|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009 |
- /**
- * \file test/test_network.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
-
- #include "lite_build_config.h"
-
- #if LITE_BUILD_WITH_MGE
- #include "./test_common.h"
- #include "megbrain/tensor.h"
-
- #include <chrono>
- #include <memory>
- #include <random>
- #include <unordered_map>
- using namespace lite;
-
- namespace {
- class CheckAllocator : public lite::Allocator {
- public:
- //! allocate memory of size in the given device with the given align
- void* allocate(LiteDeviceType device, int, size_t size,
- size_t align) override {
- LITE_ASSERT(device == LiteDeviceType::LITE_CPU);
- m_nr_left++;
- m_nr_allocated++;
- #ifdef WIN32
- return _aligned_malloc(size, align);
- #elif defined(__ANDROID__) || defined(ANDROID)
- return memalign(align, size);
- #else
- void* ptr = nullptr;
- auto err = posix_memalign(&ptr, align, size);
- mgb_assert(!err, "failed to malloc %zubytes with align %zu", size,
- align);
- return ptr;
- #endif
- };
-
- //! free the memory pointed by ptr in the given device
- void free(LiteDeviceType device, int, void* ptr) override {
- m_nr_left--;
- LITE_ASSERT(device == LiteDeviceType::LITE_CPU);
- #ifdef WIN32
- _aligned_free(ptr);
- #else
- ::free(ptr);
- #endif
- };
- std::atomic_size_t m_nr_left{0};
- std::atomic_size_t m_nr_allocated{0};
- };
- } // namespace
-
- TEST(TestNetWork, Basic) {
- Config config;
- auto lite_tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
- auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor);
- auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
- compare_lite_tensor<float>(result_lite, result_mgb);
- }
-
- TEST(TestNetWork, SetDeviceId) {
- Config config;
- auto lite_tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
- std::shared_ptr<Network> network = std::make_shared<Network>(config);
- network->set_device_id(4);
- network->load_model(model_path);
- std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
- std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
- network->forward();
- network->wait();
- ASSERT_EQ(input_tensor->get_device_id(), 4);
- ASSERT_EQ(output_tensor->get_device_id(), 4);
- }
-
- TEST(TestNetWork, GetAllName) {
- Config config;
- auto lite_tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
- std::shared_ptr<Network> network = std::make_shared<Network>(config);
-
- network->load_model(model_path);
- auto input_names = network->get_all_input_name();
- auto output_names = network->get_all_output_name();
-
- ASSERT_EQ(input_names.size(), 1);
- ASSERT_EQ(output_names.size(), 1);
- ASSERT_TRUE(input_names[0] == "data");
- ASSERT_TRUE(output_names[0] ==
- "TRUE_DIV(EXP[12065],reduce0[12067])[12077]");
- }
-
- TEST(TestNetWork, BasicInplaceAndSingleThreadAffinity) {
- Config config;
- auto lite_tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
-
- auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
-
- std::shared_ptr<Network> network = std::make_shared<Network>(config);
- Runtime::set_cpu_inplace_mode(network);
-
- network->load_model(model_path);
- std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
-
- int affinity_set = false;
- Runtime::set_runtime_thread_affinity(network, [&affinity_set](int id) {
- ASSERT_EQ(id, 0);
- affinity_set = true;
- });
-
- auto src_ptr = lite_tensor->get_memory_ptr();
- auto src_layout = lite_tensor->get_layout();
- input_tensor->reset(src_ptr, src_layout);
-
- //! inplace mode not support async mode
- ASSERT_THROW(network->set_async_callback([]() {}), std::exception);
-
- network->forward();
- network->wait();
- std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
-
- ASSERT_EQ(affinity_set, true);
- compare_lite_tensor<float>(output_tensor, result_mgb);
- }
-
- TEST(TestNetWork, NetworkShareWeights) {
- Config config;
- auto lite_tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
-
- auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
-
- std::shared_ptr<Network> network = std::make_shared<Network>(config);
- network->load_model(model_path);
- std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
-
- std::shared_ptr<Network> network2 = std::make_shared<Network>(config);
- Runtime::set_cpu_inplace_mode(network2);
-
- Runtime::shared_weight_with_network(network2, network);
-
- std::shared_ptr<Tensor> input_tensor2 = network2->get_input_tensor(0);
-
- auto src_ptr = lite_tensor->get_memory_ptr();
- auto src_layout = lite_tensor->get_layout();
- input_tensor->reset(src_ptr, src_layout);
- input_tensor2->reset(src_ptr, src_layout);
- ASSERT_NE(input_tensor, input_tensor2);
-
- network->forward();
- network->wait();
-
- network2->forward();
- network2->wait();
- std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
- std::shared_ptr<Tensor> output_tensor2 = network2->get_output_tensor(0);
-
- ASSERT_NE(output_tensor->get_memory_ptr(),
- output_tensor2->get_memory_ptr());
- compare_lite_tensor<float>(output_tensor, result_mgb);
- compare_lite_tensor<float>(output_tensor2, result_mgb);
- }
-
- TEST(TestNetWork, SharedRuntimeMem) {
- Config config;
- auto lite_tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
-
- auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
-
- std::shared_ptr<Network> network_src = std::make_shared<Network>(config);
- std::shared_ptr<Network> network_dst = std::make_shared<Network>(config);
- Runtime::share_runtime_memory_with(network_dst, network_src);
- network_src->load_model(model_path);
- network_dst->load_model(model_path);
- }
-
- TEST(TestNetWork, UserAllocator) {
- auto allocator = std::make_shared<CheckAllocator>();
- {
- Config config;
- auto lite_tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
-
- auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
- std::shared_ptr<Network> network = std::make_shared<Network>(config);
-
- Runtime::set_memory_allocator(network, allocator);
-
- network->load_model(model_path);
- std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
-
- auto src_ptr = lite_tensor->get_memory_ptr();
- auto src_layout = lite_tensor->get_layout();
- input_tensor->reset(src_ptr, src_layout);
-
- network->forward();
- network->wait();
-
- ASSERT_GE(allocator->m_nr_allocated, 1);
- std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
-
- compare_lite_tensor<float>(output_tensor, result_mgb);
- }
- ASSERT_EQ(allocator->m_nr_left, 0);
- }
-
- TEST(TestNetWork, BasicMultiThread) {
- Config config;
- auto lite_tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
-
- auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
-
- std::shared_ptr<Network> network = std::make_shared<Network>(config);
- Runtime::set_cpu_threads_number(network, 2);
-
- network->load_model(model_path);
- std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
-
- auto src_ptr = lite_tensor->get_memory_ptr();
- auto src_layout = lite_tensor->get_layout();
- input_tensor->reset(src_ptr, src_layout);
-
- network->forward();
- network->wait();
- std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
-
- compare_lite_tensor<float>(output_tensor, result_mgb);
- }
-
- TEST(TestNetWork, ThreadAffinity) {
- size_t nr_threads = 4;
- Config config;
- auto lite_tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
-
- auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
-
- std::shared_ptr<Network> network = std::make_shared<Network>(config);
- Runtime::set_cpu_threads_number(network, nr_threads);
-
- ASSERT_THROW(Runtime::set_runtime_thread_affinity(network, [](int) {}),
- std::exception);
- network->load_model(model_path);
- std::vector<std::thread::id> thread_ids(nr_threads);
- auto affinity = [&](int id) {
- thread_ids[id] = std::this_thread::get_id();
- };
- Runtime::set_runtime_thread_affinity(network, affinity);
-
- std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
- auto src_ptr = lite_tensor->get_memory_ptr();
- auto src_layout = lite_tensor->get_layout();
- input_tensor->reset(src_ptr, src_layout);
-
- network->forward();
- network->wait();
-
- for (size_t i = 0; i < nr_threads; i++) {
- for (size_t j = i + 1; j < nr_threads; j++) {
- ASSERT_NE(thread_ids[i], thread_ids[j]);
- }
- }
-
- std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
- compare_lite_tensor<float>(output_tensor, result_mgb);
- }
-
- TEST(TestNetWork, BasicCryptAes) {
- Config config;
- auto lite_tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
- std::string model_crypt_path = "./shufflenet_crypt_aes.mge";
- auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
- config.bare_model_cryption_name = "AES_default";
- auto result_lite =
- mgelite_lar(model_crypt_path, config, "data", lite_tensor);
- compare_lite_tensor<float>(result_lite, result_mgb);
- }
-
- TEST(TestNetWork, BasicCryptRc4) {
- Config config;
- auto lite_tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
- std::string model_crypt_path = "./shufflenet_crypt_rc4.mge";
- auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
- config.bare_model_cryption_name = "RC4_default";
- auto result_lite =
- mgelite_lar(model_crypt_path, config, "data", lite_tensor);
- compare_lite_tensor<float>(result_lite, result_mgb);
- }
-
- TEST(TestNetWork, PackedCryptRc4) {
- Config config;
- auto lite_tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
- std::string model_crypt_path = "./test_packed_model_rc4.lite";
- auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
- auto result_lite =
- mgelite_lar(model_crypt_path, config, "data", lite_tensor);
- compare_lite_tensor<float>(result_lite, result_mgb);
- }
-
- TEST(TestNetWork, BasicCryptSfRc4) {
- Config config;
- auto lite_tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
- std::string model_crypt_path = "./shufflenet_crypt_sfrc4.mge";
- auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
- config.bare_model_cryption_name = "SIMPLE_FAST_RC4_default";
- auto result_lite =
- mgelite_lar(model_crypt_path, config, "data", lite_tensor);
- compare_lite_tensor<float>(result_lite, result_mgb);
- }
-
- TEST(TestNetWork, ResetInput) {
- Config config;
- auto tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
- std::string input_name = "data";
- auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
-
- std::shared_ptr<Network> network = std::make_shared<Network>(config);
-
- network->load_model(model_path);
- std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
-
- auto src_ptr = tensor->get_memory_ptr();
- auto src_layout = tensor->get_layout();
- input_tensor->reset(src_ptr, src_layout);
-
- network->forward();
- network->wait();
- std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
-
- compare_lite_tensor<float>(output_tensor, result_mgb);
- }
-
- TEST(TestNetWork, ChangeInputShape) {
- Config config;
- auto tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
- std::string input_name = "data";
- auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
-
- std::shared_ptr<Network> network = std::make_shared<Network>(config);
-
- network->load_model(model_path);
- std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
-
- auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT};
- input_tensor->set_layout(src_layout);
- std::shared_ptr<Tensor> input_tensor2 = network->get_io_tensor(input_name);
- //! Check memory is equal
- ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr());
-
- network->forward();
- network->wait();
- std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
- auto output_layout = output_tensor->get_layout();
- ASSERT_EQ(output_layout.shapes[0], 2);
- ASSERT_EQ(output_layout.shapes[1], 1000);
- }
-
- TEST(TestNetWork, ResetOutput) {
- Config config;
- auto tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
- std::string input_name = "data";
- auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
-
- std::shared_ptr<Network> network = std::make_shared<Network>(config);
-
- network->load_model(model_path);
- std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
-
- auto src_ptr = tensor->get_memory_ptr();
- auto src_layout = tensor->get_layout();
- input_tensor->reset(src_ptr, src_layout);
-
- std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
- auto result_tensor = std::make_shared<Tensor>(
- LiteDeviceType::LITE_CPU,
- Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
-
- void* out_data = result_tensor->get_memory_ptr();
- output_tensor->reset(out_data, result_tensor->get_layout());
-
- network->forward();
- network->wait();
-
- compare_lite_tensor<float>(output_tensor, result_mgb);
- }
-
- TEST(TestNetWork, AsyncExec) {
- Config config;
- config.options.var_sanity_check_first_run = false;
- auto tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
- std::string input_name = "data";
- auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
-
- std::shared_ptr<Network> network = std::make_shared<Network>(config);
-
- network->load_model(model_path);
-
- std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
-
- auto src_ptr = tensor->get_memory_ptr();
- auto src_layout = tensor->get_layout();
- input_tensor->reset(src_ptr, src_layout);
-
- std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
- auto result_tensor = std::make_shared<Tensor>(
- LiteDeviceType::LITE_CPU,
- Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
-
- void* out_data = result_tensor->get_memory_ptr();
- output_tensor->reset(out_data, result_tensor->get_layout());
-
- //! set async mode and callback
- volatile bool finished = false;
- network->set_async_callback([&finished]() { finished = true; });
-
- network->forward();
- size_t count = 0;
- while (finished == false) {
- count++;
- }
- ASSERT_GT(count, 0);
- compare_lite_tensor<float>(output_tensor, result_mgb);
- }
-
- TEST(TestNetWork, CPUDeviceInput) {
- auto tensor = get_input_data("./input_data.npy");
- Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
- std::string model_path = "./shufflenet.mge";
- std::string input_name = "data";
- auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
-
- NetworkIO IO;
- bool is_host = false;
- IO.inputs.push_back({input_name, is_host});
- std::shared_ptr<Network> network = std::make_shared<Network>(IO);
-
- network->load_model(model_path);
-
- std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
-
- auto src_ptr = tensor->get_memory_ptr();
- input_tensor->reset(src_ptr, layout);
-
- network->forward();
- network->wait();
-
- std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
- compare_lite_tensor<float>(output_tensor, result_mgb);
- }
-
- TEST(TestNetWork, ShareTensorWith) {
- auto tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
- std::string input_name = "data";
- auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
-
- std::shared_ptr<Network> network = std::make_shared<Network>();
- network->load_model(model_path);
-
- std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
-
- input_tensor->share_memory_with(*tensor);
-
- network->forward();
- network->wait();
-
- std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
- compare_lite_tensor<float>(output_tensor, result_mgb);
- }
-
- TEST(TestNetWork, InputCallBack) {
- auto tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
- std::string input_name = "data";
- auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
-
- NetworkIO ios;
- bool is_host = false;
- ios.inputs.push_back({input_name, is_host});
- std::shared_ptr<Network> network = std::make_shared<Network>(ios);
- network->load_model(model_path);
-
- volatile bool finised_check_input = false;
- auto input_callback =
- [&tensor, &finised_check_input,
- input_name](const std::unordered_map<
- std::string, std::pair<IO, std::shared_ptr<Tensor>>>&
- input_map) {
- ASSERT_EQ(input_map.size(), 1);
- auto tensor_input = input_map.at(input_name).second;
- compare_lite_tensor<float>(tensor_input, tensor);
- finised_check_input = true;
- };
-
- network->set_start_callback(input_callback);
-
- std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
-
- input_tensor->share_memory_with(*tensor);
-
- network->forward();
- network->wait();
-
- ASSERT_TRUE(finised_check_input);
- std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
- compare_lite_tensor<float>(output_tensor, result_mgb);
- }
-
- TEST(TestNetWork, OutputCallBack) {
- auto tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
- std::string input_name = "data";
- auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
-
- std::shared_ptr<Network> network = std::make_shared<Network>();
- network->load_model(model_path);
- auto output_name = network->get_output_name(0);
-
- volatile bool finised_check_output = false;
- auto output_callback =
- [&result_mgb, &finised_check_output,
- output_name](const std::unordered_map<
- std::string, std::pair<IO, std::shared_ptr<Tensor>>>&
- output_map) {
- ASSERT_EQ(output_map.size(), 1);
- auto tensor_output = output_map.at(output_name).second;
- compare_lite_tensor<float>(tensor_output, result_mgb);
- finised_check_output = true;
- };
-
- network->set_finish_callback(output_callback);
-
- std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
-
- input_tensor->share_memory_with(*tensor);
-
- network->forward();
- network->wait();
-
- ASSERT_TRUE(finised_check_output);
- std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
- compare_lite_tensor<float>(output_tensor, result_mgb);
- }
-
- TEST(TestNetWork, OutputShapeOnly) {
- auto tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
- std::string input_name = "data";
- std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
-
- NetworkIO IO;
- bool is_host = true;
- IO.outputs.push_back({output_name, is_host, LiteIOType::LITE_IO_SHAPE});
- Config config;
- std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
-
- network->load_model(model_path);
-
- std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
- std::shared_ptr<Tensor> output_tensor = network->get_io_tensor(output_name);
-
- auto src_ptr = tensor->get_memory_ptr();
- auto src_layout = tensor->get_layout();
- input_tensor->reset(src_ptr, src_layout);
-
- network->forward();
- network->wait();
- ASSERT_EQ(output_tensor->get_tensor_total_size_in_byte() / sizeof(float),
- 1000);
- }
-
- TEST(TestNetWork, ProfileIOdump) {
- auto tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
- std::string input_name = "data";
-
- NetworkIO IO;
- Config config;
- std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
- network->enable_profile_performance("./profile.json");
- network->load_model(model_path);
- std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
-
- auto src_ptr = tensor->get_memory_ptr();
- auto src_layout = tensor->get_layout();
- input_tensor->reset(src_ptr, src_layout);
-
- network->forward();
- network->wait();
- ASSERT_TRUE(fopen("./profile.json", "r"));
-
- Runtime::enable_io_txt_dump(network, "./io_txt_dump.txt");
- network->forward();
- network->wait();
- ASSERT_TRUE(fopen("./io_txt_dump.txt", "r"));
- }
-
- TEST(TestNetWork, LoadPackedModel) {
- auto tensor = get_input_data("./input_data.npy");
- std::string model_path = "./test_packed_model.lite";
- std::string input_name = "data";
-
- NetworkIO IO;
- Config config;
- std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
- network->load_model(model_path);
- std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
-
- auto src_ptr = tensor->get_memory_ptr();
- auto src_layout = tensor->get_layout();
- input_tensor->reset(src_ptr, src_layout);
-
- network->forward();
- network->wait();
- }
-
- TEST(TestNetWork, GetDeviceType) {
- auto tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
-
- Config config;
- std::shared_ptr<Network> network = std::make_shared<Network>(config);
- network->load_model(model_path);
- ASSERT_TRUE(network->get_device_type() == LiteDeviceType::LITE_CPU);
- }
-
- TEST(TestNetWork, GetModelExtraInfo) {
- std::string model_path = "./track_640_320_pack_model_rc4_with_info.lite";
- Config config;
- std::shared_ptr<Network> network = std::make_shared<Network>(config);
- network->load_model(model_path);
- auto& extra_info = network->get_model_extra_info();
- ASSERT_TRUE(extra_info.size() > 0);
- printf("extra_info %s \n", extra_info.c_str());
- }
-
- #if LITE_WITH_CUDA
-
- TEST(TestNetWork, BasicDevice) {
- auto lite_tensor = get_input_data("./input_data.npy");
- Config config;
- config.device_type = LiteDeviceType::LITE_CUDA;
- std::string model_path = "./shufflenet.mge";
- auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor);
- auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
- compare_lite_tensor<float>(result_lite, result_mgb);
- }
-
- TEST(TestNetWork, DeviceInput) {
- auto tensor = get_input_data("./input_data.npy");
- Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
- std::string model_path = "./shufflenet.mge";
- std::string input_name = "data";
- auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
-
- NetworkIO IO;
- bool is_host = false;
- IO.inputs.push_back({input_name, is_host});
- Config config;
- config.device_type = LiteDeviceType::LITE_CUDA;
- std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
-
- network->load_model(model_path);
-
- std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
-
- auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout);
- tensor_cuda.copy_from(*tensor);
-
- auto src_ptr = tensor_cuda.get_memory_ptr();
- input_tensor->reset(src_ptr, layout);
-
- network->forward();
- network->wait();
-
- std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
- compare_lite_tensor<float>(output_tensor, result_mgb);
- }
-
- TEST(TestNetWork, ChangeInputShapeDevice) {
- Config config;
- auto tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
- std::string input_name = "data";
- auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
-
- config.device_type = LiteDeviceType::LITE_CUDA;
- std::shared_ptr<Network> network = std::make_shared<Network>(config);
-
- network->load_model(model_path);
- std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
-
- auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT};
- input_tensor->set_layout(src_layout);
- std::shared_ptr<Tensor> input_tensor2 = network->get_io_tensor(input_name);
- //! Check memory is equal
- ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr());
-
- network->forward();
- network->wait();
- std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
- auto output_layout = output_tensor->get_layout();
- ASSERT_EQ(output_layout.shapes[0], 2);
- ASSERT_EQ(output_layout.shapes[1], 1000);
- }
-
- TEST(TestNetWork, DeviceOutput) {
- auto tensor = get_input_data("./input_data.npy");
- std::string model_path = "./shufflenet.mge";
- std::string input_name = "data";
- std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
- auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
-
- NetworkIO IO;
- bool is_host = false;
- IO.outputs.push_back({output_name, is_host});
- Config config;
- config.device_type = LiteDeviceType::LITE_CUDA;
- std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
-
- network->load_model(model_path);
-
- std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
- std::shared_ptr<Tensor> output_tensor_cuda =
- network->get_io_tensor(output_name);
-
- auto src_ptr = tensor->get_memory_ptr();
- auto src_layout = tensor->get_layout();
- input_tensor->reset(src_ptr, src_layout);
-
- network->forward();
- network->wait();
- auto output_tensor = std::make_shared<Tensor>();
- output_tensor->copy_from(*output_tensor_cuda);
-
- compare_lite_tensor<float>(output_tensor, result_mgb);
- }
-
- TEST(TestNetWork, WrongIONameDevice) {
- auto tensor = get_input_data("./input_data.npy");
- Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
- std::string model_path = "./shufflenet.mge";
- std::string input_name = "data";
- std::string input_name_wrong = "data0";
- std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
- std::string output_name_wrong =
- "w_TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
- auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
-
- NetworkIO IO;
- bool is_host = false;
- IO.inputs.push_back({input_name, is_host});
- IO.outputs.push_back({output_name, is_host});
- IO.outputs.push_back({output_name_wrong, is_host});
- Config config;
- config.device_type = LiteDeviceType::LITE_CUDA;
- std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
-
- network->load_model(model_path);
-
- auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout);
- tensor_cuda.copy_from(*tensor);
- std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
- auto src_ptr = tensor_cuda.get_memory_ptr();
- auto src_layout = tensor_cuda.get_layout();
- input_tensor->reset(src_ptr, src_layout);
-
- std::shared_ptr<Tensor> output_tensor_cuda =
- network->get_io_tensor(output_name);
-
- network->forward();
- network->wait();
- auto output_tensor = std::make_shared<Tensor>();
- output_tensor->copy_from(*output_tensor_cuda);
-
- compare_lite_tensor<float>(output_tensor, result_mgb);
- }
-
- TEST(TestNetWork, ConfigIONameDevice) {
- std::string model_path = "./model.mgb";
-
- NetworkIO IO;
- bool is_host = false;
- IO.outputs.push_back({"clsfy", is_host});
- Config config;
- config.device_type = LiteDeviceType::LITE_CUDA;
- std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
- network->compute_only_configured_output();
- network->load_model(model_path);
-
- ASSERT_EQ(network->get_all_output_name().size(), 1);
- ASSERT_EQ(network->get_all_output_name()[0], "clsfy");
-
- std::shared_ptr<Network> network2 = std::make_shared<Network>(config, IO);
- network2->load_model(model_path);
-
- ASSERT_EQ(network2->get_all_output_name().size(), 2);
- }
-
- TEST(TestNetWork, SetDeviceIdDeviceTest) {
- #if LITE_WITH_CUDA
- if(get_device_count(LITE_CUDA) <= 1)
- return;
- #endif
- std::string model_path = "./model.mgb";
-
- NetworkIO IO;
- bool is_host = false;
- IO.inputs.push_back({"data", is_host});
- IO.outputs.push_back({"clsfy", is_host});
- Config config;
- config.device_type = LiteDeviceType::LITE_CUDA;
- std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
- network->set_device_id(1);
- network->load_model(model_path);
- auto inputs_names = network->get_all_input_name();
- for (auto name : inputs_names) {
- auto tensor = network->get_io_tensor(name);
- ASSERT_EQ(tensor->get_device_id(), 1);
- if (name == "idx") {
- int* index_ptr = static_cast<int*>(tensor->get_memory_ptr());
- for (int i = 0; i < 23; i++) {
- index_ptr[i] = i % 3;
- }
- }
- if (name == "landmark") {
- float* landmakrk_ptr =
- static_cast<float*>(tensor->get_memory_ptr());
- for (int i = 0; i < 23 * 18 * 2; i++) {
- landmakrk_ptr[i] = 0.1f;
- }
- }
- }
- auto outputs_names = network->get_all_output_name();
- for (auto name : outputs_names) {
- auto tensor = network->get_io_tensor(name);
- ASSERT_EQ(tensor->get_device_id(), 1);
- }
- network->forward();
- network->wait();
- }
-
- TEST(TestNetWork, SetStreamIdDeviceTest) {
- std::string model_path = "./model.mgb";
-
- NetworkIO IO;
- bool is_host = false;
- IO.inputs.push_back({"data", is_host});
- IO.outputs.push_back({"clsfy", is_host});
- Config config;
- config.device_type = LiteDeviceType::LITE_CUDA;
- std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
- network->set_stream_id(1);
- network->load_model(model_path);
- auto inputs_names = network->get_all_input_name();
- for (auto name : inputs_names) {
- auto tensor = network->get_io_tensor(name);
- if (name == "idx") {
- int* index_ptr = static_cast<int*>(tensor->get_memory_ptr());
- for (int i = 0; i < 23; i++) {
- index_ptr[i] = i % 3;
- }
- }
- if (name == "landmark") {
- float* landmakrk_ptr =
- static_cast<float*>(tensor->get_memory_ptr());
- for (int i = 0; i < 23 * 18 * 2; i++) {
- landmakrk_ptr[i] = 0.1f;
- }
- }
- }
- network->forward();
- network->wait();
- }
-
- #if CUDART_VERSION >= 10000
- TEST(TestNetWork, DeviceAsyncExec) {
- auto tensor = get_input_data("./input_data.npy");
- Config config;
- config.device_type = LiteDeviceType::LITE_CUDA;
- config.options.var_sanity_check_first_run = false;
- std::string model_path = "./shufflenet.mge";
- std::string input_name = "data";
- auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
-
- std::shared_ptr<Network> network = std::make_shared<Network>(config);
-
- network->load_model(model_path);
-
- std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
-
- auto src_ptr = tensor->get_memory_ptr();
- auto src_layout = tensor->get_layout();
- input_tensor->reset(src_ptr, src_layout);
-
- std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
- auto result_tensor = std::make_shared<Tensor>(
- LiteDeviceType::LITE_CPU,
- Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
-
- void* out_data = result_tensor->get_memory_ptr();
- output_tensor->reset(out_data, result_tensor->get_layout());
-
- //! set async mode and callback
- volatile bool finished = false;
- network->set_async_callback([&finished]() { finished = true; });
-
- network->forward();
- size_t count = 0;
- while (finished == false) {
- count++;
- }
-
- ASSERT_GT(count, 0);
- compare_lite_tensor<float>(output_tensor, result_mgb);
- }
-
- #endif
- #endif
- #if MGB_ATLAS
- TEST(TestNetWork, AtlasLoadNoDevice) {
- lite::Config config;
- config.device_type = LiteDeviceType::LITE_DEVICE_DEFAULT;
- auto network = std::make_shared<lite::Network>(config);
- network->load_model("./model_atlas.mgb");
- network->forward();
- network->wait();
- }
-
- TEST(TestNetWork, AtlasLoadDeviceInput) {
- lite::NetworkIO networkio;
- lite::IO input_data_io = {};
- input_data_io.name = "data";
- input_data_io.is_host = false;
- networkio.inputs.emplace_back(input_data_io);
- lite::IO input_input0_io = {};
- input_input0_io.name = "input0";
- input_input0_io.is_host = false;
- networkio.inputs.emplace_back(input_input0_io);
- lite::Config config;
- config.device_type = LiteDeviceType::LITE_DEVICE_DEFAULT;
- auto network = std::make_shared<lite::Network>(config, networkio);
- network->load_model("./model_atlas.mgb");
- network->forward();
- network->wait();
- }
-
- TEST(TestNetWork, AtlasLoadAtlas) {
- lite::Config config;
- config.device_type = LiteDeviceType::LITE_ATLAS;
- auto network = std::make_shared<lite::Network>(config);
- network->load_model("./model_atlas.mgb");
- network->forward();
- network->wait();
- }
-
- TEST(TestNetWork, AtlasLoadAtlasDeviceInput) {
- lite::NetworkIO networkio;
- lite::IO input_data_io = {};
- input_data_io.name = "data";
- input_data_io.is_host = false;
- networkio.inputs.emplace_back(input_data_io);
- lite::IO input_input0_io = {};
- input_input0_io.name = "input0";
- input_input0_io.is_host = false;
- networkio.inputs.emplace_back(input_input0_io);
- lite::Config config;
- config.device_type = LiteDeviceType::LITE_ATLAS;
- auto network = std::make_shared<lite::Network>(config, networkio);
- network->load_model("./model_atlas.mgb");
- network->forward();
- network->wait();
- }
-
- TEST(TestNetWork, AtlasDeviceID) {
- lite::Config config;
- config.device_type = LiteDeviceType::LITE_ATLAS;
- auto network = std::make_shared<lite::Network>(config);
- network->set_device_id(1);
- network->load_model("./model_atlas.mgb");
- std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
- std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
- network->forward();
- network->wait();
- ASSERT_EQ(output_tensor->get_device_id(), 1);
- }
- #endif
- #endif
- // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
|