|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995 |
- /**
- * \file dnn/test/arm_common/conv_bias_multi_thread_benchmark.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
- #include "test/arm_common/fixture.h"
- #include "test/common/benchmarker.h"
- #include "test/common/conv_bias.h"
-
- using namespace megdnn;
- using namespace test;
- using namespace conv_bias;
- #if MEGDNN_WITH_BENCHMARK
- namespace {
- void benchmark_impl(const param::ConvBias param,
- std::vector<std::pair<SmallVector<TensorShape>, float>>&
- shapes_and_computation,
- const std::string algo_name, size_t RUNS,
- TaskExecutorConfig&& multi_thread_config,
- TaskExecutorConfig&& single_thread_config,
- std::vector<DType>& data_type) {
- std::vector<float> multi_thread_times, single_thread_times;
- {
- auto multi_thread_hanle =
- create_cpu_handle(0, true, &multi_thread_config);
- auto benchmarker = Benchmarker<ConvBias>(multi_thread_hanle.get());
- benchmarker.set_times(RUNS)
- .set_display(false)
- .set_param(param)
- .set_dtype(0, data_type[0])
- .set_dtype(1, data_type[1])
- .set_dtype(2, data_type[2])
- .set_dtype(4, data_type[3])
- .set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(
- algo_name.c_str()));
- for (auto shape : shapes_and_computation) {
- multi_thread_times.push_back(benchmarker.exec(shape.first) / RUNS);
- }
- }
- {
- auto single_thread_handle =
- create_cpu_handle(0, true, &single_thread_config);
- auto benchmarker = Benchmarker<ConvBias>(single_thread_handle.get());
- benchmarker.set_times(RUNS)
- .set_display(false)
- .set_param(param)
- .set_dtype(0, data_type[0])
- .set_dtype(1, data_type[1])
- .set_dtype(2, data_type[2])
- .set_dtype(4, data_type[3])
- .set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(
- algo_name.c_str()));
- for (auto shape : shapes_and_computation) {
- single_thread_times.push_back(benchmarker.exec(shape.first) / RUNS);
- }
- }
- printf("Benchmark : Multi threads %zu, ", multi_thread_config.nr_thread);
- printf("core_ids:");
- for (size_t i = 0; i < multi_thread_config.affinity_core_set.size(); i++) {
- printf("%zu ", multi_thread_config.affinity_core_set[i]);
- }
- printf(", Single thread core_id %zu\n",
- single_thread_config.affinity_core_set[0]);
- for (size_t i = 0; i < shapes_and_computation.size(); i++) {
- auto shapes = shapes_and_computation[i];
- printf("Bench case: ");
- for (auto&& shape : shapes.first) {
- printf("%s ", shape.to_string().c_str());
- }
- float computations = shapes.second;
- printf("%zu threads gflops: %f,\n single thread gflops: "
- "%f. spead up = %f, speedup/cores=%f\n",
- multi_thread_config.nr_thread,
- computations / multi_thread_times[i],
- computations / single_thread_times[i],
- single_thread_times[i] / multi_thread_times[i],
- single_thread_times[i] / multi_thread_times[i] /
- multi_thread_config.nr_thread);
- }
- }
- } // namespace
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_DIRECTF32) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group) {
- SmallVector<TensorShape> shapes{{N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4);
- bench_case(1, 32, 32, 200, 200, 3, 32);
- bench_case(1, 32, 32, 128, 128, 3, 4);
- bench_case(1, 32, 32, 128, 128, 3, 32);
- bench_case(1, 32, 32, 100, 100, 3, 4);
- bench_case(1, 32, 32, 100, 100, 3, 32);
- bench_case(1, 32, 32, 80, 80, 3, 4);
- bench_case(1, 32, 32, 80, 80, 3, 32);
-
- std::string algo_name = "F32DIRECT";
- printf("Benchmark F32DIRECT_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32()};
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
-
- algo_name = "F32DIRECT";
- printf("Benchmark F32DIRECT_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_DIRECTF32_STR1) {
- constexpr size_t RUNS = 50;
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group) {
- SmallVector<TensorShape> shapes{{N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4);
- bench_case(1, 32, 32, 200, 200, 3, 32);
- bench_case(1, 32, 32, 128, 128, 3, 4);
- bench_case(1, 32, 32, 128, 128, 3, 32);
- bench_case(1, 32, 32, 100, 100, 3, 4);
- bench_case(1, 32, 32, 100, 100, 3, 32);
- bench_case(1, 32, 32, 80, 80, 3, 4);
- bench_case(1, 32, 32, 80, 80, 3, 32);
-
- std::string algo_name = "F32STRD1";
- printf("Benchmark F32STRD1_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32()};
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
-
- algo_name = "F32STRD1";
- printf("Benchmark F32STRD1_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_DIRECTF32_STR2) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 2;
- param.stride_w = 2;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group, size_t P, size_t S) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4, 1, 2);
- bench_case(1, 32, 32, 200, 200, 3, 32, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 4, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 32, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 4, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 32, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 4, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 32, 1, 2);
-
- std::string algo_name = "F32STRD2";
- printf("Benchmark F32STRD2_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32()};
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
-
- algo_name = "F32STRD2";
- printf("Benchmark F32STRD2_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 1, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 1, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 1, 1, 2);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_DIRECTF16) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group) {
- SmallVector<TensorShape> shapes{{N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4);
- bench_case(1, 32, 32, 200, 200, 3, 32);
- bench_case(1, 32, 32, 128, 128, 3, 4);
- bench_case(1, 32, 32, 128, 128, 3, 32);
- bench_case(1, 32, 32, 100, 100, 3, 4);
- bench_case(1, 32, 32, 100, 100, 3, 32);
- bench_case(1, 32, 32, 80, 80, 3, 4);
- bench_case(1, 32, 32, 80, 80, 3, 32);
-
- std::string algo_name = "F16DIRECT";
- printf("Benchmark F16DIRECT_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {dtype::Float16(), dtype::Float16(),
- dtype::Float16(), dtype::Float16()};
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
-
- algo_name = "F16DIRECT";
- printf("Benchmark F16DIRECT_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_DIRECTF16_STR1) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group) {
- SmallVector<TensorShape> shapes{{N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4);
- bench_case(1, 32, 32, 200, 200, 3, 32);
- bench_case(1, 32, 32, 128, 128, 3, 4);
- bench_case(1, 32, 32, 128, 128, 3, 32);
- bench_case(1, 32, 32, 100, 100, 3, 4);
- bench_case(1, 32, 32, 100, 100, 3, 32);
- bench_case(1, 32, 32, 80, 80, 3, 4);
- bench_case(1, 32, 32, 80, 80, 3, 32);
-
- std::string algo_name = "F16STRD1";
- printf("Benchmark F16STRD1_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {dtype::Float16(), dtype::Float16(),
- dtype::Float16(), dtype::Float16()};
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
-
- algo_name = "F16STRD1";
- printf("Benchmark F16STRD1_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
- #endif
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_DIRECT_INT8x8x16) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group) {
- SmallVector<TensorShape> shapes{{N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4);
- bench_case(1, 32, 32, 200, 200, 3, 32);
- bench_case(1, 32, 32, 128, 128, 3, 4);
- bench_case(1, 32, 32, 128, 128, 3, 32);
- bench_case(1, 32, 32, 100, 100, 3, 4);
- bench_case(1, 32, 32, 100, 100, 3, 32);
- bench_case(1, 32, 32, 80, 80, 3, 4);
- bench_case(1, 32, 32, 80, 80, 3, 32);
-
- std::string algo_name = "I8816DIRECT";
- printf("Benchmark I8816DIRECT_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {dtype::Int8(), dtype::Int8(),
- dtype::Int16(), dtype::Int16()};
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
-
- algo_name = "I8816DIRECT";
- printf("Benchmark I8816DIRECT_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_DIRECT_INT8x8x16_STR2) {
- constexpr size_t RUNS = 50;
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 2;
- param.stride_w = 2;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group, size_t P, size_t S) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1}};
- TensorShape dst{N, OC, (H + 2 * P - FS) / S + 1,
- (W + 2 * P - FS) / S + 1};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4, 1, 2);
- bench_case(1, 32, 32, 200, 200, 3, 32, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 4, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 32, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 4, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 32, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 4, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 32, 1, 2);
-
- std::string algo_name = "I8816STRD2";
- printf("Benchmark I8816STRD2_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {dtype::Int8(), dtype::Int8(),
- dtype::Int16(), dtype::Int16()};
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
-
- algo_name = "I8816STRD2";
- printf("Benchmark I8816STRD2_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 1, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 1, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 1, 1, 2);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_INT8_INT8_INT8_STRIDE1) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group, size_t P, size_t S) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4, 1, 1);
- bench_case(1, 32, 32, 200, 200, 3, 32, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 4, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 32, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 4, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 32, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 4, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 32, 1, 1);
-
- std::string algo_name = "S8STRD1";
- printf("Benchmark S8STRD1_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
-
- algo_name = "S8STRD1";
- printf("Benchmark S8STRD1_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1, 1, 1);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_INT8_NCHW44) {
- constexpr size_t RUNS = 40;
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group, size_t P, size_t S,
- bool is_nchw = false) {
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = P;
- param.pad_w = P;
- param.stride_h = S;
- param.stride_w = S;
- param.sparse = param::ConvBias::Sparse::DENSE;
- param.format = param::ConvBias::Format::NCHW44;
- auto OH = (H + 2 * P - FS) / static_cast<size_t>(S) + 1;
- auto OW = (W + 2 * P - FS) / static_cast<size_t>(S) + 1;
- TensorShape src = {N, IC / 4, H, W, 4};
- TensorShape filter = {OC / 4, IC / 4, FS, FS, 4, 4};
- if (group > 1) {
- filter = {group, OC / group / 4, IC / group / 4, FS, FS, 4, 4};
- param.sparse = param::ConvBias::Sparse::GROUP;
- }
- if (is_nchw) {
- src = {N, IC, H, W};
- filter = {OC / 4, FS, FS, IC, 4};
- }
- TensorShape bias = {1, OC / 4, 1, 1, 4};
- TensorShape dst = {N, OC / 4, OH, OW, 4};
-
- SmallVector<TensorShape> shapes{src, filter, bias, {}, dst};
- float computations =
- (((IC / group) * FS * FS + 1) * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- std::vector<std::pair<SmallVector<TensorShape>, float>> shape_arg = {
- std::make_pair(shapes, computations)};
- benchmark_impl(param, shape_arg, ".+", RUNS, {4, {4, 5, 6, 7}},
- {1, {7}}, data_type);
- };
- bench_case(1, 3, 64, 224, 224, 7, 1, 3, 2, true);
- bench_case(1, 64, 64, 56, 56, 3, 1, 1, 1);
- bench_case(1, 128, 128, 28, 28, 3, 1, 1, 1);
- bench_case(1, 256, 256, 14, 14, 3, 1, 1, 1);
- bench_case(1, 512, 512, 7, 7, 3, 1, 1, 1);
-
- bench_case(1, 64, 64, 56, 56, 3, 4, 1, 1);
- bench_case(1, 128, 128, 28, 28, 3, 4, 1, 1);
- bench_case(1, 256, 256, 14, 14, 3, 4, 1, 1);
- bench_case(1, 512, 512, 7, 7, 3, 4, 1, 1);
-
- bench_case(1, 4, 64, 224, 224, 7, 1, 1, 2);
- bench_case(1, 256, 128, 56, 56, 3, 1, 1, 2);
- bench_case(1, 512, 256, 28, 28, 3, 1, 1, 2);
- bench_case(1, 4, 32, 224, 224, 3, 1, 1, 2);
-
- bench_case(1, 256, 128, 56, 56, 3, 4, 1, 2);
- bench_case(1, 512, 256, 28, 28, 3, 4, 1, 2);
- }
-
- #if MGB_ENABLE_DOT
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_INT8_NCHW44_DOT) {
- constexpr size_t RUNS = 40;
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group, size_t P, size_t S,
- bool is_nchw = false) {
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = P;
- param.pad_w = P;
- param.stride_h = S;
- param.stride_w = S;
- param.sparse = param::ConvBias::Sparse::DENSE;
- param.format = param::ConvBias::Format::NCHW44_DOT;
- auto OH = (H + 2 * P - FS) / static_cast<size_t>(S) + 1;
- auto OW = (W + 2 * P - FS) / static_cast<size_t>(S) + 1;
- TensorShape src = {N, IC / 4, H, W, 4};
- TensorShape filter = {OC / 4, IC / 4, FS, FS, 4, 4};
- if (group > 1) {
- filter = {group, OC / group / 4, IC / group / 4, FS, FS, 4, 4};
- param.sparse = param::ConvBias::Sparse::GROUP;
- }
- if (is_nchw) {
- src = {N, IC, H, W};
- filter = {OC / 4, FS, FS, IC, 4};
- }
- TensorShape bias = {1, OC / 4, 1, 1, 4};
- TensorShape dst = {N, OC / 4, OH, OW, 4};
-
- SmallVector<TensorShape> shapes{src, filter, bias, {}, dst};
- float computations =
- (((IC / group) * FS * FS + 1) * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- std::vector<std::pair<SmallVector<TensorShape>, float>> shape_arg = {
- std::make_pair(shapes, computations)};
- benchmark_impl(param, shape_arg, ".+", RUNS, {4, {4, 5, 6, 7}},
- {1, {7}}, data_type);
- };
- bench_case(1, 64, 64, 56, 56, 3, 1, 1, 1);
- bench_case(1, 128, 128, 28, 28, 3, 1, 1, 1);
- bench_case(1, 256, 256, 14, 14, 3, 1, 1, 1);
- bench_case(1, 512, 512, 7, 7, 3, 1, 1, 1);
-
- bench_case(1, 64, 64, 56, 56, 3, 4, 1, 1);
- bench_case(1, 128, 128, 28, 28, 3, 4, 1, 1);
- bench_case(1, 256, 256, 14, 14, 3, 4, 1, 1);
- bench_case(1, 512, 512, 7, 7, 3, 4, 1, 1);
-
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_INT8_NCHW44_DOT_S2) {
- constexpr size_t RUNS = 40;
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group, size_t P, size_t S,
- bool is_nchw = false) {
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = P;
- param.pad_w = P;
- param.stride_h = S;
- param.stride_w = S;
- param.sparse = param::ConvBias::Sparse::DENSE;
- param.format = param::ConvBias::Format::NCHW44_DOT;
- auto OH = (H + 2 * P - FS) / static_cast<size_t>(S) + 1;
- auto OW = (W + 2 * P - FS) / static_cast<size_t>(S) + 1;
- TensorShape src = {N, IC / 4, H, W, 4};
- TensorShape filter = {OC / 4, IC / 4, FS, FS, 4, 4};
- if (group > 1) {
- filter = {group, OC / group / 4, IC / group / 4, FS, FS, 4, 4};
- param.sparse = param::ConvBias::Sparse::GROUP;
- }
- if (is_nchw) {
- src = {N, IC, H, W};
- filter = {OC / 4, FS, FS, IC, 4};
- }
- TensorShape bias = {1, OC / 4, 1, 1, 4};
- TensorShape dst = {N, OC / 4, OH, OW, 4};
-
- SmallVector<TensorShape> shapes{src, filter, bias, {}, dst};
- float computations =
- (((IC / group) * FS * FS + 1) * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- std::vector<std::pair<SmallVector<TensorShape>, float>> shape_arg = {
- std::make_pair(shapes, computations)};
- benchmark_impl(param, shape_arg, ".+", RUNS, {4, {4, 5, 6, 7}},
- {1, {7}}, data_type);
- };
- bench_case(1, 64, 64, 56, 56, 3, 1, 1, 2);
- bench_case(1, 64, 64, 128, 128, 3, 1, 1, 2);
- bench_case(1, 64, 64, 256, 256, 3, 1, 1, 2);
- bench_case(1, 64, 64, 156, 156, 3, 1, 1, 2);
- bench_case(1, 128, 128, 28, 28, 3, 1, 1, 2);
- bench_case(1, 256, 256, 14, 14, 3, 1, 1, 2);
- bench_case(1, 512, 512, 7, 7, 3, 1, 1, 2);
-
- bench_case(1, 64, 64, 56, 56, 3, 4, 1, 2);
- bench_case(1, 128, 128, 28, 28, 3, 4, 1, 2);
- bench_case(1, 256, 256, 14, 14, 3, 4, 1, 2);
- bench_case(1, 512, 512, 7, 7, 3, 4, 1, 2);
-
- }
-
-
- #endif
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_FLOAT_NCHW44) {
- constexpr size_t RUNS = 40;
- std::vector<DType> data_type = {
- dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32()};
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group, size_t P, size_t S,
- bool is_nchw = false) {
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = P;
- param.pad_w = P;
- param.stride_h = S;
- param.stride_w = S;
- param.sparse = param::ConvBias::Sparse::DENSE;
- param.format = param::ConvBias::Format::NCHW44;
- auto OH = (H + 2 * P - FS) / static_cast<size_t>(S) + 1;
- auto OW = (W + 2 * P - FS) / static_cast<size_t>(S) + 1;
- TensorShape src = {N, IC / 4, H, W, 4};
- TensorShape filter = {OC / 4, IC / 4, FS, FS, 4, 4};
- if (group > 1) {
- filter = {group, OC / group / 4, IC / group / 4, FS, FS, 4, 4};
- param.sparse = param::ConvBias::Sparse::GROUP;
- }
- if (is_nchw) {
- src = {N, IC, H, W};
- filter = {OC / 4, FS, FS, IC, 4};
- }
- TensorShape bias = {1, OC / 4, 1, 1, 4};
- TensorShape dst = {N, OC / 4, OH, OW, 4};
-
- SmallVector<TensorShape> shapes{src, filter, bias, {}, dst};
- float computations =
- (((IC / group) * FS * FS + 1) * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- std::vector<std::pair<SmallVector<TensorShape>, float>> shape_arg = {
- std::make_pair(shapes, computations)};
- benchmark_impl(param, shape_arg, ".+", RUNS, {4, {4, 5, 6, 7}},
- {1, {7}}, data_type);
- };
- bench_case(1, 64, 64, 56, 56, 3, 1, 1, 2);
- bench_case(1, 128, 128, 28, 28, 3, 1, 1, 2);
- bench_case(1, 256, 256, 14, 14, 3, 1, 1, 2);
- bench_case(1, 512, 512, 7, 7, 3, 1, 1, 2);
-
- bench_case(1, 64, 64, 56, 56, 3, 4, 1, 2);
- bench_case(1, 128, 128, 28, 28, 3, 4, 1, 2);
- bench_case(1, 256, 256, 14, 14, 3, 4, 1, 2);
- bench_case(1, 512, 512, 7, 7, 3, 4, 1, 2);
-
- bench_case(1, 64, 64, 56*2, 56*2, 3, 4, 1, 2);
- bench_case(1, 128, 128, 28*2, 28*2, 3, 4, 1, 2);
- bench_case(1, 256, 256, 14*2, 14*2, 3, 4, 1, 2);
- bench_case(1, 512, 512, 7*2, 7*2, 3, 4, 1, 2);
- }
-
-
-
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_INT8_INT8_INT8_STRIDE2) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 2;
- param.stride_w = 2;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group, size_t P, size_t S) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4, 1, 2);
- bench_case(1, 32, 32, 200, 200, 3, 32, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 4, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 32, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 4, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 32, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 4, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 32, 1, 2);
-
- std::string algo_name = "S8STRD2";
- printf("Benchmark S8STRD2_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
-
- algo_name = "S8STRD2";
- printf("Benchmark S8STRD2_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 1, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 1, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 1, 1, 2);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
- #if MGB_ENABLE_DOT
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_INT8_INT8_INT8_STRIDE1_WITHDOTPROD) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group, size_t P, size_t S) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4, 1, 1);
- bench_case(1, 32, 32, 200, 200, 3, 32, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 4, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 32, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 4, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 32, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 4, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 32, 1, 1);
-
- std::string algo_name = "ARMDOTS8STRD1";
- printf("Benchmark ARMDOTS8STRD1_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
-
- algo_name = "ARMDOTS8STRD1";
- printf("Benchmark ARMDOTS8STRD1_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1, 1, 1);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_INT8_INT8_INT8_STRIDE2_WITHDOTPROD) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 2;
- param.stride_w = 2;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group, size_t P, size_t S) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4, 1, 2);
- bench_case(1, 32, 32, 200, 200, 3, 32, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 4, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 32, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 4, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 32, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 4, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 32, 1, 2);
-
- std::string algo_name = "ARMDOTS8STRD2";
- printf("Benchmark ARMDOTS8STRD2_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
-
- algo_name = "ARMDOTS8STRD2";
- printf("Benchmark ARMDOTS8STRD2_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 1, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 1, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 1, 1, 2);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
- #endif
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_QUINT8_QUINT8_QUINT8_STRIDE1) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group, size_t P, size_t S) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4, 1, 1);
- bench_case(1, 32, 32, 200, 200, 3, 32, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 4, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 32, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 4, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 32, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 4, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 32, 1, 1);
-
- std::string algo_name = "QU8STRD1";
- printf("Benchmark QU8STRD1_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {dtype::Quantized8Asymm(0.2f, 100),
- dtype::Quantized8Asymm(0.2f, 120),
- dtype::QuantizedS32(0.04f),
- dtype::Quantized8Asymm(1.4f, 110)};
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
-
- algo_name = "QU8STRD1";
- printf("Benchmark QU8STRD1_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1, 1, 1);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_QUINT8_QUINT8_QUINT8_STRIDE2) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 2;
- param.stride_w = 2;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group, size_t P, size_t S) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4, 1, 2);
- bench_case(1, 32, 32, 200, 200, 3, 32, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 4, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 32, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 4, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 32, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 4, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 32, 1, 2);
-
- std::string algo_name = "QU8STRD2";
- printf("Benchmark QU8STRD2_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {dtype::Quantized8Asymm(0.2f, 100),
- dtype::Quantized8Asymm(0.2f, 120),
- dtype::QuantizedS32(0.04f),
- dtype::Quantized8Asymm(1.4f, 110)};
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
-
- algo_name = "QU8STRD2";
- printf("Benchmark QU8STRD2_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 1, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 1, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 1, 1, 2);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
- #if MGB_ENABLE_DOT
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_QUINT8_QUINT8_QUINT8_STRIDE1_WITHDOTPROD) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group, size_t P, size_t S) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1}};
- TensorShape dst{N, OC, (H + 2 * P - FS) / S + 1,
- (W + 2 * P - FS) / S + 1};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4, 1, 1);
- bench_case(1, 32, 32, 200, 200, 3, 32, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 4, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 32, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 4, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 32, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 4, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 32, 1, 1);
-
- std::string algo_name = "ARMDOTU8STRD1";
- printf("Benchmark ARMDOTU8STRD1_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {dtype::Quantized8Asymm(0.2f, 100),
- dtype::Quantized8Asymm(0.2f, 120),
- dtype::QuantizedS32(0.04f),
- dtype::Quantized8Asymm(1.4f, 110)};
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
-
- algo_name = "ARMDOTU8STRD1";
- printf("Benchmark ARMDOTS8STRD1_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1, 1, 1);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_QUINT8_QUINT8_QUINT8_STRIDE2_WITHDOTPROD) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 2;
- param.stride_w = 2;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group, size_t P, size_t S) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1}};
- TensorShape dst{N, OC, (H + 2 * P - FS) / S + 1,
- (W + 2 * P - FS) / S + 1};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 5, 4, 1, 2);
- bench_case(1, 32, 32, 200, 200, 5, 32, 1, 2);
- bench_case(1, 32, 32, 128, 128, 5, 4, 1, 2);
- bench_case(1, 32, 32, 128, 128, 5, 32, 1, 2);
- bench_case(1, 32, 32, 100, 100, 5, 4, 1, 2);
- bench_case(1, 32, 32, 100, 100, 5, 32, 1, 2);
- bench_case(1, 32, 32, 80, 80, 5, 4, 1, 2);
- bench_case(1, 32, 32, 80, 80, 5, 32, 1, 2);
-
- std::string algo_name = "ARMDOTU8STRD2";
- printf("Benchmark ARMDOTU8STRD2_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {dtype::Quantized8Asymm(0.2f, 100),
- dtype::Quantized8Asymm(0.2f, 120),
- dtype::QuantizedS32(0.04f),
- dtype::Quantized8Asymm(1.4f, 110)};
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
-
- algo_name = "ARMDOTU8STRD2";
- printf("Benchmark ARMDOTU8STRD2_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 5, 1, 1, 2);
- bench_case(1, 32, 32, 128, 128, 5, 1, 1, 2);
- bench_case(1, 32, 32, 100, 100, 5, 1, 1, 2);
- bench_case(1, 32, 32, 80, 80, 5, 1, 1, 2);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
- #endif
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_WINOGRAD_F32) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group) {
- SmallVector<TensorShape> shapes{{N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4);
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 4);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 4);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 4);
-
- bench_case(1, 512, 512, 14, 14, 3, 1);
- bench_case(1, 512, 256, 14, 14, 3, 1);
- bench_case(1, 512, 128, 14, 14, 3, 1);
- bench_case(1, 512, 64, 14, 14, 3, 1);
-
- bench_case(1, 512, 512, 7, 7, 3, 1);
- bench_case(1, 512, 256, 7, 7, 3, 1);
- bench_case(1, 512, 128, 7, 7, 3, 1);
- bench_case(1, 512, 64, 7, 7, 3, 1);
-
- std::string algo_name;
- #if MEGDNN_AARCH64
- algo_name = "WINOGRAD:AARCH64_F32_MK4_4x16:4:2";
- #else
- algo_name = "WINOGRAD:ARMV7_F32_MK4_4x8:4:2";
- #endif
- std::vector<DType> data_type = {dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32()};
- printf("Benchmark WINOGRAD_F32_MK4 algo\n");
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_WINOGRAD_INT8) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group) {
- SmallVector<TensorShape> shapes{{N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4);
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 4);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 4);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 4);
-
- bench_case(1, 512, 512, 14, 14, 3, 1);
- bench_case(1, 512, 256, 14, 14, 3, 1);
- bench_case(1, 512, 128, 14, 14, 3, 1);
- bench_case(1, 512, 64, 14, 14, 3, 1);
-
- bench_case(1, 512, 512, 7, 7, 3, 1);
- bench_case(1, 512, 256, 7, 7, 3, 1);
- bench_case(1, 512, 128, 7, 7, 3, 1);
- bench_case(1, 512, 64, 7, 7, 3, 1);
-
- std::string algo_name;
- #if MEGDNN_AARCH64
- algo_name = "WINOGRAD:AARCH64_INT16X16X32_MK8_8X8:8:2:32";
- #else
- algo_name = "WINOGRAD:ARMV7_INT16X16X32_MK8_4X8:8:2:32";
- #endif
-
-
- std::vector<DType> data_type = {dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f) ,dtype::QuantizedS8(60.25f) };
- printf("Benchmark WINOGRAD_IN8_MK8 algo\n");
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_WINOGRAD_NCHW44_INT8_MK8) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::DENSE;
- param.format = param::ConvBias::Format::NCHW44;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group) {
- SmallVector<TensorShape> shapes{{N, IC / 4, H, W, 4},
- {OC / 4, IC / 4, FS, FS, 4, 4},
- {1, OC / 4, 1, 1, 4},
- {},
- {N, OC / 4, H, W, 4}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
-
- bench_case(1, 512, 512, 14, 14, 3, 1);
- bench_case(1, 512, 256, 14, 14, 3, 1);
- bench_case(1, 512, 128, 14, 14, 3, 1);
- bench_case(1, 512, 64, 14, 14, 3, 1);
-
- bench_case(1, 512, 512, 7, 7, 3, 1);
- bench_case(1, 512, 256, 7, 7, 3, 1);
- bench_case(1, 512, 128, 7, 7, 3, 1);
- bench_case(1, 512, 64, 7, 7, 3, 1);
-
- std::string algo_name;
- #if MEGDNN_AARCH64
- algo_name = "WINOGRAD_NCHW44:AARCH64_INT16X16X32_MK8_8X8:8:2:32";
- #else
- algo_name = "WINOGRAD_NCHW44:ARMV7_INT16X16X32_MK8_4X8:8:2:32";
- #endif
-
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- printf("Benchmark WINOGRAD_INT8_MK8 algo\n");
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_WINOGRAD_NCHW44_INT8_COMP_F32) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::DENSE; // GROUP;
- param.format = param::ConvBias::Format::NCHW44;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group) {
- SmallVector<TensorShape> shapes{{N, IC / 4, H, W, 4},
- {OC / 4, IC / 4, FS, FS, 4, 4},
- {1, OC / 4, 1, 1, 4},
- {},
- {N, OC / 4, H, W, 4}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
-
- bench_case(1, 512, 512, 14, 14, 3, 1);
- bench_case(1, 512, 256, 14, 14, 3, 1);
- bench_case(1, 512, 128, 14, 14, 3, 1);
- bench_case(1, 512, 64, 14, 14, 3, 1);
-
- bench_case(1, 512, 512, 7, 7, 3, 1);
- bench_case(1, 512, 256, 7, 7, 3, 1);
- bench_case(1, 512, 128, 7, 7, 3, 1);
- bench_case(1, 512, 64, 7, 7, 3, 1);
-
- std::string algo_name;
- #if MEGDNN_AARCH64
- algo_name = "WINOGRAD_NCHW44:AARCH64_F32_MK4_4x16:4:2:32";
- #else
- algo_name = "WINOGRAD_NCHW44:ARMV7_F32_MK4_4x8:4:2:32";
- #endif
-
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- printf("Benchmark WINOGRAD_INT8_NCHW44_MK4_COMP_F32 algo\n");
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_IM2COL_FP32) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group) {
- SmallVector<TensorShape> shapes{{N, IC, H, W},
- {OC, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
- std::vector<DType> data_type = {dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32()};
- bench_case(1, 32, 32, 300, 300, 3, 1);
- bench_case(1, 32, 32, 400, 400, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- bench_case(1, 32, 64, 200, 200, 3, 1);
- bench_case(1, 32, 64, 128, 128, 3, 1);
- bench_case(1, 32, 64, 100, 100, 3, 1);
- bench_case(1, 32, 64, 80, 80, 3, 1);
- bench_case(1, 32, 128, 200, 200, 3, 1);
- bench_case(1, 32, 128, 128, 128, 3, 1);
- bench_case(1, 32, 128, 100, 100, 3, 1);
- bench_case(1, 32, 128, 80, 80, 3, 1);
-
- bench_case(1, 64, 32, 7, 7, 3, 1);
- bench_case(1, 64, 64, 7, 7, 3, 1);
- bench_case(1, 64, 128, 7, 7, 3, 1);
- bench_case(1, 64, 256, 7, 7, 3, 1);
- bench_case(1, 64, 512, 7, 7, 3, 1);
- bench_case(1, 64, 1024, 7, 7, 3, 1);
-
- bench_case(1, 64, 32, 14, 14, 3, 1);
- bench_case(1, 64, 64, 14, 14, 3, 1);
- bench_case(1, 64, 128, 14, 14, 3, 1);
- bench_case(1, 64, 256, 14, 14, 3, 1);
- bench_case(1, 64, 512, 14, 14, 3, 1);
-
- bench_case(1, 64, 1024, 14, 14, 3, 1);
- bench_case(1, 128, 128, 14, 14, 3, 1);
- bench_case(1, 128, 256, 14, 14, 3, 1);
- bench_case(1, 512, 512, 14, 14, 3, 1);
- bench_case(1, 256, 512, 14, 14, 3, 1);
- bench_case(1, 512, 1024, 14, 14, 3, 1);
- bench_case(1, 1024, 1024, 14, 14, 3, 1);
- std::string algo_name = "IM2COLMATMUL:AARCH64_F32K8X12X1:96";
- printf("Benchmark IM2COLMATMUL:AARCH64_F32K8X12X1algo:96\n");
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- algo_name = "IM2COLMATMUL:AARCH64_F32K8X12X1:192";
- printf("Benchmark IM2COLMATMUL:AARCH64_F32K8X12X1algo:192\n");
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- algo_name = "IM2COLMATMUL:AARCH64_F32K8X12X1:384";
- printf("Benchmark IM2COLMATMUL:AARCH64_F32K8X12X1algo:384\n");
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
- }
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CHANNEL_WISE_INT8_INT8_INT8_STRIDE1) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
- param.format = param::ConvBias::Format::NCHW44;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t H, size_t W, size_t FS,
- size_t P) {
- size_t group = IC;
- size_t OC = IC;
- size_t S = 1;
- SmallVector<TensorShape> shapes{
- {N, IC, H, W, 4},
- {group, 1, 1, FS, FS, 4},
- {1, OC, 1, 1, 4},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1, 4}};
- TensorShape dst{N, OC, (H + 2 * P - FS) / S + 1,
- (W + 2 * P - FS) / S + 1, 4};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
- bench_case(1, 128, 200, 200, 3, 1);
- bench_case(1, 128, 128, 128, 3, 1);
- bench_case(1, 128, 100, 100, 3, 1);
- bench_case(1, 128, 80, 80, 3, 1);
- bench_case(1, 128, 56, 56, 3, 1);
- bench_case(1, 128, 28, 28, 3, 1);
- bench_case(1, 128, 14, 14, 3, 1);
-
- bench_case(1, 64, 200, 200, 3, 1);
- bench_case(1, 64, 128, 128, 3, 1);
- bench_case(1, 64, 100, 100, 3, 1);
- bench_case(1, 64, 80, 80, 3, 1);
- bench_case(1, 64, 56, 56, 3, 1);
- bench_case(1, 64, 28, 28, 3, 1);
- bench_case(1, 64, 14, 14, 3, 1);
-
- bench_case(1, 32, 200, 200, 3, 1);
- bench_case(1, 32, 128, 128, 3, 1);
- bench_case(1, 32, 100, 100, 3, 1);
- bench_case(1, 32, 80, 80, 3, 1);
- bench_case(1, 32, 56, 56, 3, 1);
- bench_case(1, 32, 28, 28, 3, 1);
- bench_case(1, 32, 14, 14, 3, 1);
-
- std::string algo_name = "S8_CHAN_WISE_STRD1_NCHW44";
- printf("Benchmarker S8_CHAN_WISE_STRD1_NCHW44 algo\n");
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CHANNEL_WISE_INT8_INT8_INT16_STRIDE1) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
- param.format = param::ConvBias::Format::NCHW44;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t H, size_t W, size_t FS,
- size_t P) {
- size_t group = IC;
- size_t OC = IC;
- size_t S = 1;
- SmallVector<TensorShape> shapes{
- {N, IC, H, W, 4},
- {group, 1, 1, FS, FS, 4},
- {1, OC, 1, 1, 4},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1, 4}};
- TensorShape dst{N, OC, (H + 2 * P - FS) / S + 1,
- (W + 2 * P - FS) / S + 1, 4};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
- bench_case(1, 128, 200, 200, 3, 1);
- bench_case(1, 128, 128, 128, 3, 1);
- bench_case(1, 128, 100, 100, 3, 1);
- bench_case(1, 128, 80, 80, 3, 1);
- bench_case(1, 128, 56, 56, 3, 1);
- bench_case(1, 128, 28, 28, 3, 1);
- bench_case(1, 128, 14, 14, 3, 1);
-
- bench_case(1, 64, 200, 200, 3, 1);
- bench_case(1, 64, 128, 128, 3, 1);
- bench_case(1, 64, 100, 100, 3, 1);
- bench_case(1, 64, 80, 80, 3, 1);
- bench_case(1, 64, 56, 56, 3, 1);
- bench_case(1, 64, 28, 28, 3, 1);
- bench_case(1, 64, 14, 14, 3, 1);
-
- bench_case(1, 32, 200, 200, 3, 1);
- bench_case(1, 32, 128, 128, 3, 1);
- bench_case(1, 32, 100, 100, 3, 1);
- bench_case(1, 32, 80, 80, 3, 1);
- bench_case(1, 32, 56, 56, 3, 1);
- bench_case(1, 32, 28, 28, 3, 1);
- bench_case(1, 32, 14, 14, 3, 1);
-
- std::string algo_name = "S8x8x16_CHAN_WISE_STRD1_STRD2_NCHW44";
- printf("Benchmarker S8x8x16_CHAN_WISE_STRD1_STRD2_NCHW44 algo\n");
- std::vector<DType> data_type = {dtype::Int8(), dtype::Int8(),
- dtype::Int16(), dtype::Int16()};
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
-
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_IM2COL_NCHW44_INT8x8x32_STRIDE1) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::DENSE;
- param.format = param::ConvBias::Format::NCHW44;
-
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group=1) {
- SmallVector<TensorShape> shapes{{N, IC, H, W,4},
- {OC, IC / group, FS, FS,4,4},
- {/*1, OC, 1, 1*/},
- {},
- {N, OC, H, W,4}};
- TensorShape dst{N, OC, H, W,4};
- float computations =
- ((4 * IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 300, 300, 3, 1);
- bench_case(1, 32, 32, 400, 400, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- bench_case(1, 32, 64, 200, 200, 3, 1);
- bench_case(1, 32, 64, 128, 128, 3, 1);
- bench_case(1, 32, 64, 100, 100, 3, 1);
- bench_case(1, 32, 64, 80, 80, 3, 1);
- bench_case(1, 32, 128, 200, 200, 3, 1);
- bench_case(1, 32, 128, 128, 128, 3, 1);
- bench_case(1, 32, 128, 100, 100, 3, 1);
- bench_case(1, 32, 128, 80, 80, 3, 1);
- #if 1
- bench_case(1, 64, 32, 7, 7, 3, 1);
- bench_case(1, 64, 64, 7, 7, 3, 1);
- bench_case(1, 64, 128, 7, 7, 3, 1);
- bench_case(1, 64, 256, 7, 7, 3, 1);
- bench_case(1, 64, 512, 7, 7, 3, 1);
- bench_case(1, 64, 1024, 7, 7, 3, 1);
-
- bench_case(1, 64, 32, 14, 14, 3, 1);
- bench_case(1, 64, 64, 14, 14, 3, 1);
- bench_case(1, 64, 128, 14, 14, 3, 1);
- bench_case(1, 64, 256, 14, 14, 3, 1);
- bench_case(1, 64, 512, 14, 14, 3, 1);
-
- bench_case(1, 64, 1024, 14, 14, 3, 1);
- bench_case(1, 128, 128, 14, 14, 3, 1);
- bench_case(1, 128, 256, 14, 14, 3, 1);
- bench_case(1, 512, 512, 14, 14, 3, 1);
- bench_case(1, 256, 512, 14, 14, 3, 1);
- bench_case(1, 512, 1024, 14, 14, 3, 1);
- bench_case(1, 1024, 1024, 14, 14, 3, 1);
- #endif
- std::string algo_name = "IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96";
- printf("Benchmarker IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96 algo\n");
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), {}};
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
-
-
-
- algo_name = "IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:192";
- printf("Benchmarker IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:192 algo\n");
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
-
- algo_name = "IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:384";
- printf("Benchmarker IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:384 algo\n");
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
-
- }
-
- #endif
-
- /*================== BENCHMARK MULTITHREAD CONV1X1 =====================*/
- #if MEGDNN_WITH_BENCHMARK
-
- namespace {
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- get_conv1x1_multithread_benchmark_args() {
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t IC, size_t OC, size_t H, size_t W) {
- SmallVector<TensorShape> shapes{{1, IC, H, W},
- {OC, IC, 1, 1},
- {1, OC, 1, 1},
- {},
- {1, OC, H, W}};
- TensorShape dst{1, OC, H, W};
- float computations =
- (IC * dst.total_nr_elems() * 2 + dst.total_nr_elems()) * 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
- bench_case(32, 32, 300, 300);
- bench_case(32, 32, 400, 400);
- bench_case(32, 32, 100, 100);
- bench_case(32, 32, 80, 80);
- bench_case(32, 64, 200, 200);
- bench_case(32, 64, 128, 128);
- bench_case(32, 64, 100, 100);
- bench_case(32, 64, 80, 80);
- bench_case(32, 128, 200, 200);
- bench_case(32, 128, 128, 128);
- bench_case(32, 128, 100, 100);
- bench_case(32, 128, 80, 80);
-
- bench_case(64, 32, 7, 7);
- bench_case(64, 64, 7, 7);
- bench_case(64, 128, 7, 7);
- bench_case(64, 256, 7, 7);
- bench_case(64, 512, 7, 7);
- bench_case(64, 1024, 7, 7);
-
- bench_case(64, 32, 14, 14);
- bench_case(64, 64, 14, 14);
- bench_case(64, 128, 14, 14);
- bench_case(64, 256, 14, 14);
- bench_case(64, 512, 14, 14);
-
- bench_case(64, 1024, 14, 14);
- bench_case(128, 128, 14, 14);
- bench_case(128, 256, 14, 14);
- bench_case(512, 512, 14, 14);
- bench_case(256, 512, 14, 14);
- bench_case(512, 1024, 14, 14);
- bench_case(1024, 1024, 14, 14);
- return shapes_and_computation;
- }
-
- void conv1x1_multithread_benchmark(const char* algo_name, DType stype,
- DType ftype, DType btype, DType dtype) {
- constexpr size_t RUNS = 50;
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation = get_conv1x1_multithread_benchmark_args();
-
- std::vector<DType> data_type = {stype, ftype, btype, dtype};
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 0;
- param.pad_w = 0;
- param.stride_h = 1;
- param.stride_w = 1;
-
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
- }
- } // namespace
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_CONV1X1_S1_FP32) {
- #if MEGDNN_AARCH64
- conv1x1_multithread_benchmark("CONV1x1:AARCH64_F32K8X12X1:8",
- dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32());
- #else
- conv1x1_multithread_benchmark("CONV1x1:ARMV7_F32:8", dtype::Float32(),
- dtype::Float32(), dtype::Float32(),
- dtype::Float32());
- #endif
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_CONV1X1_S1_QUANTIZEDASYM) {
- dtype::Quantized8Asymm stype(0.2f, 100);
- dtype::Quantized8Asymm ftype(0.2f, 120);
- dtype::QuantizedS32 btype(0.04f);
- dtype::Quantized8Asymm dtype(1.4f, 110);
- #if MEGDNN_AARCH64
- #if MGB_ENABLE_DOT
- conv1x1_multithread_benchmark("CONV1x1:AARCH64_QUINT8_K8X8X4_DOTPROD:8",
- stype, ftype, btype, dtype);
- #else
- conv1x1_multithread_benchmark("CONV1x1:AARCH64_QUINT8_K8X8X8:8", stype,
- ftype, btype, dtype);
- #endif
- #else
- conv1x1_multithread_benchmark("CONV1x1:ARMV7_QUINT8_K4X8X8:8", stype, ftype,
- btype, dtype);
- #endif
- }
-
- #endif
-
- // vim: syntax=cpp.doxygen
|