You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_pre_dataloader.py 7.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import gc
  10. import math
  11. import os
  12. import platform
  13. import time
  14. import numpy as np
  15. import pytest
  16. from megengine.data.collator import Collator
  17. from megengine.data.dataloader import DataLoader, get_worker_info
  18. from megengine.data.dataset import ArrayDataset, StreamDataset
  19. from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler
  20. from megengine.data.transform import (
  21. Compose,
  22. Normalize,
  23. PseudoTransform,
  24. ToMode,
  25. Transform,
  26. )
  27. def init_dataset():
  28. sample_num = 100
  29. rand_data = np.random.randint(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8)
  30. label = np.random.randint(0, 10, size=(sample_num,), dtype=int)
  31. dataset = ArrayDataset(rand_data, label)
  32. return dataset
  33. def test_dataloader_init():
  34. dataset = init_dataset()
  35. with pytest.raises(ValueError):
  36. dataloader = DataLoader(dataset, num_workers=-1)
  37. with pytest.raises(ValueError):
  38. dataloader = DataLoader(dataset, timeout=-1)
  39. dataloader = DataLoader(dataset, preload=True)
  40. assert isinstance(dataloader.sampler, SequentialSampler)
  41. assert isinstance(dataloader.transform, PseudoTransform)
  42. assert isinstance(dataloader.collator, Collator)
  43. dataloader = DataLoader(
  44. dataset,
  45. sampler=RandomSampler(dataset, batch_size=6, drop_last=False),
  46. preload=True,
  47. )
  48. assert len(dataloader) == 17
  49. dataloader = DataLoader(
  50. dataset,
  51. sampler=RandomSampler(dataset, batch_size=6, drop_last=True),
  52. preload=True,
  53. )
  54. assert len(dataloader) == 16
  55. class MyStream(StreamDataset):
  56. def __init__(self, number, block=False):
  57. self.number = number
  58. self.block = block
  59. def __iter__(self):
  60. for cnt in range(self.number):
  61. if self.block:
  62. for _ in range(10):
  63. time.sleep(1)
  64. data = np.random.randint(0, 256, (2, 2, 3), dtype="uint8")
  65. yield (data, cnt)
  66. raise StopIteration
  67. @pytest.mark.parametrize("num_workers", [0, 2])
  68. def test_stream_dataloader(num_workers):
  69. dataset = MyStream(100)
  70. sampler = StreamSampler(batch_size=4)
  71. dataloader = DataLoader(
  72. dataset,
  73. sampler,
  74. Compose([Normalize(mean=(103, 116, 123), std=(57, 57, 58)), ToMode("CHW")]),
  75. num_workers=num_workers,
  76. preload=True,
  77. )
  78. check_set = set()
  79. for step, data in enumerate(dataloader):
  80. if step == 10:
  81. break
  82. assert data[0]._tuple_shape == (4, 3, 2, 2)
  83. assert data[1]._tuple_shape == (4,)
  84. for i in data[1]:
  85. assert i not in check_set
  86. check_set.add(i)
  87. @pytest.mark.parametrize("num_workers", [0, 2])
  88. def test_stream_dataloader_timeout(num_workers):
  89. dataset = MyStream(100, block=True)
  90. sampler = StreamSampler(batch_size=4)
  91. dataloader = DataLoader(
  92. dataset, sampler, num_workers=num_workers, timeout=2, preload=True
  93. )
  94. with pytest.raises(RuntimeError, match=r".*timeout.*"):
  95. data_iter = iter(dataloader)
  96. next(data_iter)
  97. def test_dataloader_serial():
  98. dataset = init_dataset()
  99. dataloader = DataLoader(
  100. dataset,
  101. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  102. preload=True,
  103. )
  104. for (data, label) in dataloader:
  105. assert data._tuple_shape == (4, 1, 32, 32)
  106. assert label._tuple_shape == (4,)
  107. def test_dataloader_parallel():
  108. # set max shared memory to 100M
  109. os.environ["MGE_PLASMA_MEMORY"] = "100000000"
  110. dataset = init_dataset()
  111. dataloader = DataLoader(
  112. dataset,
  113. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  114. num_workers=2,
  115. preload=True,
  116. )
  117. for (data, label) in dataloader:
  118. assert data._tuple_shape == (4, 1, 32, 32)
  119. assert label._tuple_shape == (4,)
  120. @pytest.mark.skipif(
  121. platform.system() == "Windows",
  122. reason="dataloader do not support parallel on windows",
  123. )
  124. def test_dataloader_parallel_timeout():
  125. dataset = init_dataset()
  126. class TimeoutTransform(Transform):
  127. def __init__(self):
  128. pass
  129. def apply(self, input):
  130. time.sleep(10)
  131. return input
  132. dataloader = DataLoader(
  133. dataset,
  134. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  135. transform=TimeoutTransform(),
  136. num_workers=2,
  137. timeout=2,
  138. preload=True,
  139. )
  140. with pytest.raises(RuntimeError, match=r".*timeout.*"):
  141. data_iter = iter(dataloader)
  142. batch_data = next(data_iter)
  143. @pytest.mark.skipif(
  144. platform.system() == "Windows",
  145. reason="dataloader do not support parallel on windows",
  146. )
  147. def test_dataloader_parallel_worker_exception():
  148. dataset = init_dataset()
  149. class FakeErrorTransform(Transform):
  150. def __init__(self):
  151. pass
  152. def apply(self, input):
  153. raise RuntimeError("test raise error")
  154. return input
  155. dataloader = DataLoader(
  156. dataset,
  157. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  158. transform=FakeErrorTransform(),
  159. num_workers=2,
  160. preload=True,
  161. )
  162. with pytest.raises(RuntimeError, match=r"exited unexpectedly"):
  163. data_iter = iter(dataloader)
  164. batch_data = next(data_iter)
  165. def _multi_instances_parallel_dataloader_worker():
  166. dataset = init_dataset()
  167. train_dataloader = DataLoader(
  168. dataset,
  169. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  170. num_workers=2,
  171. preload=True,
  172. )
  173. val_dataloader = DataLoader(
  174. dataset,
  175. sampler=RandomSampler(dataset, batch_size=10, drop_last=False),
  176. num_workers=2,
  177. preload=True,
  178. )
  179. for idx, (data, label) in enumerate(train_dataloader):
  180. assert data._tuple_shape == (4, 1, 32, 32)
  181. assert label._tuple_shape == (4,)
  182. if idx % 5 == 0:
  183. for val_data, val_label in val_dataloader:
  184. assert val_data._tuple_shape == (10, 1, 32, 32)
  185. assert val_label._tuple_shape == (10,)
  186. def test_dataloader_parallel_multi_instances():
  187. # set max shared memory to 100M
  188. os.environ["MGE_PLASMA_MEMORY"] = "100000000"
  189. _multi_instances_parallel_dataloader_worker()
  190. @pytest.mark.isolated_distributed
  191. def test_dataloader_parallel_multi_instances_multiprocessing():
  192. gc.collect()
  193. # set max shared memory to 100M
  194. os.environ["MGE_PLASMA_MEMORY"] = "100000000"
  195. import multiprocessing as mp
  196. # mp.set_start_method("spawn")
  197. processes = []
  198. for i in range(4):
  199. p = mp.Process(target=_multi_instances_parallel_dataloader_worker)
  200. p.start()
  201. processes.append(p)
  202. for p in processes:
  203. p.join()
  204. assert p.exitcode == 0