta_begin and delta_end.
  187. norm = density * (integral_{begin, end} x^2)
  188. = density * (end^3 - begin^3) / 3
  189. """
  190. assert norm_type == "L2", "Only L2 norms are currently supported"
  191. norm = 0.0
  192. if norm_type == "L2":
  193. norm = (
  194. delta_end * delta_end * delta_end
  195. - delta_begin * delta_begin * delta_begin
  196. ) / 3
  197. return density * norm
  198. def _compute_quantization_error(next_start_bin, next_end_bin, norm_type):
  199. r"""
  200. Compute the quantization error if we use start_bin to end_bin as the
  201. min and max to do the quantization.
  202. """
  203. norm = 0.0
  204. dst_bin_width = (
  205. bin_width * (next_end_bin - next_start_bin + 1) / self.dst_nbins
  206. )
  207. if dst_bin_width == 0.0:
  208. return 0.0
  209. for src_bin in range(self.bins):
  210. # distances from the beginning of first dst_bin to the beginning and
  211. # end of src_bin
  212. src_bin_begin = (src_bin - next_start_bin) * bin_width
  213. src_bin_end = src_bin_begin + bin_width
  214. # which dst_bins the beginning and end of src_bin belong to?
  215. dst_bin_of_begin = min(
  216. self.dst_nbins - 1,
  217. max(0.0, math.floor(src_bin_begin / dst_bin_width)),
  218. )
  219. dst_bin_of_end = min(
  220. self.dst_nbins - 1,
  221. max(0.0, math.floor(src_bin_end / dst_bin_width)),
  222. )
  223. dst_bin_of_begin_center = (
  224. dst_bin_of_begin * dst_bin_width + dst_bin_width / 2
  225. )
  226. density = np_histogram[src_bin] / bin_width
  227. if dst_bin_of_begin == dst_bin_of_end:
  228. # if src_bin is entirely within 1 dst_bin
  229. delta_begin = src_bin_begin - dst_bin_of_begin_center
  230. delta_end = src_bin_end - dst_bin_of_begin_center
  231. norm = norm + _get_norm(delta_begin, delta_end, density, norm_type)
  232. else:
  233. delta_begin = src_bin_begin - dst_bin_of_begin_center
  234. delta_end = dst_bin_width / 2
  235. norm = norm + _get_norm(delta_begin, delta_end, density, norm_type)
  236. norm = norm + (dst_bin_of_end - dst_bin_of_begin - 1) * _get_norm(
  237. -dst_bin_width / 2, dst_bin_width / 2, density, norm_type
  238. )
  239. dst_bin_of_end_center = (
  240. dst_bin_of_end * dst_bin_width + dst_bin_width / 2
  241. )
  242. delta_begin = -dst_bin_width / 2
  243. delta_end = src_bin_end - dst_bin_of_end_center
  244. norm = norm + _get_norm(delta_begin, delta_end, density, norm_type)
  245. return norm
  246. # cumulative sum
  247. total = sum(np_histogram)
  248. cSum = np.cumsum(np_histogram, axis=0)
  249. stepsize = 1e-5 # granularity
  250. alpha = 0.0 # lower bound
  251. beta = 1.0 # upper bound
  252. start_bin = 0
  253. end_bin = self.bins - 1
  254. norm_min = float("inf")
  255. while alpha < beta:
  256. # Find the next step
  257. next_alpha = alpha + stepsize
  258. next_beta = beta - stepsize
  259. # find the left and right bins between the quantile bounds
  260. l = start_bin
  261. r = end_bin
  262. while l < end_bin and cSum[l] < next_alpha * total:
  263. l = l + 1
  264. while r > start_bin and cSum[r] > next_beta * total:
  265. r = r - 1
  266. # decide the next move
  267. next_start_bin = start_bin
  268. next_end_bin = end_bin
  269. if (l - start_bin) > (end_bin - r):
  270. # move the start bin
  271. next_start_bin = l
  272. alpha = next_alpha
  273. else:
  274. # move the end bin
  275. next_end_bin = r
  276. beta = next_beta
  277. if next_start_bin == start_bin and next_end_bin == end_bin:
  278. continue
  279. # calculate the quantization error using next_start_bin and next_end_bin
  280. norm = _compute_quantization_error(next_start_bin, next_end_bin, "L2")
  281. if norm > norm_min:
  282. break
  283. norm_min = norm
  284. start_bin = next_start_bin
  285. end_bin = next_end_bin
  286. new_min = self.min_val + bin_width * start_bin
  287. new_max = self.min_val + bin_width * (end_bin + 1)
  288. return new_min, new_max
  289. def get_qparams(self):
  290. new_min, new_max = self._non_linear_param_search()
  291. return self._calculate_qparams(new_min, new_max)
  292. def _combine_histograms(
  293. self, orig_hist, new_hist, upsample_rate, downsample_rate, start_idx, Nbins
  294. ):
  295. # First up-sample the histogram with new data by a factor of L
  296. # This creates an approximate probability density thats piecwise constant
  297. upsampled_histogram = new_hist.repeat(upsample_rate)
  298. # Now insert the upsampled histogram into the output
  299. # histogram, which is initialized with zeros.
  300. # The offset at which the histogram is introduced is determined
  301. # by the start index as the output histogram can cover a wider range
  302. histogram_with_output_range = np.zeros((Nbins * downsample_rate))
  303. histogram_with_output_range[
  304. start_idx : Nbins * upsample_rate + start_idx
  305. ] = upsampled_histogram
  306. # Compute integral histogram, double precision is needed to ensure
  307. # that there are no overflows
  308. integral_histogram = np.cumsum(histogram_with_output_range, 0)[
  309. downsample_rate - 1 :: downsample_rate
  310. ]
  311. # Finally perform interpolation
  312. shifted_integral_histogram = np.zeros((Nbins))
  313. shifted_integral_histogram[1:Nbins] = integral_histogram[0:-1]
  314. interpolated_histogram = (
  315. integral_histogram - shifted_integral_histogram
  316. ) / upsample_rate
  317. orig_hist = orig_hist + interpolated_histogram
  318. return orig_hist
  319. def _adjust_min_max(self, combined_min, combined_max, upsample_rate):
  320. # We ensure that:
  321. # (combined_max - combined_min)/(downsample_rate*Nbins) = (max - min)/(upsample_rate*Nbins)
  322. # This allows us to have a common grid of resolution s, where we can align
  323. # the input histogram
  324. # start_idx maps min_val to the histogram bin index.
  325. np_min_val = self.min_val.numpy()[0]
  326. np_max_val = self.max_val.numpy()[0]
  327. hist_bin_width = (np_max_val - np_min_val) / (self.bins * upsample_rate)
  328. downsample_rate = int(
  329. np.ceil((combined_max - combined_min) / (self.bins * hist_bin_width))
  330. )
  331. e = downsample_rate * (self.bins * hist_bin_width) - (
  332. combined_max - combined_min
  333. )
  334. combined_max = combined_max + e / 2
  335. combined_min = combined_min - e / 2
  336. start_idx = int(np.round((np_min_val - combined_min) / hist_bin_width))
  337. return combined_min, combined_max, downsample_rate, start_idx
  338. @sideeffect
  339. def sideeffect_forward(self, x_orig):
  340. x = x_orig.numpy()
  341. min_val = self.min_val.numpy()[0]
  342. max_val = self.max_val.numpy()[0]
  343. histogram = self.histogram.numpy()
  344. new_min = x.min()
  345. new_max = x.max()
  346. if histogram[0] == -1:
  347. new_histogram, _ = np.histogram(x, self.bins, (new_min, new_max))
  348. else:
  349. new_min = min(new_min, min_val)
  350. new_max = max(new_max, max_val)
  351. # combine the existing histogram and new histogram into 1 histogram
  352. # We do this by first upsampling the histogram to a dense grid
  353. # and then downsampling the histogram efficiently
  354. (new_min, new_max, downsample_rate, start_idx,) = self._adjust_min_max(
  355. new_min, new_max, self.upsample_rate
  356. )
  357. new_histogram, _ = np.histogram(x, self.bins, (new_min, new_max))
  358. new_histogram = new_histogram.astype(np.float64)
  359. if new_min == min_val and new_max == max_val:
  360. new_histogram += histogram
  361. else:
  362. new_histogram = self._combine_histograms(
  363. new_histogram,
  364. histogram,
  365. self.upsample_rate,
  366. downsample_rate,
  367. start_idx,
  368. self.bins,
  369. )
  370. self.histogram.set_value(new_histogram)
  371. self.min_val.set_value(new_min)
  372. self.max_val.set_value(new_max)
  373. def forward(self, x_orig):
  374. self.sideeffect_forward(x_orig)
  375. return x_orig

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台