You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

adagrad.py 2.8 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. from typing import Iterable, Union
  10. import numpy as np
  11. from ..functional import sqrt
  12. from ..tensor_nn import Parameter
  13. from .optimizer import Optimizer
  14. class Adagrad(Optimizer):
  15. r"""Implements Adagrad algorithm.
  16. It has been proposed in `"Adaptive Subgradient Methods for Online Learning
  17. and Stochastic Optimization" <http://jmlr.org/papers/v12/duchi11a.html>`_.
  18. :param params: iterable of parameters to optimize or dicts defining
  19. parameter groups.
  20. :param lr: coefficient that scale delta before it is applied
  21. to the parameters (default: 1e-2).
  22. :param lr_decay: learning rate decay (default: 0)
  23. :param eps: term added to the denominator to improve
  24. numerical stability (default: 1e-10).
  25. :param weight_decay: weight decay (L2 penalty) (default: 0).
  26. """
  27. def __init__(
  28. self,
  29. params: Union[Iterable[Parameter], dict],
  30. lr: float = 1e-2,
  31. lr_decay: float = 0.0,
  32. eps: float = 1e-10,
  33. weight_decay: float = 0.0,
  34. ):
  35. assert lr >= 0.0, "Invalid learning rate: {}".format(lr)
  36. assert lr_decay >= 0, "Invalid learning rate decay: {}".format(lr_decay)
  37. assert eps >= 0.0, "Invalid epsilon value: {}".format(eps)
  38. assert weight_decay >= 0.0, "Invalid weight_decay value: {}".format(
  39. weight_decay
  40. )
  41. defaults = dict(lr=lr, lr_decay=lr_decay, eps=eps, weight_decay=weight_decay)
  42. super().__init__(params, defaults)
  43. def _create_state(self, param_group):
  44. for param in param_group["params"]:
  45. self._add_state(param, "square_avg")
  46. self._add_state(param, "step", initializer=0.0)
  47. def _updates(self, param_group):
  48. lr = param_group["lr"]
  49. lr_decay = param_group["lr_decay"]
  50. weight_decay = param_group["weight_decay"]
  51. eps = param_group["eps"]
  52. for param in param_group["params"]:
  53. if not param.requires_grad or "grad" not in param.__dict__:
  54. continue
  55. states = self._state[param]
  56. step = states["step"]
  57. step += 1.0
  58. grad = param.grad
  59. if weight_decay != 0.0:
  60. grad += param * weight_decay
  61. square_avg = states["square_avg"]
  62. square_avg += grad ** 2
  63. delta = grad / sqrt(square_avg + eps)
  64. clr = lr / (1 + (step - 1) * lr_decay)
  65. param -= clr * delta

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台