You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

helper.py 4.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import functools
  10. import multiprocessing as mp
  11. from collections import defaultdict
  12. from typing import Callable
  13. import numpy as np
  14. from megengine.autodiff.grad_manager import GradManager, get_backwarding_grad_manager
  15. from megengine.device import get_default_device, get_device_count
  16. from ..functional.param_pack import get_offsets, pack_allreduce_split
  17. from ..functional.utils import copy
  18. from ..utils.future import Future
  19. from .functional import all_reduce_sum, broadcast
  20. from .group import WORLD, group_barrier, is_distributed
  21. class FakeTensor(Future):
  22. def device(self):
  23. raise "Sorry, this tensor is not ready"
  24. def numpy(self):
  25. raise "Sorry, this tensor is not ready"
  26. def shape(self):
  27. raise "Sorry, this tensor is not ready"
  28. def dtype(self):
  29. raise "Sorry, this tensor is not ready"
  30. def synchronized(func: Callable):
  31. """Decorator. Decorated function will synchronize when finished.
  32. Specifically, we use this to prevent data race during hub.load"""
  33. @functools.wraps(func)
  34. def wrapper(*args, **kwargs):
  35. if not is_distributed():
  36. return func(*args, **kwargs)
  37. ret = func(*args, **kwargs)
  38. group_barrier()
  39. return ret
  40. return wrapper
  41. def get_device_count_by_fork(device_type: str):
  42. q = mp.Queue()
  43. def worker(queue):
  44. num = get_device_count(device_type)
  45. queue.put(num)
  46. p = mp.Process(target=worker, args=(q,))
  47. p.start()
  48. p.join()
  49. return q.get()
  50. def bcast_params_(params, group):
  51. for p in params:
  52. p._reset(broadcast(p, group))
  53. class AllreduceCallback:
  54. def __init__(self, reduce_method, group=WORLD):
  55. reduce_method = reduce_method.lower()
  56. assert reduce_method in ["sum", "mean"]
  57. self._reduce_method = reduce_method
  58. self._group = group
  59. self._marked_gm = set()
  60. self._param_pack_thd = 10 * 1024 * 1024
  61. self._reset()
  62. def _reset(self):
  63. self._params = []
  64. self._gradients_dict = dict()
  65. self._futures_dict = dict()
  66. self._packing_list = defaultdict(list)
  67. self._packing_size = defaultdict(int)
  68. self._grad_origin_device = dict()
  69. def _pack(self, dtype):
  70. grad_list = [self._gradients_dict[p] for p in self._packing_list[dtype]]
  71. shapes = [p.shape for p in self._packing_list[dtype]]
  72. reduced_grads = pack_allreduce_split(
  73. grad_list, shapes, self._group, self._reduce_method
  74. )
  75. for param, grad in zip(self._packing_list[dtype], reduced_grads):
  76. self._gradients_dict[param] = grad
  77. self._packing_list[dtype] = []
  78. self._packing_size[dtype] = 0
  79. def __call__(self, param, grad):
  80. gm = get_backwarding_grad_manager()
  81. assert isinstance(gm, GradManager)
  82. if gm not in self._marked_gm:
  83. gm.register_after_backward_callback(self._flush)
  84. self._marked_gm.add(gm)
  85. self._params.append(param)
  86. self._futures_dict[param] = FakeTensor(ack=False)
  87. self._gradients_dict[param] = grad
  88. self._grad_origin_device[param] = str(grad.device)
  89. dtype_str = str(np.dtype(param.dtype))
  90. dtype_size = np.dtype(param.dtype).itemsize
  91. self._packing_list[dtype_str].append(param)
  92. self._packing_size[dtype_str] += int(np.prod(param.shape)) * dtype_size
  93. if self._packing_size[dtype_str] > self._param_pack_thd:
  94. self._pack(dtype_str)
  95. return self._futures_dict[param]
  96. def _flush(self):
  97. for dtype in sorted(self._packing_list.keys()):
  98. self._pack(dtype)
  99. for param in self._params:
  100. grad = self._gradients_dict[param]
  101. grad = copy(grad, self._grad_origin_device[param])
  102. self._futures_dict[param].set(grad)
  103. self._reset()
  104. make_allreduce_cb = AllreduceCallback

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台