|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import numpy as np
- import torch
- from helpers import randomTorch
-
- import megengine as mge
- import megengine._internal as mgb
- import megengine.functional
- from megengine import get_default_device, set_default_device
- from megengine.core import Parameter, tensor
- from megengine.module.pytorch import PyTorchModule
- from megengine.test import assertTensorClose
-
-
- def test_pytorch_forward():
- class APlusB(torch.nn.Module):
- def __init__(self):
- super(APlusB, self).__init__()
-
- def forward(self, a, b):
- return a + b
-
- a = randomTorch(15, 15)
- b = randomTorch(15, 15)
-
- def get_pytorch_forward():
- return APlusB()(a, b)
-
- def get_mge_forward():
- mge_module = PyTorchModule(APlusB())
- mge_a = tensor(a.numpy(), dtype=np.float32)
- mge_b = tensor(b.numpy(), dtype=np.float32)
- return mge_module(mge_a, mge_b)
-
- assertTensorClose(get_pytorch_forward().numpy(), get_mge_forward().numpy())
-
-
- def test_pytorch_backward():
- class APlusB(torch.nn.Module):
- def __init__(self):
- super(APlusB, self).__init__()
-
- def forward(self, a, b):
- return a + b
-
- a = randomTorch(15, 15)
- b = randomTorch(15, 15)
-
- def get_pytorch_backward():
- parameter_a = a.clone()
- parameter_a.requires_grad = True
- c = APlusB()(parameter_a, b)
- d = APlusB()(c, b)
- e = torch.sum(d)
- e.backward()
- return parameter_a.grad
-
- def get_mge_backward():
- mge_module = PyTorchModule(APlusB())
- mge_a = Parameter(a.numpy(), dtype=np.float32)
- mge_b = tensor(b.numpy(), dtype=np.float32)
- mge_c = mge_module(mge_a, mge_b)
- mge_d = mge_module(mge_c, mge_b)
- mge_e = mge.functional.sum(mge_d)
- return mge.functional.grad(mge_e, mge_a, use_virtual_grad=False)
-
- assertTensorClose(get_pytorch_backward().numpy(), get_mge_backward().numpy())
|