You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

algos.h 4.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120
  1. /**
  2. * \file dnn/src/rocm/matrix_mul/algos.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #pragma once
  13. #include "megdnn/oprs.h"
  14. #include "src/common/algo_base.h"
  15. #include "src/common/metahelper.h"
  16. #include "src/common/utils.h"
  17. #include "src/rocm/matrix_mul/opr_impl.h"
  18. #include <memory>
  19. #include <unordered_map>
  20. namespace megdnn {
  21. namespace rocm {
  22. /*!
  23. * \brief base class for matrix mul algos
  24. *
  25. */
  26. class MatrixMulForwardImpl::AlgoBase : public Algorithm {
  27. protected:
  28. ~AlgoBase() = default;
  29. public:
  30. enum class AlgoType : uint32_t {
  31. ROCM_BLAS,
  32. };
  33. using Mapper = std::unordered_map<AlgorithmDesc, AlgoBase*>;
  34. AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::ROCM; }
  35. struct SizeArgs {
  36. MatrixMulForwardImpl* opr;
  37. TensorLayout layout_a, layout_b, layout_c;
  38. std::string to_string() const;
  39. SizeArgs(MatrixMulForwardImpl* opr, const TensorLayout& A,
  40. const TensorLayout& B, const TensorLayout& C);
  41. bool can_be_treated_as_int8x8x32() const {
  42. return layout_a.dtype.enumv() == layout_b.dtype.enumv() &&
  43. (layout_a.dtype.enumv() == DTypeEnum::Int8 ||
  44. layout_a.dtype.enumv() == DTypeEnum::QuantizedS8) &&
  45. (layout_c.dtype.enumv() == DTypeEnum::Int32 ||
  46. layout_c.dtype.enumv() == DTypeEnum::QuantizedS32) &&
  47. opr->param().format == param::MatrixMul::Format::DEFAULT;
  48. }
  49. };
  50. struct ExecArgs : public SizeArgs {
  51. TensorND tensor_a, tensor_b, tensor_c;
  52. Workspace workspace;
  53. ExecArgs(MatrixMulForwardImpl* opr, _megdnn_tensor_in A,
  54. _megdnn_tensor_in B, _megdnn_tensor_out C,
  55. _megdnn_workspace workspace);
  56. };
  57. virtual bool is_available(const SizeArgs& args) const = 0;
  58. virtual size_t get_workspace_in_bytes(const SizeArgs& args) const = 0;
  59. virtual void exec(const ExecArgs& args) const = 0;
  60. bool is_available_wk(const SizeArgs& args, size_t limit) const {
  61. return is_available(args) && get_workspace_in_bytes(args) <= limit;
  62. }
  63. bool is_available_attribute(
  64. const SizeArgs& args,
  65. const AlgoAttribute& attr = AlgoAttribute::REPRODUCIBLE,
  66. size_t limit = std::numeric_limits<size_t>::max()) const {
  67. return contain_attribute(attr) && is_available_wk(args, limit);
  68. }
  69. AlgoBase& check_workspace(const SizeArgs& args,
  70. const Workspace& workspace) {
  71. auto req = get_workspace_in_bytes(args);
  72. megdnn_assert(
  73. req <= workspace.size,
  74. "matrix mul fwd algo %s: required workspace %zu bytes, got %zu",
  75. name(), req, workspace.size);
  76. return *this;
  77. }
  78. };
  79. class MatrixMulForwardImpl::AlgoBlas final : public AlgoBase {
  80. public:
  81. AlgoBlas() = default;
  82. bool is_available(const SizeArgs& args) const override;
  83. size_t get_workspace_in_bytes(const SizeArgs& /* args */) const override {
  84. return 0_z;
  85. }
  86. const char* name() const override { return "BLAS"; }
  87. void exec(const ExecArgs& args) const override;
  88. AlgoAttribute attribute() const override {
  89. return AlgoAttribute::REPRODUCIBLE;
  90. }
  91. MEGDNN_DECL_ALGO_TYPE(ROCM_BLAS)
  92. };
  93. class MatrixMulForwardImpl::AlgoPack : NonCopyableObj {
  94. private:
  95. AlgoBase::Mapper m_all_algos_map;
  96. public:
  97. AlgoPack();
  98. AlgoBlas blas;
  99. std::vector<AlgoBase*> all_algos;
  100. const AlgoBase::Mapper& all_algos_map() const { return m_all_algos_map; }
  101. };
  102. } // namespace rocm
  103. } // namespace megdnn
  104. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台