You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

opr_proxy.h 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591
  1. /**
  2. * \file dnn/test/common/opr_proxy.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #pragma once
  13. #include "test/common/deduce_layout_proxy.h"
  14. #include "test/common/exec_proxy.h"
  15. #include "test/common/fast_run_cache.h"
  16. #include "test/common/inspect_type.h"
  17. #include "test/common/opr_algo_proxy.h"
  18. #include "test/common/opr_trait.h"
  19. #include "test/common/timer.h"
  20. #include "test/common/workspace_wrapper.h"
  21. #include <algorithm>
  22. #include <limits>
  23. #include <memory>
  24. #include <unordered_map>
  25. namespace megdnn {
  26. namespace test {
  27. template <Algorithm::OprType>
  28. struct OprFromOprTypeTrait;
  29. template <typename Opr>
  30. struct OprTypeFromOprTrait;
  31. #define cb(_opr_type, _opr) \
  32. template <> \
  33. struct OprFromOprTypeTrait<Algorithm::OprType::_opr_type> { \
  34. using Opr = megdnn::_opr; \
  35. }; \
  36. template <> \
  37. struct OprTypeFromOprTrait<megdnn::_opr> { \
  38. constexpr static Algorithm::OprType opr_type = \
  39. Algorithm::OprType::_opr_type; \
  40. }
  41. cb(MATRIX_MUL_FORWARD, MatrixMulForward);
  42. cb(CONVOLUTION_FORWARD, ConvolutionForward);
  43. cb(CONVOLUTION_BACKWARD_DATA, ConvolutionBackwardData);
  44. cb(CONVOLUTION_BACKWARD_FILTER, ConvolutionBackwardFilter);
  45. cb(CONVOLUTION3D_FORWARD, Convolution3DForward);
  46. cb(CONVOLUTION3D_BACKWARD_DATA, Convolution3DBackwardData);
  47. cb(CONVOLUTION3D_BACKWARD_FILTER, Convolution3DBackwardFilter);
  48. cb(LOCAL_SHARE_FORWARD, LocalShareForward);
  49. cb(LOCAL_SHARE_BACKWARD_DATA, LocalShareBackwardData);
  50. cb(LOCAL_SHARE_BACKWARD_FILTER, LocalShareBackwardFilter);
  51. cb(DEFORMABLE_CONV_FORWARD, DeformableConvForward);
  52. cb(DEFORMABLE_CONV_BACKWARD_DATA, DeformableConvBackwardData);
  53. cb(DEFORMABLE_CONV_BACKWARD_FILTER, DeformableConvBackwardFilter);
  54. cb(BATCH_CONV_FORWARD, BatchConvBiasForward);
  55. cb(CONVBIAS_FORWARD, ConvBiasForward);
  56. #undef cb
  57. // clang-format off
  58. #define FOREACH_OPR_TYPE(cb) \
  59. cb(MATRIX_MUL_FORWARD) \
  60. cb(CONVOLUTION_FORWARD) \
  61. cb(CONVOLUTION_BACKWARD_DATA) \
  62. cb(CONVOLUTION_BACKWARD_FILTER) \
  63. cb(CONVOLUTION3D_FORWARD) \
  64. cb(CONVOLUTION3D_BACKWARD_DATA) \
  65. cb(CONVOLUTION3D_BACKWARD_FILTER) \
  66. cb(LOCAL_SHARE_FORWARD) \
  67. cb(LOCAL_SHARE_BACKWARD_DATA) \
  68. cb(LOCAL_SHARE_BACKWARD_FILTER) \
  69. cb(DEFORMABLE_CONV_FORWARD) \
  70. cb(DEFORMABLE_CONV_BACKWARD_DATA) \
  71. cb(DEFORMABLE_CONV_BACKWARD_FILTER) \
  72. cb(BATCH_CONV_FORWARD) \
  73. cb(CONVBIAS_FORWARD)
  74. #define FOREACH_OPR_TYPE_WITH_STMT(cb, stmt) \
  75. cb(MATRIX_MUL_FORWARD, stmt) \
  76. cb(CONVOLUTION_FORWARD, stmt) \
  77. cb(CONVOLUTION_BACKWARD_DATA, stmt) \
  78. cb(CONVOLUTION_BACKWARD_FILTER, stmt) \
  79. cb(CONVOLUTION3D_FORWARD, stmt) \
  80. cb(CONVOLUTION3D_BACKWARD_DATA, stmt) \
  81. cb(CONVOLUTION3D_BACKWARD_FILTER, stmt) \
  82. cb(LOCAL_SHARE_FORWARD, stmt) \
  83. cb(LOCAL_SHARE_BACKWARD_DATA, stmt) \
  84. cb(LOCAL_SHARE_BACKWARD_FILTER, stmt) \
  85. cb(DEFORMABLE_CONV_FORWARD, stmt) \
  86. cb(DEFORMABLE_CONV_BACKWARD_DATA, stmt) \
  87. cb(DEFORMABLE_CONV_BACKWARD_FILTER, stmt) \
  88. cb(BATCH_CONV_FORWARD, stmt) \
  89. cb(CONVBIAS_FORWARD, stmt)
  90. // clang-format on
  91. #define _OPR_TYPE_CASE(_opr_type, _stmt) \
  92. case Algorithm::OprType::_opr_type: { \
  93. using _Opr = typename OprFromOprTypeTrait< \
  94. Algorithm::OprType::_opr_type>::Opr; \
  95. _stmt; \
  96. break; \
  97. }
  98. #define FOREACH_OPR_TYPE_DISPATCH(_search_items, _stmt) \
  99. for (size_t _item_idx = 0; _item_idx < _search_items.size(); \
  100. _item_idx++) { \
  101. auto&& _item = _search_items[_item_idx]; \
  102. switch (_item.opr_type) { \
  103. FOREACH_OPR_TYPE_WITH_STMT(_OPR_TYPE_CASE, _stmt) \
  104. default: \
  105. megdnn_throw("unknown opr_type"); \
  106. } \
  107. }
  108. template <typename Opr, size_t arity = OprTrait<Opr>::arity,
  109. bool has_workspace = OprTrait<Opr>::has_workspace,
  110. bool can_deduce_layout = OprTrait<Opr>::can_deduce_layout>
  111. struct OprProxyDefaultImpl
  112. : public DeduceLayoutProxy<Opr, arity, can_deduce_layout>,
  113. public ExecProxy<Opr, arity, has_workspace> {};
  114. template <typename Opr>
  115. struct OprProxy : public OprProxyDefaultImpl<Opr> {};
  116. template <typename Opr>
  117. struct OprWeightPreprocessProxy : public OprProxyDefaultImpl<Opr> {};
  118. template <typename Opr>
  119. struct OprProxyVectorToSingle {};
  120. template <>
  121. struct OprProxy<ElemwiseForward> {
  122. static void deduce_layout(ElemwiseForward* opr,
  123. TensorLayoutArray& layouts) {
  124. megdnn_assert(layouts.size() >= 2);
  125. auto inp = layouts;
  126. inp.pop_back();
  127. opr->deduce_layout(inp, layouts.back());
  128. }
  129. static void exec(ElemwiseForward* opr, const TensorNDArray& tensors) {
  130. megdnn_assert(tensors.size() >= 2);
  131. auto inp = tensors;
  132. inp.pop_back();
  133. opr->exec(inp, tensors.back());
  134. }
  135. };
  136. template <>
  137. struct OprProxy<ElemwiseMultiType> {
  138. static void deduce_layout(ElemwiseMultiType* opr,
  139. TensorLayoutArray& layouts) {
  140. megdnn_assert(layouts.size() >= 2);
  141. auto inp = layouts;
  142. inp.pop_back();
  143. opr->deduce_layout(inp, layouts.back());
  144. }
  145. static void exec(ElemwiseMultiType* opr, const TensorNDArray& tensors) {
  146. megdnn_assert(tensors.size() >= 2);
  147. auto inp = tensors;
  148. inp.pop_back();
  149. opr->exec(inp, tensors.back());
  150. }
  151. };
  152. template <>
  153. struct OprProxy<ConcatForward> {
  154. static void deduce_layout(ConcatForward* opr, TensorLayoutArray& layouts) {
  155. megdnn_assert(layouts.size() >= 2);
  156. auto inp = layouts;
  157. inp.pop_back();
  158. opr->deduce_layout(inp, layouts.back());
  159. }
  160. static void exec(ConcatForward* opr, const TensorNDArray& tensors) {
  161. megdnn_assert(tensors.size() >= 2);
  162. auto inp = tensors;
  163. inp.pop_back();
  164. TensorLayoutArray layouts(tensors.size());
  165. std::transform(tensors.begin(), tensors.end(), layouts.begin(),
  166. [](const TensorND& tensor) { return tensor.layout; });
  167. auto inp_layouts = layouts;
  168. inp_layouts.pop_back();
  169. WorkspaceWrapper W(opr->handle(), opr->get_workspace_in_bytes(
  170. inp_layouts, layouts.back()));
  171. auto inp_tensors = tensors;
  172. inp_tensors.pop_back();
  173. opr->exec(inp_tensors, tensors.back(), W.workspace());
  174. }
  175. };
  176. template <>
  177. struct OprProxy<SplitForward> : DeduceLayoutProxy<SplitForward, 0, false> {
  178. static void exec(SplitForward* opr, const TensorNDArray& tensors) {
  179. megdnn_assert(tensors.size() >= 2);
  180. auto out = tensors;
  181. out.erase(out.begin());
  182. TensorLayoutArray layouts(tensors.size());
  183. std::transform(tensors.begin(), tensors.end(), layouts.begin(),
  184. [](const TensorND& tensor) { return tensor.layout; });
  185. auto out_layouts = layouts;
  186. out_layouts.erase(out_layouts.begin());
  187. WorkspaceWrapper W(
  188. opr->handle(),
  189. opr->get_workspace_in_bytes(layouts.front(), out_layouts));
  190. auto out_tensors = tensors;
  191. out_tensors.erase(out_tensors.begin());
  192. opr->exec(tensors.front(), out_tensors, W.workspace());
  193. }
  194. };
  195. //! OprProxy impl for tenary oprs with profiling support
  196. template <class Opr>
  197. struct OprProxyProfilingBase
  198. : public DeduceLayoutProxy<Opr, OprTrait<Opr>::arity,
  199. OprTrait<Opr>::can_deduce_layout> {
  200. static constexpr int arity = OprTrait<Opr>::arity;
  201. size_t warmup_times = 10, exec_times = 100;
  202. //! whether to enable profiling
  203. bool m_profiling;
  204. WorkspaceWrapper W;
  205. //! target algo setup by profiler; it can also be directly specified by the
  206. //! caller
  207. ExecutionPolicy target_execution_policy;
  208. OprProxyProfilingBase(bool profile = false) { m_profiling = profile; }
  209. //! used for alloc tensor for weight preprocess
  210. static std::shared_ptr<TensorNDArray> alloc_tensors(
  211. Handle* handle, const TensorLayoutArray& layouts) {
  212. auto deleter = [handle](TensorNDArray* ptr) {
  213. for (auto&& i : *ptr) {
  214. auto pdata = static_cast<dt_byte*>(i.raw_ptr) +
  215. i.layout.span().low_byte;
  216. megdnn_free(handle, pdata);
  217. }
  218. delete ptr;
  219. };
  220. std::shared_ptr<TensorNDArray> ret{new TensorNDArray, deleter};
  221. for (size_t i = 0; i < layouts.size(); ++i) {
  222. auto span = layouts[i].span();
  223. ret->emplace_back(static_cast<dt_byte*>(
  224. megdnn_malloc(handle, span.dist_byte())) -
  225. span.low_byte,
  226. layouts[i]);
  227. }
  228. return ret;
  229. }
  230. /**
  231. * flatten search space in postorder traversal
  232. * The subopr search construct a search tree
  233. *
  234. * A
  235. * / \
  236. * B1B2 C
  237. * / \
  238. * D1D2D3 E
  239. * We use postorder traverse the search tree.
  240. * D1 -> D2 -> D3 -> E -> B1 -> B2 -> C -> A
  241. */
  242. static std::vector<Algorithm::SearchItem> flatten_search_space(
  243. const TensorLayoutArray layouts, const std::string& param,
  244. Handle* handle) {
  245. megdnn_assert(layouts.size() == arity);
  246. auto opr = handle->create_operator<Opr>();
  247. opr->param() =
  248. Algorithm::deserialize_read_pod<typename Opr::Param>(param);
  249. std::vector<Algorithm::SearchItem> ret;
  250. for (auto algo_info : AlgoProxy<Opr, arity>::get_all_algorithms_info(
  251. opr.get(), layouts)) {
  252. Algorithm* algo = opr->get_algorithm_from_desc(algo_info.desc);
  253. std::vector<Algorithm::SearchItem>&& sub_items =
  254. algo->get_subopr_list(layouts, opr.get());
  255. FOREACH_OPR_TYPE_DISPATCH(sub_items, {
  256. auto space = OprProxyProfilingBase<_Opr>::flatten_search_space(
  257. _item.layouts, _item.param, handle);
  258. ret.insert(ret.end(), space.begin(), space.end());
  259. });
  260. }
  261. ret.push_back({OprTypeFromOprTrait<Opr>::opr_type, param, layouts});
  262. return ret;
  263. }
  264. static void construct_execution_policy(
  265. const TensorLayoutArray& layouts, const std::string& param,
  266. Handle* handle, FastRunCache& cache,
  267. ExecutionPolicy& policy) {
  268. megdnn_assert(layouts.size() == arity);
  269. auto opr = handle->create_operator<Opr>();
  270. opr->param() =
  271. Algorithm::deserialize_read_pod<typename Opr::Param>(param);
  272. if (!policy.algo.valid()) {
  273. policy.algo = cache.get(Algorithm::SearchItem{
  274. OprTypeFromOprTrait<Opr>::opr_type, param, layouts});
  275. megdnn_assert(policy.algo.valid(),
  276. "No cache found, maybe some error occured in "
  277. "flatten_search_space or get_subopr_list");
  278. }
  279. policy.sub_policy.clear();
  280. Algorithm* algo = opr->get_algorithm_from_desc(policy.algo);
  281. std::vector<Algorithm::SearchItem>&& sub_items =
  282. algo->get_subopr_list(layouts, opr.get());
  283. FOREACH_OPR_TYPE_DISPATCH(sub_items, {
  284. policy.sub_policy.push_back({});
  285. OprProxyProfilingBase<_Opr>::construct_execution_policy(
  286. _item.layouts, _item.param, handle, cache,
  287. policy.sub_policy.back());
  288. });
  289. return;
  290. }
  291. /**
  292. * \brief search and get the best execution_policy
  293. */
  294. static void search(const TensorLayoutArray& layouts,
  295. const std::string& param,
  296. WorkspaceWrapper& workspace_wrapper, Handle* handle,
  297. size_t warmup_times, size_t exec_times,
  298. FastRunCache& cache) {
  299. megdnn_assert(layouts.size() == arity);
  300. auto opr = handle->create_operator<Opr>();
  301. opr->param() =
  302. Algorithm::deserialize_read_pod<typename Opr::Param>(param);
  303. SmallVector<size_t> sizes_in_bytes;
  304. for (const auto& layout : layouts) {
  305. sizes_in_bytes.push_back(layout.span().dist_byte());
  306. }
  307. float min_time = std::numeric_limits<float>::max();
  308. Algorithm::Info::Desc best_algo;
  309. std::string log_info = "Profiling start: ";
  310. for (auto&& layout : layouts) {
  311. log_info += layout.to_string() + " ";
  312. }
  313. megdnn_log("%s", log_info.c_str());
  314. best_algo = cache.get(Algorithm::SearchItem{
  315. OprTypeFromOprTrait<Opr>::opr_type, param, layouts});
  316. if (best_algo.valid()) {
  317. auto&& algo = opr->get_algorithm_from_desc(best_algo);
  318. MEGDNN_MARK_USED_VAR(algo);
  319. megdnn_log("Find best algo %s in cache", algo->name());
  320. return;
  321. }
  322. for (auto algo : AlgoProxy<Opr, arity>::get_all_algorithms_info(
  323. opr.get(), layouts)) {
  324. //! construct execution_policy
  325. opr->execution_policy().algo = algo.desc;
  326. construct_execution_policy(layouts, param, handle, cache,
  327. opr->execution_policy());
  328. auto workspace_size = AlgoProxy<Opr, arity>::get_workspace_in_bytes(
  329. opr.get(), layouts);
  330. sizes_in_bytes.push_back(workspace_size);
  331. WorkspaceBundle wb(nullptr, sizes_in_bytes);
  332. workspace_wrapper.update(wb.total_size_in_bytes());
  333. wb.set(workspace_wrapper.workspace().raw_ptr);
  334. TensorNDArray tensors;
  335. for (size_t i = 0; i < arity; i++) {
  336. tensors.push_back({wb.get(i), layouts[i]});
  337. }
  338. for (size_t times = 0; times < warmup_times; ++times) {
  339. AlgoProxy<Opr, arity>::exec(opr.get(), tensors,
  340. wb.get_workspace(arity));
  341. }
  342. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  343. Timer timer;
  344. timer.start();
  345. for (size_t times = 0; times < exec_times; ++times) {
  346. AlgoProxy<Opr, arity>::exec(opr.get(), tensors,
  347. wb.get_workspace(arity));
  348. }
  349. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  350. timer.stop();
  351. megdnn_log("%.3fms %s", timer.get_time_in_us() / 1e3,
  352. algo.name.c_str());
  353. if (min_time > timer.get_time_in_us()) {
  354. min_time = timer.get_time_in_us();
  355. best_algo = algo.desc;
  356. }
  357. sizes_in_bytes.pop_back();
  358. }
  359. auto&& algo = opr->get_algorithm_from_desc(best_algo);
  360. MEGDNN_MARK_USED_VAR(algo);
  361. megdnn_log("Profiling end, got best algo: %s", algo->name());
  362. cache.put(Algorithm::SearchItem{OprTypeFromOprTrait<Opr>::opr_type,
  363. param, layouts},
  364. best_algo);
  365. }
  366. void exec(Opr* opr, const TensorNDArray& tensors) {
  367. megdnn_assert(tensors.size() == arity);
  368. if (!W.valid()) {
  369. W = WorkspaceWrapper(opr->handle(), 0);
  370. }
  371. TensorLayoutArray layouts;
  372. for (auto&& tensor : tensors) {
  373. layouts.push_back(tensor.layout);
  374. }
  375. if (m_profiling && !target_execution_policy.algo.valid()) {
  376. FastRunCache cache;
  377. std::string param_str;
  378. Algorithm::serialize_write_pod(opr->param(), param_str);
  379. auto&& search_items =
  380. flatten_search_space(layouts, param_str, opr->handle());
  381. FOREACH_OPR_TYPE_DISPATCH(search_items, {
  382. OprProxyProfilingBase<_Opr>::search(_item.layouts, param_str, W,
  383. opr->handle(), warmup_times,
  384. exec_times, cache);
  385. });
  386. construct_execution_policy(layouts, param_str, opr->handle(), cache,
  387. opr->execution_policy());
  388. target_execution_policy = opr->execution_policy();
  389. auto workspace_size =
  390. AlgoProxy<Opr, arity>::get_workspace_in_bytes(opr, layouts);
  391. W.update(workspace_size);
  392. }
  393. if (!target_execution_policy.algo.valid()) {
  394. auto workspace_size =
  395. AlgoProxy<Opr, arity>::get_workspace_in_bytes(opr, layouts);
  396. W.update(workspace_size);
  397. }
  398. AlgoProxy<Opr, arity>::exec(opr, tensors, W.workspace());
  399. }
  400. };
  401. #define DEF_PROF(c) \
  402. template <> \
  403. struct OprProxy<c> : public OprProxyProfilingBase<c> { \
  404. using OprProxyProfilingBase<c>::OprProxyProfilingBase; \
  405. }
  406. DEF_PROF(MatrixMulForward);
  407. DEF_PROF(ConvolutionForward);
  408. DEF_PROF(ConvolutionBackwardData);
  409. DEF_PROF(ConvolutionBackwardFilter);
  410. DEF_PROF(LocalShareForward);
  411. DEF_PROF(LocalShareBackwardData);
  412. DEF_PROF(LocalShareBackwardFilter);
  413. DEF_PROF(DeformableConvForward);
  414. DEF_PROF(DeformableConvBackwardFilter);
  415. DEF_PROF(BatchConvBiasForward);
  416. DEF_PROF(ConvBiasForward);
  417. DEF_PROF(DeformableConvBackwardData);
  418. #undef DEF_PROF
  419. template <class Opr>
  420. struct OprWeightPreprocessProxyImpl : public OprProxyProfilingBase<Opr> {
  421. using Base = OprProxyProfilingBase<Opr>;
  422. static constexpr int arity = OprTrait<Opr>::arity;
  423. void exec(Opr* opr, const TensorNDArray& tensors) {
  424. megdnn_assert(tensors.size() == arity);
  425. if (!Base::W.valid()) {
  426. Base::W = WorkspaceWrapper(opr->handle(), 0);
  427. }
  428. TensorLayoutArray layouts;
  429. for (auto&& tensor : tensors) {
  430. layouts.push_back(tensor.layout);
  431. }
  432. if (Base::m_profiling && !Base::target_execution_policy.algo.valid()) {
  433. size_t min_time = std::numeric_limits<size_t>::max();
  434. for (auto algo :
  435. AlgoProxy<Opr, arity>::get_all_algorithms_info(opr, layouts)) {
  436. opr->execution_policy().algo = algo.desc;
  437. auto preprocess_tensors =
  438. weight_prerocess(opr, tensors, algo.desc);
  439. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  440. typename Opr::PreprocessedFilter preprocessed_filter{
  441. nullptr, *preprocess_tensors};
  442. auto workspace_size =
  443. AlgoProxy<Opr, arity>::get_workspace_in_bytes(
  444. opr, layouts, &preprocessed_filter);
  445. Base::W.update(workspace_size);
  446. for (size_t times = 0; times < Base::warmup_times; ++times) {
  447. AlgoProxy<Opr, arity>::exec(opr, tensors,
  448. &preprocessed_filter,
  449. Base::W.workspace());
  450. }
  451. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  452. Timer timer;
  453. timer.start();
  454. for (size_t times = 0; times < Base::exec_times; ++times) {
  455. AlgoProxy<Opr, arity>::exec(opr, tensors,
  456. &preprocessed_filter,
  457. Base::W.workspace());
  458. }
  459. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  460. timer.stop();
  461. printf("%.3fms %s\n", timer.get_time_in_us() / 1e3,
  462. algo.name.c_str());
  463. if (min_time > timer.get_time_in_us()) {
  464. min_time = timer.get_time_in_us();
  465. Base::target_execution_policy.algo = algo.desc;
  466. }
  467. }
  468. opr->execution_policy() = Base::target_execution_policy;
  469. auto preprocess_tensors = weight_prerocess(
  470. opr, tensors, Base::target_execution_policy.algo);
  471. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  472. typename Opr::PreprocessedFilter preprocessed_filter{
  473. nullptr, *preprocess_tensors};
  474. auto workspace_size = AlgoProxy<Opr, arity>::get_workspace_in_bytes(
  475. opr, layouts, &preprocessed_filter);
  476. Base::W.update(workspace_size);
  477. }
  478. auto preprocess_tensors = weight_prerocess(
  479. opr, tensors, Base::target_execution_policy.algo);
  480. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  481. typename Opr::PreprocessedFilter preprocessed_filter{
  482. nullptr, *preprocess_tensors};
  483. if (!Base::target_execution_policy.algo.valid()) {
  484. auto workspace_size = AlgoProxy<Opr, arity>::get_workspace_in_bytes(
  485. opr, layouts, &preprocessed_filter);
  486. Base::W.update(workspace_size);
  487. }
  488. AlgoProxy<Opr, arity>::exec(opr, tensors, &preprocessed_filter,
  489. Base::W.workspace());
  490. }
  491. //! handle weight preprocess
  492. std::shared_ptr<TensorNDArray> weight_prerocess(
  493. Opr* opr, const TensorNDArray& tensors,
  494. const typename Opr::AlgorithmDesc&) {
  495. TensorLayoutArray layouts;
  496. for (auto&& tensor : tensors) {
  497. layouts.push_back(tensor.layout);
  498. }
  499. auto weight_perprocess_layouts =
  500. AlgoProxy<Opr, arity>::deduce_preprocessed_filter_layout(
  501. opr, layouts);
  502. auto preprocessed_filter_tensors_ptr =
  503. Base::alloc_tensors(opr->handle(), weight_perprocess_layouts);
  504. typename Opr::PreprocessedFilter preprocessed_filter{
  505. nullptr, *preprocessed_filter_tensors_ptr};
  506. size_t preprocess_workspace_size =
  507. AlgoProxy<Opr, arity>::get_preprocess_workspace_in_bytes(
  508. opr, layouts);
  509. WorkspaceWrapper preprocess_workspace(opr->handle(),
  510. preprocess_workspace_size);
  511. AlgoProxy<Opr, arity>::exec_preprocess(
  512. opr, tensors, layouts, &preprocessed_filter,
  513. preprocess_workspace.workspace());
  514. return preprocessed_filter_tensors_ptr;
  515. }
  516. };
  517. #define DEF_PROF(c) \
  518. template <> \
  519. struct OprWeightPreprocessProxy<c> \
  520. : public OprWeightPreprocessProxyImpl<c> { \
  521. using OprWeightPreprocessProxyImpl<c>::OprWeightPreprocessProxyImpl; \
  522. }
  523. DEF_PROF(ConvolutionForward);
  524. DEF_PROF(ConvBias);
  525. #undef DEF_PROF
  526. } // namespace test
  527. } // namespace megdnn
  528. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台