You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dataloader.py 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import collections
  10. import math
  11. import multiprocessing
  12. import platform
  13. import queue
  14. import random
  15. import time
  16. import numpy as np
  17. from ..logger import get_logger
  18. from ..random.rng import _random_seed_generator
  19. from .collator import Collator
  20. from .dataset import Dataset
  21. from .sampler import Sampler, SequentialSampler
  22. from .transform import PseudoTransform, Transform
  23. logger = get_logger(__name__)
  24. MP_QUEUE_GET_TIMEOUT = 5
  25. class DataLoader:
  26. __initialized = False
  27. def __init__(
  28. self,
  29. dataset: Dataset,
  30. sampler: Sampler = None,
  31. transform: Transform = None,
  32. collator: Collator = None,
  33. num_workers: int = 0,
  34. timeout: int = 0,
  35. divide: bool = False,
  36. ):
  37. r"""Provides a convenient way to iterate on a given dataset.
  38. `DataLoader` combines a dataset with `sampler`, `transform` and `collator`,
  39. make it flexible to get minibatch continually from a dataset.
  40. :type dataset: Dataset
  41. :param dataset: dataset from which to load the minibatch.
  42. :type sampler: Sampler
  43. :param sampler: defines the strategy to sample data from the dataset.
  44. :type transform: Transform
  45. :param transform: defined the transforming strategy for a sampled batch.
  46. Default: None
  47. :type collator: Collator
  48. :param collator: defined the merging strategy for a transformed batch.
  49. Default: None
  50. :type num_workers: int
  51. :param num_workers: the number of sub-process to load, transform and collate
  52. the batch. ``0`` means using single-process. Default: 0
  53. :type timeout: int
  54. :param timeout: if positive, means the timeout value(second) for collecting a
  55. batch from workers. Default: 0
  56. :type divide: bool
  57. :param divide: define the paralleling strategy in multi-processing mode.
  58. ``True`` means one batch is divided into :attr:`num_workers` pieces, and
  59. the workers will process these pieces parallelly. ``False`` means
  60. different sub-process will process different batch. Default: False
  61. """
  62. if num_workers < 0:
  63. raise ValueError("num_workers should not be negative")
  64. if timeout < 0:
  65. raise ValueError("timeout should not be negative")
  66. if divide and num_workers <= 1:
  67. raise ValueError("divide should not be set to True when num_workers <= 1")
  68. self.dataset = dataset
  69. self.num_workers = num_workers
  70. self.timeout = timeout
  71. self.divide = divide
  72. if sampler is None:
  73. self.sampler = SequentialSampler(dataset, batch_size=1, drop_last=False)
  74. else:
  75. self.sampler = sampler
  76. if divide:
  77. if self.sampler.batch_size <= self.num_workers:
  78. raise ValueError(
  79. "batch size must not smaller than num_workers in divide mode."
  80. )
  81. elif self.sampler.batch_size % self.num_workers:
  82. logger.warning(
  83. "batch size is not divisible by num_workers, may lose performance in divide mode."
  84. )
  85. if transform is None:
  86. self.transform = PseudoTransform()
  87. else:
  88. self.transform = transform
  89. if collator is None:
  90. self.collator = Collator()
  91. else:
  92. self.collator = collator
  93. self.__initialized = True
  94. def __iter__(self):
  95. if platform.system() == "Windows" and self.num_workers > 0:
  96. print(
  97. "pyarrow.plasma does not support ParallelDataLoader on windows, changing num_workers to be zero"
  98. )
  99. self.num_workers = 0
  100. if self.num_workers == 0:
  101. return _SerialDataLoaderIter(self)
  102. else:
  103. return _ParallelDataLoaderIter(self)
  104. def __len__(self):
  105. return len(self.sampler)
  106. class _BaseDataLoaderIter:
  107. def __init__(self, loader):
  108. self.dataset = loader.dataset
  109. self.sampler = loader.sampler
  110. self.seed = _random_seed_generator().__next__()
  111. self.transform = loader.transform
  112. self.collator = loader.collator
  113. self.num_workers = loader.num_workers
  114. self.timeout = loader.timeout
  115. self.divide = loader.divide
  116. self.num_processed = 0
  117. def _get_next_batch(self):
  118. raise NotImplementedError
  119. def __len__(self):
  120. return len(self.sampler)
  121. def __iter__(self):
  122. return self
  123. def __next__(self):
  124. if self.num_processed >= len(self):
  125. raise StopIteration
  126. minibatch = self._get_next_batch()
  127. self.num_processed += 1
  128. return minibatch
  129. class _SerialDataLoaderIter(_BaseDataLoaderIter):
  130. def __init__(self, loader):
  131. super(_SerialDataLoaderIter, self).__init__(loader)
  132. self.indices_iter = iter(self.sampler)
  133. def _get_next_batch(self):
  134. indices = next(self.indices_iter)
  135. items = [self.dataset[idx] for idx in indices]
  136. trans_items = self.transform.apply_batch(items)
  137. return self.collator.apply(trans_items)
  138. class _ParallelDataLoaderIter(_BaseDataLoaderIter):
  139. __initialized = False
  140. def __init__(self, loader):
  141. super(_ParallelDataLoaderIter, self).__init__(loader)
  142. self.task_queues = [
  143. multiprocessing.Queue(maxsize=2) for _ in range(self.num_workers)
  144. ]
  145. self.feed_batch_idx = multiprocessing.Value("i", 0)
  146. self.target_batch_idx = multiprocessing.Value("i", 0)
  147. self.shutdown_flag = multiprocessing.Value("i", 0)
  148. self.trans_data_queues = [
  149. multiprocessing.Queue(maxsize=1) for _ in range(self.num_workers)
  150. ]
  151. # use shared-memory queue implemented by pyarrow plasma store.
  152. from ._queue import PlasmaShmQueue
  153. self.batch_queue = PlasmaShmQueue(maxsize=2)
  154. self.task_feeding_worker = multiprocessing.Process(
  155. target=_task_feeding_loop,
  156. args=(
  157. iter(self.sampler),
  158. self.task_queues,
  159. self.num_workers,
  160. self.divide,
  161. self.shutdown_flag,
  162. self.feed_batch_idx,
  163. ),
  164. daemon=True,
  165. )
  166. self.task_feeding_worker.start()
  167. self.workers = []
  168. for worker_id in range(self.num_workers):
  169. worker = multiprocessing.Process(
  170. target=_worker_loop,
  171. args=(
  172. self.dataset,
  173. self.task_queues[worker_id],
  174. self.trans_data_queues[worker_id],
  175. self.transform,
  176. self.seed + worker_id + 1,
  177. self.shutdown_flag,
  178. ),
  179. daemon=True,
  180. )
  181. worker.start()
  182. self.workers.append(worker)
  183. if self.divide:
  184. self.data_collecting_worker = multiprocessing.Process(
  185. target=_data_gathering_loop,
  186. args=(
  187. self.trans_data_queues,
  188. self.batch_queue,
  189. self.collator,
  190. len(self),
  191. self.num_workers,
  192. self.shutdown_flag,
  193. self.target_batch_idx,
  194. ),
  195. daemon=True,
  196. )
  197. else:
  198. self.data_collecting_worker = multiprocessing.Process(
  199. target=_data_selecting_loop,
  200. args=(
  201. self.trans_data_queues,
  202. self.batch_queue,
  203. self.collator,
  204. len(self),
  205. self.num_workers,
  206. self.shutdown_flag,
  207. self.target_batch_idx,
  208. ),
  209. daemon=True,
  210. )
  211. self.data_collecting_worker.start()
  212. self.__initialized = True
  213. def _check_workers(self):
  214. # Check the status of each worker.
  215. if not self.data_collecting_worker.is_alive():
  216. exitcode = self.task_feeding_worker.exitcode
  217. if exitcode != 0:
  218. raise RuntimeError("data collecting worker died. {}".format(exitcode))
  219. if not self.task_feeding_worker.is_alive():
  220. exitcode = self.task_feeding_worker.exitcode
  221. if exitcode != 0:
  222. raise RuntimeError("task feeding worker died. {}".format(exitcode))
  223. for worker_id, worker in enumerate(self.workers):
  224. if not worker.is_alive():
  225. exitcode = worker.exitcode
  226. if exitcode != 0:
  227. raise RuntimeError("worker:{} died. {}".format(worker_id, exitcode))
  228. logger.debug("all workers are alive.")
  229. def _try_get_next_batch(self):
  230. start_time = time.time()
  231. while True:
  232. self._check_workers()
  233. try:
  234. return self.batch_queue.get(timeout=1)
  235. except queue.Empty:
  236. logger.debug("batch queue empty!")
  237. waited_time = time.time() - start_time
  238. if self.timeout > 0:
  239. if waited_time > self.timeout:
  240. raise RuntimeError("get_next_batch timeout!")
  241. def _get_next_batch(self):
  242. batch_data = self._try_get_next_batch()
  243. return batch_data
  244. def _shutdown(self):
  245. with self.shutdown_flag.get_lock():
  246. self.shutdown_flag.value = 1
  247. if self.task_feeding_worker.is_alive():
  248. self.task_feeding_worker.terminate()
  249. self.task_feeding_worker.join()
  250. if self.data_collecting_worker.is_alive():
  251. self.data_collecting_worker.terminate()
  252. self.data_collecting_worker.join()
  253. for worker in self.workers:
  254. if worker.is_alive():
  255. worker.terminate()
  256. worker.join()
  257. for q in self.trans_data_queues:
  258. q.cancel_join_thread()
  259. q.close()
  260. for q in self.task_queues:
  261. q.cancel_join_thread()
  262. q.close()
  263. self.batch_queue.cancel_join_thread()
  264. self.batch_queue.close()
  265. def __del__(self):
  266. if self.__initialized:
  267. self._shutdown()
  268. def _task_feeding_loop(
  269. indices_iter, task_queues, num_workers, divide, shutdown_flag, feed_batch_idx
  270. ):
  271. # Feed the indices into the task queues
  272. while True:
  273. if shutdown_flag.value == 1:
  274. break
  275. batch_idx = feed_batch_idx.value
  276. try:
  277. indices = next(indices_iter)
  278. except StopIteration:
  279. break
  280. if divide:
  281. # make sure all task_queues is ready for put
  282. while any([q.full() for q in task_queues]):
  283. if shutdown_flag.value == 1:
  284. return
  285. # divide into small pieces, feed to different workers.
  286. sub_num = math.ceil(len(indices) / num_workers)
  287. for worker_id in range(num_workers):
  288. sub_indices = indices[worker_id * sub_num : (worker_id + 1) * sub_num]
  289. task_queues[worker_id].put((batch_idx, sub_indices))
  290. else:
  291. # distribute tasks to different workers uniformly.
  292. target_id = batch_idx % num_workers
  293. while task_queues[target_id].full():
  294. if shutdown_flag.value == 1:
  295. return
  296. task_queues[target_id].put((batch_idx, indices))
  297. with feed_batch_idx.get_lock():
  298. feed_batch_idx.value += 1
  299. def _worker_loop(dataset, task_queue, trans_data_queue, transform, seed, shutdown_flag):
  300. # Get dataset items and do the transform
  301. random.seed(seed)
  302. np.random.seed(seed)
  303. while True:
  304. if shutdown_flag.value == 1:
  305. break
  306. try:
  307. batch_idx, indices = task_queue.get(timeout=MP_QUEUE_GET_TIMEOUT)
  308. except queue.Empty:
  309. continue
  310. if len(indices) > 0:
  311. items = [dataset[idx] for idx in indices]
  312. trans_items = transform.apply_batch(items)
  313. else:
  314. # in case of incomplete last batch
  315. trans_items = ()
  316. while True:
  317. try:
  318. trans_data_queue.put((batch_idx, trans_items), timeout=1)
  319. break
  320. except queue.Full:
  321. if shutdown_flag.value == 1:
  322. break
  323. logger.debug("batch part queue is full!")
  324. def _data_gathering_loop(
  325. trans_data_queues,
  326. batch_queue,
  327. collator,
  328. length,
  329. num_workers,
  330. shutdown_flag,
  331. target_idx,
  332. ):
  333. # Gathering the small pieces of batch data into full batch data
  334. while True:
  335. if shutdown_flag.value == 1:
  336. break
  337. target_batch_idx = target_idx.value
  338. if target_batch_idx >= length:
  339. break
  340. full_trans_items = []
  341. for worker_id in range(num_workers):
  342. while True:
  343. try:
  344. batch_idx, trans_items = trans_data_queues[worker_id].get(
  345. timeout=MP_QUEUE_GET_TIMEOUT
  346. )
  347. break
  348. except queue.Empty:
  349. if shutdown_flag.value == 1:
  350. break
  351. logger.debug(
  352. "worker:{} data queue get timeout! target batch idx:{}".format(
  353. worker_id, target_batch_idx
  354. )
  355. )
  356. if batch_idx != target_batch_idx:
  357. raise RuntimeError(
  358. "Unexperted batch_idx in data gathering loop. worker_id:{}.".format(
  359. worker_id
  360. )
  361. )
  362. else:
  363. full_trans_items.extend(trans_items)
  364. # Merge different parts into a batch.
  365. full_batch = collator.apply(full_trans_items)
  366. while True:
  367. try:
  368. batch_queue.put(full_batch, timeout=1)
  369. break
  370. except queue.Full:
  371. if shutdown_flag.value == 1:
  372. break
  373. logger.debug("batch queue is full!")
  374. with target_idx.get_lock():
  375. target_idx.value += 1
  376. batch_queue.disconnect_client()
  377. def _data_selecting_loop(
  378. trans_data_queues,
  379. batch_queue,
  380. collator,
  381. length,
  382. num_workers,
  383. shutdown_flag,
  384. target_idx,
  385. ):
  386. # Make sure that batch is generated exactly with the same order as generated indices
  387. while True:
  388. if shutdown_flag.value == 1:
  389. break
  390. target_batch_idx = target_idx.value
  391. if target_batch_idx >= length:
  392. break
  393. target_worker_id = target_batch_idx % num_workers
  394. while True:
  395. try:
  396. batch_idx, trans_items = trans_data_queues[target_worker_id].get(
  397. timeout=MP_QUEUE_GET_TIMEOUT
  398. )
  399. batch_data = collator.apply(trans_items)
  400. break
  401. except queue.Empty:
  402. if shutdown_flag.value == 1:
  403. break
  404. logger.debug(
  405. "worker:{} data queue get timeout! target batch idx:{}".format(
  406. target_worker_id, target_batch_idx
  407. )
  408. )
  409. if batch_idx != target_batch_idx:
  410. raise RuntimeError(
  411. "batch_idx {} mismatch the target_batch_idx {}".format(
  412. batch_idx, target_batch_idx
  413. )
  414. )
  415. while True:
  416. try:
  417. batch_queue.put(batch_data, timeout=1)
  418. break
  419. except queue.Full:
  420. if shutdown_flag.value == 1:
  421. break
  422. logger.debug("batch queue is full!")
  423. with target_idx.get_lock():
  424. target_idx.value += 1
  425. batch_queue.disconnect_client()

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台