You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

graph_rt.cpp 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600
  1. /**
  2. * \file imperative/python/src/graph_rt.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "./graph_rt.h"
  12. #include "megbrain/graph/cg.h"
  13. #include "megbrain/serialization/serializer.h"
  14. #include "megbrain/imperative/opr_utility.h"
  15. #include "megbrain/opr/io.h"
  16. #include "megbrain/opr/utility.h"
  17. #include "megbrain/opr/basic_arith.h"
  18. #include "megbrain/imperative.h"
  19. #include "./helper.h"
  20. #include "megbrain/plugin/profiler.h"
  21. #include "./common.h"
  22. #include "megbrain/gopt/inference.h"
  23. namespace py = pybind11;
  24. using namespace mgb;
  25. using namespace imperative;
  26. namespace ser = mgb::serialization;
  27. using _OptimizeForInferenceOptions = mgb::gopt::OptimizeForInferenceOptions;
  28. using _LayoutTransform = _OptimizeForInferenceOptions::LayoutTransform;
  29. using _AlgoStrategy = opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy;
  30. namespace {
  31. class _CompGraphProfilerImpl {
  32. std::shared_ptr<ComputingGraph> m_comp_graph;
  33. GraphProfiler m_profiler;
  34. public:
  35. _CompGraphProfilerImpl(std::shared_ptr<ComputingGraph> cg):
  36. m_comp_graph{cg},
  37. m_profiler{m_comp_graph.get()}
  38. {
  39. }
  40. std::string _get_result() {
  41. auto json = m_profiler.to_json_full(
  42. m_comp_graph->current_comp_seq());
  43. return json->to_string();
  44. }
  45. };
  46. struct WeakRendezvousArray:
  47. public std::vector<std::weak_ptr<RendezvousBase>>,
  48. public UserDataContainer::UserData {
  49. MGB_TYPEINFO_OBJ_DECL;
  50. };
  51. MGB_TYPEINFO_OBJ_IMPL(WeakRendezvousArray);
  52. }
  53. #define DEF_READWRITE(name) .def_readwrite(#name, &CURRENT_CLASS::name)
  54. template<typename T>
  55. auto def_rendezvous(py::object m, const char* name) {
  56. return py::class_<Rendezvous<T>, std::shared_ptr<Rendezvous<T>>>(m, name)
  57. .def(py::init([](){return Rendezvous<T>::make();}))
  58. .def("set", [](Rendezvous<T>& r, T v) {r.set(std::move(v));})
  59. .def("get", [](Rendezvous<T>& r) {return r.get();}, py::call_guard<py::gil_scoped_release>())
  60. .def("drop", &Rendezvous<T>::drop)
  61. .def("reset", &Rendezvous<T>::reset)
  62. .def("set_exception", [](Rendezvous<T>& r, std::string&& message) {
  63. r.set_exception(std::make_exception_ptr(
  64. std::runtime_error(std::move(message))));
  65. });
  66. }
  67. using TensorAttr = LogicalTensorDesc;
  68. using HostNDWithEvent = std::pair<HostTensorND, std::shared_ptr<CompNode::Event>>;
  69. std::vector<mgb::cg::VarNode*> _replace_vars(const std::vector<mgb::cg::VarNode*>& repl_src,
  70. const std::vector<mgb::cg::VarNode*>& repl_dst,
  71. const std::vector<mgb::cg::VarNode*>& vars) {
  72. mgb::ThinHashMap<SymbolVar, SymbolVar> varmap;
  73. for (size_t i = 0; i < repl_src.size(); ++i) {
  74. varmap[SymbolVar(repl_src[i])] = SymbolVar(repl_dst[i]);
  75. }
  76. SymbolVarArray symvars(vars.begin(), vars.end());
  77. auto sym_result = mgb::cg::replace_vars(symvars, varmap);
  78. std::vector<mgb::cg::VarNode*> result;
  79. for (auto symvar : sym_result){
  80. result.push_back(symvar.node());
  81. }
  82. return result;
  83. }
  84. typedef std::vector<mgb::cg::OperatorNodeBase*> OperatorArray;
  85. std::vector<mgb::cg::VarNode*> _replace_oprs(const OperatorArray& repl_src,
  86. const OperatorArray& repl_dst,
  87. const std::vector<mgb::cg::VarNode*>& vars) {
  88. mgb::ThinHashMap<mgb::cg::OperatorNodeBase*, mgb::cg::OperatorNodeBase*>
  89. oprmap;
  90. for (size_t i = 0; i < repl_src.size(); ++i) {
  91. oprmap[repl_src[i]] = repl_dst[i];
  92. }
  93. const SymbolVarArray symvars(vars.begin(), vars.end());
  94. auto sym_result = mgb::cg::replace_oprs(symvars, oprmap);
  95. std::vector<mgb::cg::VarNode*> result;
  96. for (auto symvar : sym_result){
  97. result.push_back(symvar.node());
  98. }
  99. return result;
  100. }
  101. void _set_priority_to_id(const std::vector<mgb::cg::VarNode*>& dest_vars) {
  102. auto on_opr = [](mgb::cg::OperatorNodeBase* opr) {
  103. if (opr->node_prop().attribute().priority == 0) {
  104. opr->node_prop().attribute().priority = opr->id();
  105. }
  106. };
  107. mgb::cg::DepOprIter dep_iter{on_opr};
  108. for (const auto& var : dest_vars) {
  109. dep_iter.add(SymbolVar(var));
  110. }
  111. }
  112. void init_graph_rt(py::module m) {
  113. static const std::unique_ptr<mgb::OprFootprint> _imperative_sm_opr_footprint_ptr{std::make_unique<mgb::OprFootprint>()};
  114. def_rendezvous<DeviceTensorND>(m, "DeviceTensorNDRendezvous");
  115. def_rendezvous<HostNDWithEvent>(m, "HostTensorNDRendezvous");
  116. def_rendezvous<TensorAttr>(m, "TensorAttrRendezvous");
  117. py::class_<cg::VarNode, GraphNodePtr<cg::VarNode>>(m, "VarNode")
  118. .def_property_readonly("owner", [](cg::VarNode* v) {return v->owner_opr();})
  119. .def_property_readonly("graph", [](cg::VarNode* v) {return v->owner_graph();})
  120. .def_property("name", py::overload_cast<>(&VarNode::name, py::const_),
  121. py::overload_cast<std::string>(&VarNode::name))
  122. .def_property_readonly("dtype", [](cg::VarNode* v) {return v->dtype();})
  123. .def_property_readonly("comp_node", [](cg::VarNode* v) {return v->comp_node();})
  124. .def_property_readonly("shape", [](cg::VarNode* v) -> const TensorShape* {
  125. auto&& mgr = v->owner_graph()->static_infer_manager();
  126. return mgr.infer_shape_fallible(v);
  127. })
  128. .def_property_readonly("value", [](cg::VarNode* v) -> py::object {
  129. auto&& mgr = v->owner_graph()->static_infer_manager();
  130. auto&& type = mgr.get_infer_type(v);
  131. using InferType = cg::static_infer::InferType;
  132. if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
  133. return py::none();
  134. }
  135. auto* val = mgr.infer_value_fallible(v);
  136. if (!val) {
  137. return py::none();
  138. }
  139. return py::cast(*val).attr("numpy")();
  140. })
  141. .def_property_readonly("id",[](cg::VarNode* v){
  142. return (v->id());
  143. })
  144. .def("__repr__", [](cg::VarNode* v) {
  145. return "Var:" + v->name();
  146. });
  147. py::class_<cg::OperatorNodeBase, GraphNodePtr<cg::OperatorNodeBase>>(m, "OperatorNode")
  148. .def_property_readonly("graph", [](cg::OperatorNodeBase* opr) {return opr->owner_graph();})
  149. .def_property("name", py::overload_cast<>(&cg::OperatorNodeBase::name, py::const_),
  150. py::overload_cast<std::string>(&cg::OperatorNodeBase::name))
  151. .def_property_readonly("inputs", [](cg::OperatorNodeBase* opr) {
  152. return to_tuple(opr->input());
  153. })
  154. .def_property_readonly("outputs", [](cg::OperatorNodeBase* opr) {
  155. return to_tuple(opr->usable_output());
  156. })
  157. .def_property_readonly("id",[](cg::OperatorNodeBase* opr){
  158. return opr->id();
  159. })
  160. .def_property_readonly("params",[](cg::OperatorNodeBase* opr){
  161. return _imperative_sm_opr_footprint_ptr->calc_footprint(opr).param->to_string();
  162. })
  163. .def_property_readonly("type",[](cg::OperatorNodeBase* opr){
  164. return opr->dyn_typeinfo()->name;
  165. })
  166. .def("__repr__", [](cg::OperatorNodeBase* opr){
  167. return "Opr:" + opr->name();
  168. });
  169. py::class_<cg::AsyncExecutable>(m, "AsyncExecutable")
  170. .def("execute", &cg::AsyncExecutable::execute, py::call_guard<py::gil_scoped_release>())
  171. .def("wait", &cg::AsyncExecutable::wait, py::call_guard<py::gil_scoped_release>())
  172. .def("get_prev_exec_time", &cg::AsyncExecutable::get_prev_exec_time, py::call_guard<py::gil_scoped_release>())
  173. // only used for exception handle
  174. .def_property_readonly("_all_rendezvous", [](cg::AsyncExecutable* exec) {
  175. auto ud = exec->owner_graph()->options().user_data
  176. .get_user_data<WeakRendezvousArray>();
  177. std::vector<std::shared_ptr<RendezvousBase>> ret;
  178. if (ud.second) {
  179. for (auto&& r: *ud.first[0]) {
  180. if (auto p = r.lock()) {
  181. ret.emplace_back(std::move(p));
  182. }
  183. }
  184. }
  185. return ret;
  186. });
  187. auto PyComputingGraph = py::class_<cg::ComputingGraph, std::shared_ptr<cg::ComputingGraph>>(m, "ComputingGraph")
  188. .def(py::init(py::overload_cast<>(&cg::ComputingGraph::make)))
  189. .def("compile", [](cg::ComputingGraph& graph, const std::vector<cg::VarNode*>& dest_vars) {
  190. mgb_assert(!dest_vars.empty());
  191. cg::ComputingGraph::OutputSpec spec;
  192. for (auto v : dest_vars) {
  193. spec.emplace_back(v, nullptr);
  194. }
  195. return graph.compile(spec);
  196. })
  197. .def_property_readonly("options", py::overload_cast<>(&cg::ComputingGraph::options));
  198. py::class_<_CompGraphProfilerImpl, std::shared_ptr<_CompGraphProfilerImpl>>(m, "GraphProfiler")
  199. .def(py::init([](std::shared_ptr<ComputingGraph> graph) {
  200. return std::make_shared<_CompGraphProfilerImpl>(graph);
  201. }))
  202. .def("get", [](_CompGraphProfilerImpl& profiler) { return profiler._get_result(); });
  203. auto GraphOptimizeOptions = py::class_<_OptimizeForInferenceOptions>(m, "GraphOptimizeOptions")
  204. .def(py::init())
  205. .def_readwrite("f16_io_f32_comp", &_OptimizeForInferenceOptions::f16_io_f32_comp)
  206. .def_readwrite("f16_io_comp", &_OptimizeForInferenceOptions::f16_io_comp)
  207. .def_readwrite("fuse_conv_bias_nonlinearity", &_OptimizeForInferenceOptions::fuse_conv_bias_nonlinearity)
  208. .def_readwrite("fuse_conv_bias_with_z", &_OptimizeForInferenceOptions::fuse_conv_bias_with_z)
  209. .def_readwrite("layout_transform", &_OptimizeForInferenceOptions::layout_transform)
  210. ;
  211. py::enum_<_LayoutTransform>(GraphOptimizeOptions, "LayoutTransform")
  212. .value("DEFAULT", _LayoutTransform::DEFAULT)
  213. .value("NCHW4", _LayoutTransform::NCHW4)
  214. .value("NHWCD4", _LayoutTransform::NHWCD4)
  215. .value("NCHW88", _LayoutTransform::NCHW88)
  216. .value("NCHW44", _LayoutTransform::NCHW44)
  217. .value("NCHW44_DOT", _LayoutTransform::NCHW44_DOT)
  218. .value("NCHW32", _LayoutTransform::NCHW32)
  219. .value("CHWN4", _LayoutTransform::CHWN4)
  220. .export_values()
  221. ;
  222. m.def("optimize_for_inference", [](const VarNodeArray& dest_vars, const _OptimizeForInferenceOptions& opt) {
  223. SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
  224. auto res_symvars = mgb::gopt::optimize_for_inference(symvars, opt);
  225. VarNodeArray vars;
  226. for (auto& si: res_symvars)
  227. vars.push_back(si.node());
  228. return vars;
  229. });
  230. m.def("modify_opr_algo_strategy_inplace", [](const VarNodeArray& dest_vars, const std::string& strategy) {
  231. _AlgoStrategy stg;
  232. const std::unordered_map<std::string,std::function<void()>> m{
  233. {"HEURISTIC", [&](){ stg = _AlgoStrategy::HEURISTIC; }},
  234. {"HEURISTIC_REPRODUCIBLE", [&](){ stg = _AlgoStrategy::HEURISTIC_REPRODUCIBLE; }},
  235. {"PROFILE", [&](){ stg = _AlgoStrategy::PROFILE; }},
  236. {"PROFILE_REPRODUCIBLE", [&](){ stg = _AlgoStrategy::PROFILE_REPRODUCIBLE; }},
  237. {"PROFILE_HEURISTIC", [&](){ stg = _AlgoStrategy::PROFILE_HEURISTIC; }},
  238. };
  239. auto it = m.find(strategy);
  240. mgb_assert(it != m.end(), "Invalid strategy string!");
  241. it->second();
  242. mgb::gopt::modify_opr_algo_strategy_inplace(dest_vars, stg);
  243. });
  244. m.def("get_info_for_strip", [](const std::vector<VarNode*>& dest_vars) {
  245. std::unordered_set<const char*> opr_types, dtype_names, elemwise_modes;
  246. auto on_opr = [&](cg::OperatorNodeBase *opr) {
  247. if (ser::GraphDumper::should_remove_in_dump(opr))
  248. return;
  249. opr_types.insert(opr->dyn_typeinfo()->name);
  250. for (auto i : opr->output())
  251. dtype_names.insert(i->dtype().name());
  252. if (opr->same_type<opr::Elemwise>()) {
  253. auto mode = opr->cast_final<opr::Elemwise>().param().mode;
  254. elemwise_modes.insert(
  255. megdnn::Elemwise::ModeTrait::from_mode(mode).name);
  256. }
  257. };
  258. cg::DepOprIter opr_iter{on_opr};
  259. for (auto i : dest_vars)
  260. opr_iter.add(i->owner_opr());
  261. auto to_json = [](const std::unordered_set<const char*> &v) {
  262. std::vector<std::string> vs(v.begin(), v.end());
  263. std::sort(vs.begin(), vs.end());
  264. auto ret = json::Array::make();
  265. for (auto &&i : vs)
  266. ret->add(json::String::make(i));
  267. return ret;
  268. };
  269. return json::Object::make({
  270. {"opr_types", to_json(opr_types)},
  271. {"dtypes", to_json(dtype_names)},
  272. {"elemwise_modes", to_json(elemwise_modes)},
  273. })->to_string();
  274. });
  275. m.def("dump_graph", [](
  276. const std::vector<VarNode*>& dest_vars,
  277. int keep_var_name,
  278. bool keep_opr_name,
  279. bool keep_param_name,
  280. bool keep_opr_priority,
  281. py::list& stat,
  282. py::list& inputs,
  283. py::list& outputs,
  284. py::list& params
  285. ) {
  286. std::vector<uint8_t> buf;
  287. auto dumper = ser::GraphDumper::make(ser::OutputFile::make_vector_proxy(&buf));
  288. SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
  289. ser::GraphDumper::DumpConfig config{keep_var_name, keep_param_name,
  290. keep_opr_priority, keep_opr_name};
  291. auto rst = dumper->dump(symvars, config);
  292. for (auto i : rst.inputs) {
  293. inputs.append(py::cast(i));
  294. }
  295. for (auto i : rst.outputs) {
  296. outputs.append(py::cast(i));
  297. }
  298. for (auto i : rst.params) {
  299. params.append(py::cast(i));
  300. }
  301. auto rst_stat =
  302. std::vector{rst.nr_opr, rst.tot_bytes, rst.tensor_value_bytes,
  303. static_cast<size_t>(rst.content_hash)};
  304. for (auto i : rst_stat) {
  305. stat.append(py::cast(i));
  306. }
  307. return py::bytes(reinterpret_cast<const char*>(&buf[0]), buf.size());
  308. });
  309. m.def("load_graph", [](
  310. std::string& buf,
  311. py::list& output_var_map,
  312. py::list& output_var_list
  313. ) {
  314. auto file = ser::InputFile::make_mem_proxy(buf.c_str(), buf.length());
  315. auto format = ser::GraphLoader::identify_graph_dump_format(*file);
  316. auto loader = ser::GraphLoader::make(std::move(file), format.val());
  317. ser::GraphLoader::LoadConfig config;
  318. auto rst = loader->load(config);
  319. for (auto i : rst.output_var_map) {
  320. output_var_map.append(py::make_tuple(i.first, i.second.node()));
  321. }
  322. for (auto i : rst.output_var_list) {
  323. output_var_list.append(i.node());
  324. }
  325. std::unordered_map<HostTensorND*, const std::string*> tensor2name;
  326. for (const auto& pair : rst.tensor_map) {
  327. tensor2name[pair.second.get()] = &pair.first;
  328. }
  329. auto cb = [&tensor2name, graph=rst.graph](cg::OperatorNodeBase* opr) {
  330. if (!opr->same_type<opr::Host2DeviceCopy>())
  331. return;
  332. auto& h2d = opr->cast_final_safe<opr::Host2DeviceCopy>();
  333. auto it = tensor2name.find(h2d.host_data().get());
  334. mgb_throw_if(it == tensor2name.end(), GraphError,
  335. "unbound Host2DeviceCopy in loaded graph");
  336. h2d.output(0)->name(*it->second);
  337. };
  338. cg::DepOprIter iter{cb};
  339. for (const auto& var : rst.output_var_list) {
  340. iter.add(var);
  341. }
  342. return rst.graph;
  343. });
  344. #define CURRENT_CLASS cg::ComputingGraph::Options
  345. auto PyComputingGraphOptions = py::class_<cg::ComputingGraph::Options>(PyComputingGraph, "Options")
  346. // DEF_READWRITE(opr_attribute)
  347. DEF_READWRITE(seq_opt)
  348. DEF_READWRITE(graph_opt)
  349. DEF_READWRITE(graph_opt_level)
  350. DEF_READWRITE(log_level)
  351. DEF_READWRITE(async_exec_level)
  352. DEF_READWRITE(force_dynamic_alloc)
  353. DEF_READWRITE(var_sanity_check_first_run)
  354. DEF_READWRITE(allocate_static_mem_after_graph_compile)
  355. DEF_READWRITE(fake_next_exec)
  356. DEF_READWRITE(enable_sublinear_memory_opt)
  357. DEF_READWRITE(no_profiling_on_shape_change)
  358. DEF_READWRITE(enable_var_mem_defragment)
  359. DEF_READWRITE(enable_grad_var_static_reshape)
  360. DEF_READWRITE(enable_memory_swap)
  361. DEF_READWRITE(comp_node_seq_record_level)
  362. DEF_READWRITE(no_force_inplace)
  363. DEF_READWRITE(sublinear_mem_config)
  364. // DEF_READWRITE(eager_evaluation)
  365. // DEF_READWRITE(imperative_proxy_graph)
  366. // DEF_READWRITE(extra_vardeps)
  367. // DEF_READWRITE(user_data)
  368. ;
  369. #undef CURRENT_CLASS
  370. #define CURRENT_CLASS cg::ComputingGraph::Options::SeqOpt
  371. py::class_<cg::ComputingGraph::Options::SeqOpt>(PyComputingGraphOptions, "SeqOpt")
  372. DEF_READWRITE(enable_mem_plan_opt)
  373. DEF_READWRITE(enable_mem_reuse_alloc)
  374. DEF_READWRITE(enable_seq_comp_node_opt);
  375. #undef CURRENT_CLASS
  376. #define CURRENT_CLASS cg::ComputingGraph::Options::GraphOpt
  377. py::class_<cg::ComputingGraph::Options::GraphOpt>(PyComputingGraphOptions, "GraphOpt")
  378. DEF_READWRITE(jit)
  379. DEF_READWRITE(tensorrt);
  380. #undef CURRENT_CLASS
  381. #define CURRENT_CLASS cg::ComputingGraph::Options::SublinearMemConfig
  382. py::class_<cg::ComputingGraph::Options::SublinearMemConfig>(PyComputingGraphOptions, "SublinearMemConfig")
  383. DEF_READWRITE(thresh_nr_try)
  384. DEF_READWRITE(genetic_nr_iter)
  385. DEF_READWRITE(genetic_pool_size)
  386. DEF_READWRITE(lb_memory)
  387. DEF_READWRITE(num_worker);
  388. #undef CURRENT_CLASS
  389. auto common = rel_import("common", m, 1);
  390. common.def("invoke_op", [](const OpDef& def, const std::vector<cg::VarNode*> inputs, cg::ComputingGraph* graph) {
  391. cg::VarNodeArray vinputs(inputs.begin(), inputs.end());
  392. return to_tuple(OpDef::apply_on_var_node(def, vinputs));
  393. },
  394. py::arg(), py::arg(), py::arg("graph") = py::none());
  395. auto input_callback = [](auto callback,
  396. const CompNode& comp_node,
  397. const DType& dtype,
  398. const TensorShape& shape,
  399. const std::vector<cg::VarNode*>& inputs,
  400. cg::ComputingGraph* graph,
  401. bool use_static_shape) {
  402. if (!graph) {
  403. graph = inputs[0]->owner_graph();
  404. }
  405. SymbolVarArray sinputs;
  406. for (auto i : inputs) {
  407. sinputs.emplace_back(i);
  408. }
  409. static_assert(!std::is_reference<decltype(callback)>::value);
  410. auto soutputs = opr::InputCallback::make(*graph, std::move(callback),
  411. comp_node, dtype, shape,
  412. sinputs, use_static_shape);
  413. std::vector<VarNode*> outputs;
  414. outputs.reserve(soutputs.size());
  415. for (auto i : soutputs) {
  416. outputs.push_back(i.node());
  417. }
  418. return outputs;
  419. };
  420. m.def("make_shared", [](cg::ComputingGraph* graph, const DeviceTensorND& data) {
  421. return opr::SharedDeviceTensor::make(*graph, std::make_shared<DeviceTensorND>(data)).node();
  422. });
  423. m.def("make_const", [](cg::ComputingGraph* graph, py::array data, CompNode cn, DType dtype, std::optional<std::string> name) {
  424. if (!cn.valid()) {
  425. cn = CompNode::load(get_default_device());
  426. }
  427. OperatorNodeConfig config(cn);
  428. if (name) {
  429. config.name(*name);
  430. }
  431. auto hv = npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype);
  432. return opr::ImmutableTensor::make(*graph, hv, config).node();
  433. }, py::arg(), py::arg(), py::arg(), py::arg(), py::arg() = py::none());
  434. m.def("make_h2d", [](cg::ComputingGraph& graph, CompNode cn, DType dtype, TensorShape shape, std::optional<std::string> name) {
  435. if (!cn.valid()) {
  436. throw py::type_error("device must be valid");
  437. }
  438. if (!dtype.valid()) {
  439. throw py::type_error("dtype must be valid");
  440. }
  441. OperatorNodeConfig config;
  442. if (name) {
  443. config.name(*name);
  444. }
  445. return opr::Host2DeviceCopy::make(graph, std::make_shared<HostTensorND>(cn, shape, dtype), config).node();
  446. }, py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::none());
  447. m.def("_replace_vars", &_replace_vars,py::arg(),py::arg(),py::arg());
  448. m.def("_replace_oprs", &_replace_oprs,py::arg(),py::arg(),py::arg());
  449. m.def("_set_priority_to_id",&_set_priority_to_id,py::arg());
  450. m.def("input_callback", [input_callback](std::function<DeviceTensorND(void)> callback,
  451. const CompNode& comp_node,
  452. const DType& dtype,
  453. const TensorShape& shape,
  454. const std::vector<cg::VarNode*>& inputs,
  455. cg::ComputingGraph* graph,
  456. bool use_static_shape) {
  457. return input_callback(
  458. [f=std::move(callback)](){py::gil_scoped_acquire _; return f();},
  459. comp_node, dtype, shape, inputs, graph, use_static_shape);
  460. },
  461. py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::tuple(),
  462. py::arg("graph") = py::none(), py::arg("use_static_shape") = false);
  463. m.def("input_callback", [input_callback](std::shared_ptr<Rendezvous<DeviceTensorND>> p,
  464. const CompNode& comp_node,
  465. const DType& dtype,
  466. const TensorShape& shape,
  467. const std::vector<cg::VarNode*>& inputs,
  468. cg::ComputingGraph* graph,
  469. bool use_static_shape) {
  470. auto f = [p]() -> DeviceTensorND {
  471. return p->get();
  472. };
  473. return input_callback(std::move(f), comp_node, dtype, shape, inputs, graph, use_static_shape);
  474. },
  475. py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::tuple(),
  476. py::arg("graph") = py::none(), py::arg("use_static_shape") = false);
  477. auto output_callback = [](auto callback, const std::vector<cg::VarNode*>& inputs,
  478. std::shared_ptr<RendezvousBase> r = {}, bool borrow = false, bool prefer_host_value = false) {
  479. if (r) {
  480. mgb_assert(inputs.size());
  481. auto cg = inputs[0]->owner_graph();
  482. cg->options().user_data.get_user_data_or_create<WeakRendezvousArray>()
  483. ->emplace_back(r);
  484. }
  485. SymbolVarArray sinputs;
  486. for (auto i : inputs) {
  487. sinputs.emplace_back(i);
  488. }
  489. static_assert(!std::is_reference<decltype(callback)>::value);
  490. opr::OutputCallback::Param param{std::move(callback), borrow, prefer_host_value};
  491. auto output = opr::OutputCallback::make(std::move(param), sinputs);
  492. return output.node();
  493. };
  494. m.def("output_callback", [output_callback](std::function<void(DeviceTensorND)> callback, std::vector<cg::VarNode*> inputs) {
  495. auto f = [f=std::move(callback)](DeviceTensorND dv) {
  496. auto task = [f=std::move(f), dv=std::move(dv)]() {
  497. f(dv);
  498. };
  499. py_task_q.add_task(std::move(task));
  500. };
  501. return output_callback(std::move(f), std::move(inputs));
  502. });
  503. m.def("output_callback", [output_callback](std::shared_ptr<Rendezvous<DeviceTensorND>> p, std::vector<cg::VarNode*> inputs) {
  504. auto f = [p](DeviceTensorND dv) {
  505. p->set(std::move(dv));
  506. };
  507. return output_callback(std::move(f), std::move(inputs), p);
  508. });
  509. m.def("value_output_callback", [output_callback](std::shared_ptr<Rendezvous<HostNDWithEvent>> p, std::vector<cg::VarNode*> inputs) {
  510. auto f = [p](DeviceTensorND dv) {
  511. HostNDWithEvent hv_with_event;
  512. hv_with_event.first.copy_from(dv);
  513. hv_with_event.second = dv.comp_node().create_event();
  514. hv_with_event.second->record();
  515. p->set(std::move(hv_with_event));
  516. };
  517. return output_callback(std::move(f), std::move(inputs), p, true, true);
  518. });
  519. m.def("attr_output_callback", [output_callback](std::shared_ptr<Rendezvous<TensorAttr>> p, std::vector<cg::VarNode*> inputs) {
  520. auto f = [p](DeviceTensorND dv) {
  521. p->set(TensorAttr{TensorLayout{dv.shape(), dv.dtype()}, dv.comp_node()});
  522. };
  523. return output_callback(std::move(f), std::move(inputs), p, true);
  524. });
  525. m.def("virtual_dep", [](std::vector<cg::VarNode*> inputs, std::string device) {
  526. auto&& graph = inputs[0]->owner_graph();
  527. VarNodeArray inps(inputs.begin(), inputs.end());
  528. cg::OperatorNodeConfig config;
  529. if (device.length() > 0) {
  530. config.comp_node(CompNode::load(device));
  531. }
  532. cg::OperatorNodeBase* opr = graph->insert_opr(
  533. std::make_unique<mgb::opr::VirtualDep>(inps, config));
  534. return opr;
  535. });
  536. }

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台