You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

base.h 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571
  1. /**
  2. * \file dnn/include/megdnn/oprs/base.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #pragma once
  13. #include <type_traits>
  14. #include "megdnn/basic_types.h"
  15. #include "megdnn/handle.h"
  16. #include "megdnn/internal/visibility_prologue.h"
  17. namespace megdnn {
  18. class Handle;
  19. /**
  20. * \brief base class for all operators
  21. *
  22. * This is an helper class. Users should not use OperatorBase directly.
  23. * Operators should be created by handle->create_opr<>().
  24. *
  25. * Each operator must provides the following constexpr values:
  26. *
  27. * * NR_INPUTS: number of input vars
  28. * * NR_OUTPUTS: number of output vars
  29. * * OPERATOR_TYPE: operator type as an enum
  30. *
  31. * If the operator has dynamic inputs or in_out param, the corresponding
  32. * NR_INPUTS is -1.
  33. *
  34. * For an operator whose NR_INPUTS >= 0 and NR_OUTPUTS >= 0, the operator must
  35. * also provide following methods:
  36. *
  37. * * void exec(_megdnn_in inputs..., _megdnn_tensor_out outputs...,
  38. * _megdnn_workspace workspace)
  39. * * void deduce_layout(const TensorLayout& inputs...,
  40. * TensorLayout& outputs...)
  41. * * size_t get_workspace_in_bytes(const TensorLayout &inputs...,
  42. * const TensorLayout &outputs)
  43. */
  44. class OperatorBase {
  45. public:
  46. explicit OperatorBase(Handle* handle) : m_handle(handle) {}
  47. virtual ~OperatorBase();
  48. //! get the handle from which this operator is created
  49. Handle* handle() const { return m_handle; }
  50. //! whether this opr guarantees that its exec() is thread-safe
  51. virtual bool is_thread_safe() const { return false; }
  52. /*!
  53. * \brief set the tracker to be used with MegcoreAsyncErrorInfo
  54. *
  55. * Most operators do not have async errors so this function has a
  56. * default empty implementation.
  57. */
  58. virtual void set_error_tracker(void*) {}
  59. private:
  60. Handle* m_handle;
  61. };
  62. namespace detail {
  63. /**
  64. * \brief AlgoSelectionStrategy is the advance information for selecting
  65. * algo
  66. */
  67. enum class AlgoSelectionStrategy {
  68. HEURISTIC = 0, //!< heristic to select the algos
  69. FAST_RUN = 1,
  70. FULL_RUN = 2,
  71. };
  72. /**
  73. * \brief separate algo by datatype for Matmul and conv
  74. */
  75. enum class AlgoDataType : uint32_t {
  76. FLOAT32 = 1 << 0,
  77. FLOAT16 = 1 << 1,
  78. QINT8X8X32 = 1 << 2,
  79. QUINT8X8X32 = 1 << 3,
  80. INT8X8X16 = 1 << 4,
  81. INT16X16X32 = 1 << 5,
  82. INT4X4X16 = 1 << 6,
  83. };
  84. /*!
  85. * \brief Abstract representation of an algorithm for implementing
  86. * the operator
  87. */
  88. class Algorithm {
  89. public:
  90. static constexpr uint32_t INVALID_ALGO_TYPE = static_cast<uint32_t>(-1);
  91. /**
  92. * \brief the attribe of the algo, such as REPRODUCIBLE, NAIVE
  93. *
  94. */
  95. enum class Attribute : uint32_t {
  96. /**
  97. * \brief general algo.
  98. */
  99. DEFAULT = 0,
  100. /**
  101. * \brief whether the execution result is
  102. * reproducible across multiple runs.
  103. */
  104. REPRODUCIBLE = 1 << 0,
  105. /**
  106. * \brief whether the algo is naive
  107. * Mark algorithms with simple implementation as NAIVE, so we can filter
  108. * these algorithms to speed up fastrun.
  109. * */
  110. NAIVE = 1 << 1,
  111. };
  112. /**
  113. * \brief Algorithm information, we can get real algo from
  114. * AlgorithmInfo::Info::Desc
  115. */
  116. struct Info {
  117. struct Desc {
  118. //! backend of the algo belonging to
  119. Handle::HandleType handle_type;
  120. //! indicate the real algo implementation
  121. uint32_t type = INVALID_ALGO_TYPE;
  122. //! serialized param of the algo type
  123. std::string param;
  124. bool valid() const { return type != INVALID_ALGO_TYPE; }
  125. void reset() { type = INVALID_ALGO_TYPE; }
  126. bool operator==(const Desc& rhs) const {
  127. return handle_type == rhs.handle_type && type == rhs.type &&
  128. param == rhs.param;
  129. }
  130. } desc;
  131. //! algorithm name
  132. std::string name;
  133. Attribute attribute;
  134. bool valid() const { return desc.valid(); }
  135. void reset() { desc.reset(); }
  136. //! desc donate the algo
  137. bool operator==(const Info& rhs) const { return desc == rhs.desc; }
  138. };
  139. virtual ~Algorithm() = default;
  140. /**
  141. * \brief get the attribute of the algo
  142. */
  143. virtual Attribute attribute() const = 0;
  144. virtual const char* name() const = 0;
  145. //! serialized param
  146. virtual std::string param() const { return {}; }
  147. virtual uint32_t type() const = 0;
  148. bool contain_attribute(const Attribute& attr) const;
  149. static std::string attribute_str(const Attribute& attr);
  150. Handle::HandleType handle_type() const { return m_handle_type; }
  151. Info info() const {
  152. return {{handle_type(), type(), param()}, name(), attribute()};
  153. }
  154. Info::Desc desc() const { return {handle_type(), type(), param()}; }
  155. template <typename T>
  156. static void serialize_write_pod(const T& val, std::string& result) {
  157. static_assert(std::is_trivially_copyable<T>::value,
  158. "type should be trivially copyable");
  159. static_assert(!std::is_pointer<T>::value,
  160. "serialize pointer is unsafe in eager execution mode");
  161. result.append(reinterpret_cast<const char*>(&val), sizeof(T));
  162. }
  163. static void serialize_write_pod(const char* val, std::string& result) {
  164. result.append(val, strlen(val));
  165. }
  166. template <typename T>
  167. static T deserialize_read_pod(const std::string& data, size_t offset = 0) {
  168. static_assert(std::is_trivially_copyable<T>::value, "invalid type");
  169. T ret;
  170. //! A pointer to an object or incomplete type may be converted to a
  171. //! pointer to a different object or incomplete type. If the resulting
  172. //! pointer is not correctly aligned for the pointed-to type, the
  173. //! behavior is undefined.
  174. //!
  175. //! so here we should use memcpy instead of
  176. //! *reinterpret_cast<const T*>(&data[offset]);
  177. memcpy(&ret, data.data() + offset, sizeof(T));
  178. return ret;
  179. }
  180. template <typename T>
  181. static T deserialize_read_pod(const char* data, size_t offset = 0) {
  182. static_assert(std::is_trivially_copyable<T>::value, "invalid type");
  183. T ret;
  184. //! A pointer to an object or incomplete type may be converted to a
  185. //! pointer to a different object or incomplete type. If the resulting
  186. //! pointer is not correctly aligned for the pointed-to type, the
  187. //! behavior is undefined.
  188. //!
  189. //! so here we should use memcpy instead of
  190. //! *reinterpret_cast<const T*>(&data[offset]);
  191. memcpy(&ret, data + offset, sizeof(T));
  192. return ret;
  193. }
  194. enum class OprType : uint32_t {
  195. MATRIX_MUL_FORWARD,
  196. BATCHED_MATRIX_MUL_FORWARD,
  197. CONVOLUTION_FORWARD,
  198. CONVOLUTION_BACKWARD_DATA,
  199. CONVOLUTION_BACKWARD_FILTER,
  200. CONVOLUTION3D_FORWARD,
  201. CONVOLUTION3D_BACKWARD_DATA,
  202. CONVOLUTION3D_BACKWARD_FILTER,
  203. LOCAL_SHARE_FORWARD,
  204. LOCAL_SHARE_BACKWARD_DATA,
  205. LOCAL_SHARE_BACKWARD_FILTER,
  206. DEFORMABLE_CONV_FORWARD,
  207. DEFORMABLE_CONV_BACKWARD_DATA,
  208. DEFORMABLE_CONV_BACKWARD_FILTER,
  209. CONVBIAS_FORWARD,
  210. BATCH_CONV_FORWARD,
  211. };
  212. struct SearchItem {
  213. OprType opr_type;
  214. //! serialized param
  215. std::string param;
  216. TensorLayoutArray layouts;
  217. };
  218. /**
  219. * \brief get subopr list of the algo
  220. *
  221. * \param layouts origin layouts of the parent opr
  222. * \param opr parent opr
  223. */
  224. virtual std::vector<SearchItem> get_subopr_list(const TensorLayoutArray&,
  225. const OperatorBase*) const {
  226. return {};
  227. }
  228. protected:
  229. Handle::HandleType m_handle_type = Handle::HandleType::NAIVE;
  230. };
  231. MEGDNN_DEF_ENUM_CLASS_BIT_OPR(Algorithm::Attribute)
  232. //! policy for executing the operator
  233. struct ExecutionPolicy {
  234. //! INVALID_ALGO_TYPE algo_type means using heuristic
  235. Algorithm::Info::Desc algo;
  236. std::vector<ExecutionPolicy> sub_policy;
  237. };
  238. /*!
  239. * \brief define Algorithm and ExecutionPolicy for oprs that have
  240. * multiple impl algos
  241. *
  242. * \tparam Opr the operator class
  243. * \tparam nargs number of arguments
  244. */
  245. template <class Opr, int nargs>
  246. class MultiAlgoOpr;
  247. //! base def
  248. template <class Opr>
  249. class MultiAlgoOpr<Opr, -1> {
  250. public:
  251. using AlgorithmInfo = detail::Algorithm::Info;
  252. using AlgorithmDesc = detail::Algorithm::Info::Desc;
  253. using Algorithm = detail::Algorithm;
  254. /*!
  255. * \brief get a string representation for current algorithm set;
  256. *
  257. * get_all_algorithms() may return different algorithms only if
  258. * algorithm set name differs. This is used for checking cache
  259. * validity.
  260. */
  261. virtual const char* get_algorithm_set_name() const = 0;
  262. ExecutionPolicy& execution_policy() { return m_execution_policy; }
  263. const ExecutionPolicy& execution_policy() const {
  264. return m_execution_policy;
  265. }
  266. virtual Algorithm* get_algorithm_from_desc(const AlgorithmDesc&) = 0;
  267. protected:
  268. ~MultiAlgoOpr() = default;
  269. private:
  270. ExecutionPolicy m_execution_policy;
  271. };
  272. //! specialize for nargs == 3
  273. template <class Opr>
  274. class MultiAlgoOpr<Opr, 3> : public MultiAlgoOpr<Opr, -1> {
  275. public:
  276. using Algorithm = detail::Algorithm;
  277. using AlgorithmInfo = detail::Algorithm::Info;
  278. using AlgoAttribute = detail::Algorithm::Attribute;
  279. //! get all possible algorithm decriptions for the specified layouts
  280. std::vector<AlgorithmInfo> get_all_algorithms_info(const TensorLayout& p0,
  281. const TensorLayout& p1,
  282. const TensorLayout& p2) {
  283. std::vector<AlgorithmInfo> ret;
  284. for (auto&& algo : get_all_algorithms(p0, p1, p2)) {
  285. ret.emplace_back(algo->info());
  286. }
  287. return ret;
  288. }
  289. /**
  290. * \brief Returns the best algorithm information which indicate the
  291. * algorithm by heuristic.
  292. *
  293. * The selected algorithm should not use workspace more than
  294. * \p workspace_limit_in_bytes.
  295. */
  296. AlgorithmInfo get_algorithm_info_heuristic(
  297. const TensorLayout& p0, const TensorLayout& p1,
  298. const TensorLayout& p2,
  299. size_t workspace_limit_in_bytes =
  300. std::numeric_limits<size_t>::max(),
  301. const AlgoAttribute& attr = AlgoAttribute::DEFAULT) {
  302. return get_algorithm_heuristic(p0, p1, p2, workspace_limit_in_bytes,
  303. attr)
  304. ->info();
  305. }
  306. protected:
  307. ~MultiAlgoOpr() = default;
  308. //! get all possible algorithms for the specified layouts
  309. virtual std::vector<Algorithm*> get_all_algorithms(
  310. const TensorLayout& p0, const TensorLayout& p1,
  311. const TensorLayout& p2) = 0;
  312. /**
  313. * \brief Returns the best algorithm by heuristic.
  314. *
  315. * The selected algorithm should not use workspace more than
  316. * \p workspace_limit_in_bytes.
  317. */
  318. virtual Algorithm* get_algorithm_heuristic(
  319. const TensorLayout& p0, const TensorLayout& p1,
  320. const TensorLayout& p2,
  321. size_t workspace_limit_in_bytes =
  322. std::numeric_limits<size_t>::max(),
  323. const AlgoAttribute& attr = AlgoAttribute::DEFAULT) = 0;
  324. };
  325. //! specializae for nargs == 4
  326. template <class Opr>
  327. class MultiAlgoOpr<Opr, 4> : public MultiAlgoOpr<Opr, -1> {
  328. public:
  329. using Algorithm = detail::Algorithm;
  330. using AlgorithmInfo = detail::Algorithm::Info;
  331. using AlgoAttribute = detail::Algorithm::Attribute;
  332. //! get all possible algorithm decriptions for the specified layouts
  333. std::vector<AlgorithmInfo> get_all_algorithms_info(const TensorLayout& p0,
  334. const TensorLayout& p1,
  335. const TensorLayout& p2,
  336. const TensorLayout& p3) {
  337. std::vector<AlgorithmInfo> ret;
  338. for (auto&& algo : get_all_algorithms(p0, p1, p2, p3)) {
  339. ret.emplace_back(algo->info());
  340. }
  341. return ret;
  342. }
  343. /**
  344. * \brief Returns the best algorithm information which indicate the
  345. * algorithm by heuristic.
  346. *
  347. * The selected algorithm should not use workspace more than
  348. * \p workspace_limit_in_bytes.
  349. */
  350. AlgorithmInfo get_algorithm_info_heuristic(
  351. const TensorLayout& p0, const TensorLayout& p1,
  352. const TensorLayout& p2, const TensorLayout& p3,
  353. size_t workspace_limit_in_bytes =
  354. std::numeric_limits<size_t>::max(),
  355. const AlgoAttribute& attr = AlgoAttribute::DEFAULT) {
  356. return get_algorithm_heuristic(p0, p1, p2, p3, workspace_limit_in_bytes,
  357. attr)
  358. ->info();
  359. }
  360. protected:
  361. ~MultiAlgoOpr() = default;
  362. //! get all possible algorithms for the specified layouts
  363. virtual std::vector<Algorithm*> get_all_algorithms(
  364. const TensorLayout& p0, const TensorLayout& p1,
  365. const TensorLayout& p2, const TensorLayout& p3) = 0;
  366. /**
  367. * \brief Returns the best algorithm by heuristic.
  368. *
  369. * The selected algorithm should not use workspace more than
  370. * \p workspace_limit_in_bytes.
  371. */
  372. virtual Algorithm* get_algorithm_heuristic(
  373. const TensorLayout& p0, const TensorLayout& p1,
  374. const TensorLayout& p2, const TensorLayout& p3,
  375. size_t workspace_limit_in_bytes =
  376. std::numeric_limits<size_t>::max(),
  377. const AlgoAttribute& attr = AlgoAttribute::DEFAULT) = 0;
  378. };
  379. //! specializae for nargs == 5
  380. template <class Opr>
  381. class MultiAlgoOpr<Opr, 5> : public MultiAlgoOpr<Opr, -1> {
  382. public:
  383. using Algorithm = detail::Algorithm;
  384. using AlgorithmInfo = detail::Algorithm::Info;
  385. using AlgoAttribute = detail::Algorithm::Attribute;
  386. //! get all possible algorithm decriptions for the specified layouts
  387. std::vector<AlgorithmInfo> get_all_algorithms_info(const TensorLayout& p0,
  388. const TensorLayout& p1,
  389. const TensorLayout& p2,
  390. const TensorLayout& p3,
  391. const TensorLayout& p4) {
  392. std::vector<AlgorithmInfo> ret;
  393. for (auto&& algo : get_all_algorithms(p0, p1, p2, p3, p4)) {
  394. ret.emplace_back(algo->info());
  395. }
  396. return ret;
  397. }
  398. /**
  399. * \brief Returns the best algorithm information which indicate the
  400. * algorithm by heuristic.
  401. *
  402. * The selected algorithm should not use workspace more than
  403. * \p workspace_limit_in_bytes.
  404. */
  405. AlgorithmInfo get_algorithm_info_heuristic(
  406. const TensorLayout& p0, const TensorLayout& p1,
  407. const TensorLayout& p2, const TensorLayout& p3,
  408. const TensorLayout& p4,
  409. size_t workspace_limit_in_bytes =
  410. std::numeric_limits<size_t>::max(),
  411. const AlgoAttribute& attr = AlgoAttribute::DEFAULT) {
  412. return get_algorithm_heuristic(p0, p1, p2, p3, p4,
  413. workspace_limit_in_bytes, attr)
  414. ->info();
  415. }
  416. protected:
  417. ~MultiAlgoOpr() = default;
  418. //! get all possible algorithms for the specified layouts
  419. virtual std::vector<Algorithm*> get_all_algorithms(
  420. const TensorLayout& p0, const TensorLayout& p1,
  421. const TensorLayout& p2, const TensorLayout& p3,
  422. const TensorLayout& p4) = 0;
  423. /**
  424. * \brief Returns the best algorithm by heuristic.
  425. *
  426. * The selected algorithm should not use workspace more than
  427. * \p workspace_limit_in_bytes.
  428. */
  429. virtual Algorithm* get_algorithm_heuristic(
  430. const TensorLayout& p0, const TensorLayout& p1,
  431. const TensorLayout& p2, const TensorLayout& p3,
  432. const TensorLayout& p4,
  433. size_t workspace_limit_in_bytes =
  434. std::numeric_limits<size_t>::max(),
  435. const AlgoAttribute& attr = AlgoAttribute::DEFAULT) = 0;
  436. };
  437. //! specializae for nargs == 8
  438. template <class Opr>
  439. class MultiAlgoOpr<Opr, 8> : public MultiAlgoOpr<Opr, -1> {
  440. public:
  441. using Algorithm = detail::Algorithm;
  442. using AlgorithmInfo = detail::Algorithm::Info;
  443. using AlgoAttribute = detail::Algorithm::Attribute;
  444. //! get all possible algorithm decriptions for the specified layouts
  445. std::vector<AlgorithmInfo> get_all_algorithms_info(
  446. const TensorLayout& p0, const TensorLayout& p1,
  447. const TensorLayout& p2, const TensorLayout& p3,
  448. const TensorLayout& p4, const TensorLayout& p5,
  449. const TensorLayout& p6, const TensorLayout& p7) {
  450. std::vector<AlgorithmInfo> ret;
  451. for (auto&& algo : get_all_algorithms(p0, p1, p2, p3, p4, p5, p6, p7)) {
  452. ret.emplace_back(algo->info());
  453. }
  454. return ret;
  455. }
  456. /**
  457. * \brief Returns the best algorithm information which indicate the
  458. * algorithm by heuristic.
  459. *
  460. * The selected algorithm should not use workspace more than
  461. */
  462. AlgorithmInfo get_algorithm_info_heuristic(
  463. const TensorLayout& p0, const TensorLayout& p1,
  464. const TensorLayout& p2, const TensorLayout& p3,
  465. const TensorLayout& p4, const TensorLayout& p5,
  466. const TensorLayout& p6, const TensorLayout& p7,
  467. size_t workspace_limit_in_bytes =
  468. std::numeric_limits<size_t>::max(),
  469. const AlgoAttribute& attr = AlgoAttribute::DEFAULT) {
  470. return get_algorithm_heuristic(p0, p1, p2, p3, p4, p5, p6, p7,
  471. workspace_limit_in_bytes, attr)
  472. ->info();
  473. }
  474. protected:
  475. ~MultiAlgoOpr() = default;
  476. //! get all possible algorithms for the specified layouts
  477. virtual std::vector<Algorithm*> get_all_algorithms(
  478. const TensorLayout& p0, const TensorLayout& p1,
  479. const TensorLayout& p2, const TensorLayout& p3,
  480. const TensorLayout& p4, const TensorLayout& p5,
  481. const TensorLayout& p6, const TensorLayout& p7) = 0;
  482. /**
  483. * \brief Returns the best algorithm by heuristic.
  484. *
  485. * The selected algorithm should not use workspace more than
  486. * \p workspace_limit_in_bytes.
  487. */
  488. virtual Algorithm* get_algorithm_heuristic(
  489. const TensorLayout& p0, const TensorLayout& p1,
  490. const TensorLayout& p2, const TensorLayout& p3,
  491. const TensorLayout& p4, const TensorLayout& p5,
  492. const TensorLayout& p6, const TensorLayout& p7,
  493. size_t workspace_limit_in_bytes =
  494. std::numeric_limits<size_t>::max(),
  495. const AlgoAttribute& attr = AlgoAttribute::DEFAULT) = 0;
  496. };
  497. } // namespace detail
  498. using Algorithm = detail::Algorithm;
  499. using AlgoAttribute = Algorithm::Attribute;
  500. using ExecutionPolicy = detail::ExecutionPolicy;
  501. } // namespace megdnn
  502. #include "megdnn/internal/visibility_epilogue.h"
  503. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台