- #! /usr/bin/env python3
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import argparse
- import logging
-
- import numpy as np
-
- from megengine.core.tensor.dtype import is_quantize
- from megengine.logger import _imperative_rt_logger, get_logger, set_mgb_log_level
- from megengine.utils.module_stats import (
- print_flops_stats,
- print_params_stats,
- sizeof_fmt,
- )
- from megengine.utils.network import Network
-
- logger = get_logger(__name__)
-
-
- def visualize(
- model_path: str,
- log_path: str,
- bar_length_max: int = 20,
- log_params: bool = True,
- log_flops: bool = True,
- ):
- r"""
- Load megengine dumped model and visualize graph structure with tensorboard log files.
- Can also record and print model's statistics like :func:`~.module_stats`
-
- :param model_path: dir path for megengine dumped model.
- :param log_path: dir path for tensorboard graph log.
- :param bar_length_max: size of bar indicating max flops or parameter size in net stats.
- :param log_params: whether print and record params size.
- :param log_flops: whether print and record op flops.
- """
- if log_path:
- try:
- from tensorboard.compat.proto.attr_value_pb2 import AttrValue
- from tensorboard.compat.proto.config_pb2 import RunMetadata
- from tensorboard.compat.proto.graph_pb2 import GraphDef
- from tensorboard.compat.proto.node_def_pb2 import NodeDef
- from tensorboard.compat.proto.step_stats_pb2 import (
- AllocatorMemoryUsed,
- DeviceStepStats,
- NodeExecStats,
- StepStats,
- )
- from tensorboard.compat.proto.tensor_shape_pb2 import TensorShapeProto
- from tensorboard.compat.proto.versions_pb2 import VersionDef
- from tensorboardX import SummaryWriter
- except ImportError:
- logger.error(
- "TensorBoard and TensorboardX are required for visualize.",
- exc_info=True,
- )
- return
- # FIXME: remove this after resolving "span dist too large" warning
- old_level = set_mgb_log_level(logging.ERROR)
-
- graph = Network.load(model_path)
-
- def process_name(name):
- return name.replace(".", "/").encode(encoding="utf-8")
-
- node_list = []
- flops_list = []
- params_list = []
- for node in graph.all_oprs:
- if hasattr(node, "output_idx"):
- node_oup = node.outputs[node.output_idx]
- else:
- if len(node.outputs) != 1:
- logger.warning(
- "OpNode {} has more than one output and not has 'output_idx' attr.".format(
- node
- )
- )
- node_oup = node.outputs[0]
-
- inp_list = [process_name(var.owner.name) for var in node.inputs]
- if log_path:
- attr = {
- "_output_shapes": AttrValue(
- list=AttrValue.ListValue(
- shape=[
- TensorShapeProto(
- dim=[
- TensorShapeProto.Dim(size=d) for d in node_oup.shape
- ]
- )
- ]
- )
- ),
- }
- if hasattr(node, "calc_flops"):
- flops_num = node.calc_flops()
- # add op flops attr
- if log_path:
- attr["flops"] = AttrValue(
- s=sizeof_fmt(flops_num).encode(encoding="utf-8")
- )
- flops_list.append(
- dict(
- name=node.name,
- class_name=node.type,
- input_shapes=[i.shape for i in node.inputs],
- output_shapes=[o.shape for o in node.outputs],
- flops_num=flops_num,
- flops_cum=0,
- )
- )
- if node.type == "ImmutableTensor":
- param_dim = np.prod(node_oup.shape)
- # TODO: consider other quantize dtypes
- param_bytes = 1 if is_quantize(node_oup.dtype) else 4
- # add tensor size attr
- if log_path:
- attr["size"] = AttrValue(
- s=sizeof_fmt(param_dim * param_bytes).encode(encoding="utf-8")
- )
- params_list.append(
- dict(
- name=node.name,
- shape=node_oup.shape,
- param_dim=param_dim,
- bits=param_bytes * 8,
- size=param_dim * param_bytes,
- size_cum=0,
- mean="{:.2g}".format(node.numpy().mean()),
- std="{:.2g}".format(node.numpy().std()),
- )
- )
- # FIXME(MGE-2165): nodes outside network module may lead to unknown display bug
- if not len(node.name.split(".")) > 2 and not node in graph.input_vars:
- continue
- if log_path:
- node_list.append(
- NodeDef(
- name=process_name(node.name),
- op=node.type,
- input=inp_list,
- attr=attr,
- )
- )
-
- total_flops, total_params = None, None
- if log_params:
- total_params = print_params_stats(params_list, bar_length_max)
- if log_flops:
- total_flops = print_flops_stats(flops_list, bar_length_max)
-
- if log_path:
- graph_def = GraphDef(node=node_list, versions=VersionDef(producer=22))
-
- device = "/device:CPU:0"
- stepstats = RunMetadata(
- step_stats=StepStats(dev_stats=[DeviceStepStats(device=device)])
- )
- writer = SummaryWriter(log_path)
- writer._get_file_writer().add_graph((graph_def, stepstats))
-
- # summary
-
- # FIXME: remove this after resolving "span dist too large" warning
- _imperative_rt_logger.set_log_level(old_level)
-
- return total_params, total_flops
-
-
- def main():
- parser = argparse.ArgumentParser(
- description="load a megengine dumped model and export log file for tensorboard visualization.",
- formatter_class=argparse.ArgumentDefaultsHelpFormatter,
- )
- parser.add_argument("model_path", help="dumped model path.")
- parser.add_argument("--log_path", help="tensorboard log path.")
- parser.add_argument(
- "--bar_length_max",
- type=int,
- default=20,
- help="size of bar indicating max flops or parameter size in net stats.",
- )
- parser.add_argument(
- "--log_params",
- action="store_true",
- help="whether print and record params size.",
- )
- parser.add_argument(
- "--log_flops", action="store_true", help="whether print and record op flops.",
- )
- parser.add_argument(
- "--all",
- action="store_true",
- help="whether print all stats. Tensorboard logs will be placed in './log' if not specified.",
- )
- args = parser.parse_args()
- if args.all:
- args.log_params = True
- args.log_flops = True
- if not args.log_path:
- args.log_path = "./log"
- kwargs = vars(args)
- kwargs.pop("all")
- visualize(**kwargs)
-
-
- if __name__ == "__main__":
- main()
|