You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

warp_perspective.cpp 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362
  1. #include "test/fallback/fixture.h"
  2. #include "test/common/checker.h"
  3. #include "test/common/random_state.h"
  4. #include "test/common/rng.h"
  5. #include "test/common/task_record_check.h"
  6. #include "test/common/warp_perspective.h"
  7. namespace megdnn {
  8. namespace test {
  9. TEST_F(FALLBACK, WARP_PERSPECTIVE) {
  10. Checker<WarpPerspective> checker(handle());
  11. param::WarpPerspective param;
  12. class ResizeMatRNG : public RNG {
  13. void gen(const TensorND& tensor_) override {
  14. auto& gen = RandomState::generator();
  15. std::uniform_real_distribution<dt_float32> pdist3(1.9f, 3.1f);
  16. std::uniform_real_distribution<dt_float32> pdist(0.9f, 1.1f);
  17. std::uniform_real_distribution<dt_float32> pdisth(0.4f, 0.6f);
  18. std::uniform_real_distribution<dt_float32> ndist(-1.1f, -0.9f);
  19. std::uniform_real_distribution<dt_float32> ndist3(-3.1f, -1.9f);
  20. std::uniform_real_distribution<dt_float32> ndisth(-0.6f, -0.4f);
  21. std::uniform_int_distribution<int> dice(0, 5);
  22. float* ptr = tensor_.ptr<dt_float32>();
  23. auto N = tensor_.layout.shape[0];
  24. for (size_t n = 0; n < N; ++n) {
  25. for (size_t i = 0; i < 9; ++i) {
  26. switch (dice(gen)) {
  27. case 0:
  28. ptr[i] = pdist3(gen);
  29. break;
  30. case 1:
  31. ptr[i] = pdist(gen);
  32. break;
  33. case 2:
  34. ptr[i] = pdisth(gen);
  35. break;
  36. case 3:
  37. ptr[i] = ndist(gen);
  38. break;
  39. case 4:
  40. ptr[i] = ndist3(gen);
  41. break;
  42. case 5:
  43. ptr[i] = ndisth(gen);
  44. break;
  45. }
  46. }
  47. // is resize?
  48. if (n & 1) {
  49. ptr[1] = 0;
  50. ptr[3] = 0;
  51. ptr[6] = ptr[7] = 0;
  52. }
  53. ptr += 9;
  54. }
  55. }
  56. } rng;
  57. checker.set_rng(1, &rng);
  58. using BMode = param::WarpPerspective::BorderMode;
  59. param.imode = param::WarpPerspective::InterpolationMode::LINEAR;
  60. for (auto mode :
  61. {BMode::REFLECT_101, BMode::REPLICATE, BMode::REFLECT, BMode::WRAP,
  62. BMode::CONSTANT}) {
  63. param.bmode = mode;
  64. param.border_val = 1.737;
  65. checker.set_param(param);
  66. checker.exec({{1000, 2, 10, 11}, {1000, 3, 3}, {1000, 2, 12, 13}});
  67. }
  68. #if MEGDNN_TEST_ASAN
  69. //! asan detect nan will make test failed
  70. #else
  71. // resize nan case
  72. UniformFloatRNG rng_zero(0, 0);
  73. checker.set_rng(1, &rng_zero);
  74. {
  75. param.bmode = BMode::CONSTANT;
  76. param.border_val = 1.737;
  77. checker.set_param(param);
  78. checker.exec({{1000, 2, 10, 11}, {1000, 3, 3}, {1000, 2, 12, 13}});
  79. }
  80. #endif
  81. }
  82. TEST_F(FALLBACK, WARP_PERSPECTIVE_RECORD) {
  83. TaskRecordChecker<WarpPerspective> checker(1);
  84. param::WarpPerspective param;
  85. class ResizeMatRNG : public RNG {
  86. void gen(const TensorND& tensor_) override {
  87. auto& gen = RandomState::generator();
  88. std::uniform_real_distribution<dt_float32> pdist3(1.9f, 3.1f);
  89. std::uniform_real_distribution<dt_float32> pdist(0.9f, 1.1f);
  90. std::uniform_real_distribution<dt_float32> pdisth(0.4f, 0.6f);
  91. std::uniform_real_distribution<dt_float32> ndist(-1.1f, -0.9f);
  92. std::uniform_real_distribution<dt_float32> ndist3(-3.1f, -1.9f);
  93. std::uniform_real_distribution<dt_float32> ndisth(-0.6f, -0.4f);
  94. std::uniform_int_distribution<int> dice(0, 5);
  95. float* ptr = tensor_.ptr<dt_float32>();
  96. auto N = tensor_.layout.shape[0];
  97. for (size_t n = 0; n < N; ++n) {
  98. for (size_t i = 0; i < 9; ++i) {
  99. switch (dice(gen)) {
  100. case 0:
  101. ptr[i] = pdist3(gen);
  102. break;
  103. case 1:
  104. ptr[i] = pdist(gen);
  105. break;
  106. case 2:
  107. ptr[i] = pdisth(gen);
  108. break;
  109. case 3:
  110. ptr[i] = ndist(gen);
  111. break;
  112. case 4:
  113. ptr[i] = ndist3(gen);
  114. break;
  115. case 5:
  116. ptr[i] = ndisth(gen);
  117. break;
  118. }
  119. }
  120. // is resize?
  121. if (n & 1) {
  122. ptr[1] = 0;
  123. ptr[3] = 0;
  124. ptr[6] = ptr[7] = 0;
  125. }
  126. ptr += 9;
  127. }
  128. }
  129. } rng;
  130. checker.set_rng(1, &rng);
  131. using BMode = param::WarpPerspective::BorderMode;
  132. param.imode = param::WarpPerspective::InterpolationMode::LINEAR;
  133. // for (auto mode :
  134. // {BMode::REFLECT_101, BMode::REPLICATE, BMode::REFLECT, BMode::WRAP,
  135. // BMode::CONSTANT}) {
  136. param.bmode = BMode::REFLECT_101;
  137. param.border_val = 1.737;
  138. checker.set_param(param);
  139. checker.exec({{1, 2, 10, 11}, {1, 3, 3}, {1, 2, 12, 13}});
  140. // }
  141. #if MEGDNN_TEST_ASAN
  142. //! asan detect nan will make test failed
  143. #else
  144. // resize nan case
  145. UniformFloatRNG rng_zero(0, 0);
  146. checker.set_rng(1, &rng_zero);
  147. {
  148. param.bmode = BMode::CONSTANT;
  149. param.border_val = 1.737;
  150. checker.set_param(param);
  151. checker.exec({{1000, 2, 10, 11}, {1000, 3, 3}, {1000, 2, 12, 13}});
  152. }
  153. #endif
  154. }
  155. TEST_F(FALLBACK, WARP_PERSPECTIVE_MAT_IDX) {
  156. warp_perspective::run_mat_idx_test(handle());
  157. }
  158. TEST_F(FALLBACK, WARP_PERSPECTIFVE_NCHW_INT8) {
  159. warp_perspective::run_int8_test(handle());
  160. }
  161. TEST_F(FALLBACK, WARP_PERSPECTIFVE_NCHW_INT8_RECORD) {
  162. warp_perspective::run_int8_test_record(1);
  163. }
  164. TEST_F(FALLBACK, WARP_PERSPECTIFVE_NCHW_QUINT8) {
  165. warp_perspective::run_quint8_test(handle());
  166. }
  167. TEST_F(FALLBACK, WARP_PERSPECTIVE_MULTI_SRC_NCHW) {
  168. using Param = WarpPerspective::Param;
  169. Param param;
  170. WarpPerspectiveMatRNG rng;
  171. for (auto bmode :
  172. {WarpPerspective::BorderMode::WRAP, WarpPerspective::BorderMode::REFLECT,
  173. WarpPerspective::BorderMode::REPLICATE,
  174. WarpPerspective::BorderMode::CONSTANT}) {
  175. param.border_val = 0.3f;
  176. param.bmode = bmode;
  177. param.imode = Param::InterpolationMode::LINEAR;
  178. param.format = Param::Format::NCHW;
  179. auto run = [&param, &rng, this](
  180. size_t bs, size_t ih, size_t iw, size_t c, size_t oh,
  181. size_t ow, DType dtype) {
  182. Checker<WarpPerspectiveForward, WarpPerspectiveMultiSrcProxy> checker(
  183. handle());
  184. checker.set_param(param);
  185. TensorShapeArray shapes;
  186. // src
  187. for (size_t i = 0; i < bs; i++) {
  188. shapes.emplace_back(TensorShape{{1, c, ih, iw}});
  189. checker.set_dtype(i, dtype);
  190. }
  191. // mat
  192. shapes.emplace_back(TensorShape{{bs, 3, 3}});
  193. checker.set_rng(bs, &rng);
  194. // dst
  195. shapes.emplace_back(TensorShape{{bs, c, oh, ow}});
  196. checker.set_dtype(bs + 1, dtype);
  197. checker.execs(shapes);
  198. };
  199. for (auto dtype : std::vector<DType>{dtype::Float32(), dtype::Float16()}) {
  200. run(1, 20, 18, 4, 6, 6, dtype);
  201. run(20, 10, 11, 123, 15, 16, dtype);
  202. run(100, 10, 11, 3, 11, 12, dtype);
  203. }
  204. }
  205. }
  206. TEST_F(FALLBACK, WARP_PERSPECTIVE_MULTI_SRC_NHWC) {
  207. using Param = WarpPerspective::Param;
  208. Param param;
  209. WarpPerspectiveMatRNG rng;
  210. for (auto bmode :
  211. {WarpPerspective::BorderMode::WRAP, WarpPerspective::BorderMode::REFLECT,
  212. WarpPerspective::BorderMode::REPLICATE,
  213. WarpPerspective::BorderMode::CONSTANT}) {
  214. param.border_val = 0.3f;
  215. param.bmode = bmode;
  216. param.imode = Param::InterpolationMode::LINEAR;
  217. param.format = Param::Format::NHWC;
  218. auto run = [&param, &rng, this](
  219. size_t bs, size_t ih, size_t iw, size_t c, size_t oh,
  220. size_t ow, DType dtype) {
  221. Checker<WarpPerspectiveForward, WarpPerspectiveMultiSrcProxy> checker(
  222. handle());
  223. checker.set_param(param);
  224. TensorShapeArray shapes;
  225. // src
  226. for (size_t i = 0; i < bs; i++) {
  227. shapes.emplace_back(TensorShape{{1, ih, iw, c}});
  228. checker.set_dtype(i, dtype);
  229. }
  230. // mat
  231. shapes.emplace_back(TensorShape{{bs, 3, 3}});
  232. checker.set_rng(bs, &rng);
  233. // dst
  234. shapes.emplace_back(TensorShape{{bs, oh, ow, c}});
  235. checker.set_dtype(bs + 1, dtype);
  236. checker.execs(shapes);
  237. };
  238. for (auto dtype : std::vector<DType>{dtype::Float32(), dtype::Float16()}) {
  239. run(1, 20, 18, 4, 6, 6, dtype);
  240. run(20, 10, 11, 123, 15, 16, dtype);
  241. run(100, 10, 11, 3, 11, 12, dtype);
  242. }
  243. }
  244. }
  245. TEST_F(FALLBACK, WARP_PERSPECTIVE_MULTI_SRC_WITH_IDX_NCHW) {
  246. using Param = WarpPerspective::Param;
  247. Param param;
  248. WarpPerspectiveMatRNG rng;
  249. UniformIntRNG idx_rng{0, 0};
  250. for (auto bmode :
  251. {WarpPerspective::BorderMode::WRAP, WarpPerspective::BorderMode::REFLECT,
  252. WarpPerspective::BorderMode::REPLICATE,
  253. WarpPerspective::BorderMode::CONSTANT}) {
  254. param.border_val = 0.3f;
  255. param.bmode = bmode;
  256. param.imode = Param::InterpolationMode::LINEAR;
  257. param.format = Param::Format::NCHW;
  258. auto run = [&param, &rng, &idx_rng, this](
  259. size_t bs, size_t ih, size_t iw, size_t c, size_t oh,
  260. size_t ow, size_t idx, DType dtype) {
  261. Checker<WarpPerspectiveForward, WarpPerspectiveMultiSrcProxy> checker(
  262. handle());
  263. checker.set_param(param);
  264. TensorShapeArray shapes;
  265. // src
  266. for (size_t i = 0; i < bs; i++) {
  267. shapes.emplace_back(TensorShape{{1, c, ih, iw}});
  268. checker.set_dtype(i, dtype);
  269. }
  270. // mat
  271. shapes.emplace_back(TensorShape{{idx, 3, 3}});
  272. checker.set_rng(bs, &rng);
  273. // mat_idx
  274. shapes.emplace_back(TensorShape({idx}));
  275. checker.set_dtype(bs + 1, dtype::Int32());
  276. idx_rng = UniformIntRNG{0, (int)bs - 1};
  277. checker.set_rng(bs + 1, &idx_rng);
  278. // dst
  279. shapes.emplace_back(TensorShape{{idx, c, oh, ow}});
  280. checker.set_dtype(bs + 2, dtype);
  281. checker.execs(shapes);
  282. };
  283. for (auto dtype : std::vector<DType>{dtype::Float32(), dtype::Float16()}) {
  284. run(1, 20, 18, 4, 6, 6, 1, dtype);
  285. run(20, 10, 11, 123, 15, 16, 10, dtype);
  286. run(100, 10, 11, 3, 11, 12, 100, dtype);
  287. }
  288. }
  289. }
  290. TEST_F(FALLBACK, WARP_PERSPECTIVE_MULTI_SRC_WITH_IDX_NHWC) {
  291. using Param = WarpPerspective::Param;
  292. Param param;
  293. WarpPerspectiveMatRNG rng;
  294. UniformIntRNG idx_rng{0, 0};
  295. for (auto bmode :
  296. {WarpPerspective::BorderMode::WRAP, WarpPerspective::BorderMode::REFLECT,
  297. WarpPerspective::BorderMode::REPLICATE,
  298. WarpPerspective::BorderMode::CONSTANT}) {
  299. param.border_val = 0.3f;
  300. param.bmode = bmode;
  301. param.imode = Param::InterpolationMode::LINEAR;
  302. param.format = Param::Format::NHWC;
  303. auto run = [&param, &rng, &idx_rng, this](
  304. size_t bs, size_t ih, size_t iw, size_t c, size_t oh,
  305. size_t ow, size_t idx, DType dtype) {
  306. Checker<WarpPerspectiveForward, WarpPerspectiveMultiSrcProxy> checker(
  307. handle());
  308. checker.set_param(param);
  309. TensorShapeArray shapes;
  310. // src
  311. for (size_t i = 0; i < bs; i++) {
  312. shapes.emplace_back(TensorShape{{1, ih, iw, c}});
  313. checker.set_dtype(i, dtype);
  314. }
  315. // mat
  316. shapes.emplace_back(TensorShape{{idx, 3, 3}});
  317. checker.set_rng(bs, &rng);
  318. // mat_idx
  319. shapes.emplace_back(TensorShape({idx}));
  320. checker.set_dtype(bs + 1, dtype::Int32());
  321. idx_rng = UniformIntRNG{0, (int)bs - 1};
  322. checker.set_rng(bs + 1, &idx_rng);
  323. // dst
  324. shapes.emplace_back(TensorShape{{idx, oh, ow, c}});
  325. checker.set_dtype(bs + 2, dtype);
  326. checker.execs(shapes);
  327. };
  328. for (auto dtype : std::vector<DType>{dtype::Float32(), dtype::Float16()}) {
  329. run(1, 20, 18, 4, 6, 6, 1, dtype);
  330. run(20, 10, 11, 123, 15, 16, 10, dtype);
  331. run(100, 10, 11, 3, 11, 12, 100, dtype);
  332. }
  333. }
  334. }
  335. } // namespace test
  336. } // namespace megdnn
  337. // vim: syntax=cpp.doxygen